首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Acetylcholine synthesis from radiolabelled glucose was monitored in cerebral cortex cells isolated from brains of suckling and adult rats. Acetylcholine synthesis was found much higher in suckling animals, both in the absence and presence of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) inhibitor, paraoxon. Together with choline (20 μM), carnitine was found to stimulate acetylcholine synthesis in a synergistic way in cortex cells from adult rats (18%). Choline, however, was incapable of reversing an inhibitory effect exerted by carnitine on acetylcholine synthesis in cortex cells from suckling animals. Distribution of carnitine derivatives was found significantly different in the cells from young and old animals, the content of acetylcarnitine decreased with age with a corresponding increase of free carnitine. The observed differences in carnitine effect on acetylcholine synthesis suggested that high acetylcarnitine in cells capable of β-oxidation might be correlated with the lower level of acetylcholine synthesis.  相似文献   

2.
Summary A system has been developed for the culture of cells that provides conditions favoring the formation of tissues comparable to conditions existing in nature. The culture chamber is a lens-shaped pouch composed of two thin-walled, reinforced, waffled collagen membranes facing each other. The chamber is immersed in immersed in medium in a closed transparent container and incubated on a rocker. On histologic study, after days to weeks in culture, human mammary cancer cell lines BT-20, MCF-7, MDA-231, MDA-468, and T47D grow in the chamber as distinctive structured epithelial tissue. Dog kidney cell line MDCK grows as a papillary adenocarcinoma and rat bladder cancer line NBT-II as an epidermoid carcinoma; cells from clinical effusion tumors produce distinct tissue. Changes in histologic phenotype may be driven by molecular changes at the level of the genome. Resulting alteration of the biochemical functions essential for the integrity of specific durable tissue organization should alter or reset the pattern of tissue organization and of biological behavior, including malignancy and response to cytotoxic chemicals. Lenticular pouch culture promises to be an effective tool for exploring the molecular changes associated with histogenesis and malignancy. This paper is dedicated to the memory of Clyde J. Dawe, who died suddenly on Cape Cod, Massachusetts, in a glider accident on July 5, 1996. We were friends for about 40 years. Clyde was one of the finest scholars in cancer biology I have ever known. I learned many things from him and miss him.  相似文献   

3.
Summary Primary cultured epithelial cells derived from the rat dorsolateral prostate proliferated in serum-free nutrient medium WAJC 404 supplemented with mitogens: insulin (650 nM), cholera toxin (120 pM), epidermal growth factor (EGF) (2.5 nM), dexamethasone (300 nM), and bovine pituitary extract (25 μg/ml). The culture consisted of two types of epithelial cell colonies: one originated from single cells or small cell aggregates and the other was epithelial cell outgrowth from small tissue fragments attached to a substratum. There were differences in requirements for the mitogens between the two types of colonies. Requirements for cholera toxin, bovine pituitary extract, and dexamethasone were higher in the former type of colonies, and those for EGF were higher in the latter type of colonies. Proliferation of the epithelial cells in either type, of colony was suppressed more than 50% by 1 nM dihydrotestosterone. This suppressive effect was not mediated by stromal component in the tissue fragments, and was counteracted by cyproterone acetate, indicating specific and direct action of the androgen on prostate epithelial cells. The results suggest that there is discrete participation of polypeptide growth factors and androgen in proliferation and differentiation, respectively, of prostate epithelial cells in vivo.  相似文献   

4.
Summary Rat liver epithelial cell lines, growing in a serum-supplemented medium, synthesize and secrete into the culture medium the third component of complement (C3). We studied the regulation of C3 production in this system. We found that human peripheral blood mononuclear leukocytes in culture released one or more soluble factors which stimulated rat liver epithelial cells to produce increased quantitites of C3. This stimulting effect was strongly enhanced when the mononuclear cell cultures were treated with phytohemagglutinin, a T-lymphocyte mitogen. The factor(s) failed to enhance C3 biosynthesis by rat dermal fibroblasts, which are known to produce this protein. This reveals a tissue-specific differential response between the fibroblasts and the liver epithelial cells. The physical and chemical characteristics, such as heat sensitivity, 2.8M ammonium sulphate precipitation, and lower activity after digestion by proteases unambiguously indicate that the effector molecules are proteins. When the crude supernatant of mononuclear leukocytes was fractionated by gel filtration, the stimulating factor(s) eluted as two peaks with apparent molecular weight of 25 to 60 and 15 to 20 kdalton, respectively. As to the cellular origin of the C3-stimulating factor(s), several observations were made: (a) in separate cultures containing either T-cells or monocyte-enriched populations from the same sample of blood mononuclear cells, no activity was detected in the presence or absence of phytohemagglutinin, (b) conditioned media from each of these cultures could not substitute for the corresponding intact cell populations, and (c) the addition of purified T-cells to the monocyte-enriched population in the presence of phytohemagglutinin restored the production of the stimulating activity by the mixed culture. Finally, experiments were carried out to verify whether monokine interleukin 1 affects the hepatic C3 biosynthesis. It was demonstrated that interleukin 1 enhanced this biosynthesis, but could not completely substitute for conditioned medium from stimulated mononuclear cells.  相似文献   

5.
6.
Mild hypothermia is a promising neuroprotective therapy in stroke management. However, little is known about its effects on the global protein expression patterns in brain regions affected by ischemic stroke. We investigated protein expression changes associated with the neuroprotective effects of hypothermia via a functional proteomics approach through the analysis of the core (striatum) and the penumbra (cortex) after an ischemic insult in rats induced by endothelin-1 (Et-1). Functional outcome, infarct volume and related global protein expression changes were assessed 24 h after the insult using two-dimensional difference gel electrophoresis. Mild hypothermia, induced 20 min after endothelin-1 infusion, improved the neurological outcome, reflected by a 36% reduction in infarct volume and a significantly better neurological deficit score. Hypothermia was typically associated with opposite protein expression changes inthe cortex to those induced by stroke under normothermic conditions, but not in the striatum. The main cellular processes rescued by hypothermia and potentially involved in the protection of the cortex are cellular assembly and organization, followed by cell signaling, thereby confirming that hypothermia is neuroprotective through multiple molecular and cellular pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号