首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The production of infectious virus, hemagglutinin, and viral (V) antigens and the changes in ribonucleoprotein (RNP) and lipoprotein metabolism have been studied in four sublines of HeLa cells infected with the PR8 and a PR8 recombinant strain of influenza virus. Much greater amounts of infectious virus and much less hemagglutinin were produced by the PR8 recombinant than by PR8 virus in all four cell lines. Different amounts of infectious virus per infected cell were produced by the recombinant in the four cell lines, whereas very little infectious virus was produced by the PR8 strain in any of the HeLa cells. In all cell lines infected with both strains of virus, "soluble" (S) antigen appeared early in the nucleolus. In cells infected with PR8 recombinant, S antigen subsequently filled the nucleus and later appeared in the cytoplasm. In most cells infected with PR8 virus, nuclear S antigen did not fuse to fill the nucleus, and S antigen was not detected in the cytoplasm. V antigen was observed in the cytoplasm of cells when diffuse nuclear S antigen had formed. The earliest and most frequent change in the RNP of the infected cells was a decrease in stainable RNP spherules (nucleolini) in the nucleolus. This was followed, in a smaller proportion of cells, by the appearance of nuclear and cytoplasmic inclusions containing RNP. There was a characteristic difference in the morphology of the cytoplasmic inclusions produced by the two strains of virus, but the same types of inclusions were observed in all four HeLa lines. A significant increase in lipoprotein was observed only in association with the cytoplasmic inclusions produced by PR8 recombinant virus. There was a striking difference in the proportion of cells with cytochemical changes in RNP in the four cell lines. A significant cytopathic effect (CPE) was observed only in three virus-cell systems in which a high proportion of cells exhibited changes in nucleolinar RNP. It is suggested that disappearance of RNP in the nucleolini may be an indication of shutdown of host ribonucleic acid synthesis and that this in turn results in a CPE. Virus infection resulted in a C-mitotic block that was followed by karyorrhexis. Infection of the cell did not always result in the production of infectious virus, in changes in the RNP of the nucleolini, in the development of nuclear or cytoplasmic RNP inclusions, or in CPE. The results suggest that production of infectious virus, shutdown of cellular RNP synthesis with accompanying CPE, and the formation of inclusions appear to be independent events.  相似文献   

2.
3.
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.  相似文献   

4.
When 1–5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by four successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cells NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble form and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells is not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.  相似文献   

5.
Short-term hypertonic (HT) stress induces apoptotic cell death in human EUE cells in culture, as observed by electron microscopy, agarose-gel electrophoresis of low-molecular-weight DNA, DNA flow cytometry and annexin-V-propidium iodide double-staining. During HT-induced apoptosis, nuclear ribonucleoprotein (RNP)-containing structures undergo rearrangement, with the formation of Heterogeneous Ectopic RNP-Derived Structures (HERDS) which pass into the cytoplasm, as already reported for other examples of spontaneous and drug-induced apoptosis. Of special interest was the observation that nucleolus-like bodies (NLBs) which resemble morphologically nuclear functional nucleoli may be extruded into the cytoplasm of apoptotic cells and are observed inside the cytoplasmic fragments blebbing-out at the cell surface; these NLBs still contain immunodetectable nucleolar proteins (such as fibrillarin). This is an additional example of RNP-containing structures of nuclear origin which are extruded from the nucleus, in an almost "native" form, during apoptosis.  相似文献   

6.
An excellent correlation has been established between the quantity of protein associated with nuclei isolated from heat-shocked cells and the level of hyperthermic cell killing. However, controversy remains about whether increases in nuclear-associated protein result from a heat-induced migration of cytoplasmic proteins into the nucleus or because hyperthermia reduces the solubility of nuclear proteins in the detergent buffers commonly used to isolate nuclei. To address this controversy, the nuclear protein content was measured in whole and detergent-extracted cells before and following hyperthermia. It was found that hyperthermia caused no significant change in the nuclear protein content of whole, unextracted cells, and when fluorescently labeled proteins were microinjected into the cytoplasm no gross change in the selective permeability of the nuclear membrane to soluble proteins was observed during or following hyperthermia. Measurements in extracted cells showed that the detergent buffers removed protein from both the nucleus and cytoplasm of control, nonheated cells and that hyperthermia reduced the extractability of both nuclear and cytoplasmic proteins. The amount of protein found in nuclei isolated from heated cells approached that observed in nuclei within nonheated whole cells as the hyperthermic exposure was increased. Thus, the dose-dependent, two- to threefold increase in the protein content of nuclei isolated from heated cells represents a heat-induced reduction in the extractability of proteins normally present within cell nuclei and does not result from a mass migration of cytoplasmic proteins into the nucleus, although some specific proteins (e.g., the 70 KDa heat shock protein) do migrate to the nucleus following heat shock. Differential scanning calorimetry (DSC) measurements of whole cells, isolated nuclei, cytoplasts, and karyoplasts supported these conclusions and suggested that most of the detergent-insoluble proteins remaining in the nuclei and cytoplasm of heated cells are in their native state. Thus, a relatively small amount of denatured protein may be sufficient to initiate and sustain insoluble protein aggregates comprised of mostly native proteins. Analyses of the DSC data also implied that the previously identified critical target proteins, predicted to have a Tm of 46.0°C, are present in both the nucleus and cytoplasm. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Numerous membrane‐less organelles, composed of a combination of RNA and proteins, are observed in the nucleus and cytoplasm of eukaryotic cells. These RNP granules include stress granules (SGs), processing bodies (PBs), Cajal bodies, and nuclear speckles. An unresolved question is how frequently RNA molecules are required for the integrity of RNP granules in either the nucleus or cytosol. To address this issue, we degraded intracellular RNA in either the cytosol or the nucleus by the activation of RNase L and examined the impact of RNA loss on several RNP granules. We find the majority of RNP granules, including SGs, Cajal bodies, nuclear speckles, and the nucleolus, are altered by the degradation of their RNA components. In contrast, PBs and super‐enhancer complexes were largely not affected by RNA degradation in their respective compartments. RNA degradation overall led to the apparent dissolution of some membrane‐less organelles, whereas others reorganized into structures with altered morphology. These findings highlight a critical and widespread role of RNA in the organization of several RNP granules.  相似文献   

8.
9.
10.
The behavior of nuclear proteins in Amoeba proteus was studied by tritiated amino acid labeling, nuclear transplantation, and cytoplasmic amputation. During prophase at least 77% (but probably over 95%) of the nuclear proteins is released to the cytoplasm. These same proteins return to the nucleus within the first 3 hr of interphase. When cytoplasm is amputated from an ameba in mitosis (shen the nuclear proteins are in the cytoplasm), the resultant daughter nuclei are depleted in the labeled nuclear proteins. The degree of depletion is less than proportional to the amount of cytoplasm removed because a portion of rapidly migrating protein (a nuclear protein that is normally shuttling between nucleus and cytoplasm and is thus also present in the cytoplasm) which would normally remain in the cytoplasm is taken up by the reconstituting daughter nuclei. Cytoplasmic fragments cut from mitotic cells are enriched in both major classes of nuclear proteins, i.e. rapidly migrating protein and slow turn-over protein. An interphase nucleus implanted into such an enucleated cell acquires from the cytoplasm essentially all of the excess nuclear proteins of both classes. The data indicate that there is a lack of binding sites in the cytoplasm for the rapidly migrating nuclear protein. The quantitative aspects of the distribution of rapidly migrating protein between the nucleus and the cytoplasm indicate that the distribution is governed primarily by factors within the nucleus.  相似文献   

11.
RGS proteins comprise a family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. Biochemical studies suggest that members of this protein family act as GTPase-activating proteins for certain Galpha subunits, thereby accelerating the turn-off mechanism of Galpha and terminating signaling by both Galpha and Gbetagamma subunits. In the present study, we used confocal microscopy to examine the intracellular distribution of several RGS proteins in COS-7 cells expressing RGS-green fluorescent protein (GFP) fusion proteins and in cells expressing RGS proteins endogenously. RGS2 and RGS10 accumulated in the nucleus of COS-7 cells transfected with GFP constructs of these proteins. In contrast, RGS4 and RGS16 accumulated in the cytoplasm of COS-7 transfectants. As observed in COS-7 cells, RGS4 exhibited cytoplasmic localization in mouse neuroblastoma cells, and RGS10 exhibited nuclear localization in human glioma cells. Deletion or alanine substitution of an N-terminal leucine repeat motif present in both RGS4 and RGS16, a domain identified as a nuclear export sequence in HIV Rev and other proteins, promoted nuclear localization of these proteins in COS-7 cells. In agreement with this observation, treatment of mouse neuroblastoma cells with leptomycin B to inhibit nuclear protein export by exportin1 resulted in accumulation of RGS4 in the nucleus of these cells. GFP fusions of RGS domains of RGS proteins localized in the nucleus, suggesting that nuclear localization of RGS proteins results from nuclear targeting via RGS domain sequences. RGSZ, which shares with RGS-GAIP a cysteine-rich string in its N-terminal region, localized to the Golgi complex in COS-7 cells. Deletion of the N-terminal domain of RGSZ that includes the cysteine motif promoted nuclear localization of RGSZ. None of the RGS proteins examined were localized at the plasma membrane. These results demonstrate that RGS proteins localize in the nucleus, the cytoplasm, or shuttle between the nucleus and cytoplasm as nucleo-cytoplasmic shuttle proteins. RGS proteins localize differentially within cells as a result of structural differences among these proteins that do not appear to be important determinants for their G protein-regulating activities. These findings suggest involvement of RGS proteins in more complex cellular functions than currently envisioned.  相似文献   

12.
13.
Functional histone antibody fragments traverse the nuclear envelope   总被引:10,自引:5,他引:5       下载免费PDF全文
Factors important in the translocation process of proteins across the nuclear membrane were studied by microinjecting either fluoresceinated nonimmune IgG and F(ab)2 or the corresponding molecules, prepared from antisera to histones, into the nucleus and cytoplasm of human fibroblasts. Intact IgG from both preparations remained at the site of injection regardless of whether it was injected into the nucleus or the cytoplasm. In contrast, nonimmune F(ab)2 distributed uniformly throughout the cell. The F(ab)2 derived from affinity-pure antihistone moves into the nucleus after cytoplasmic injection and remains in the nucleus after nuclear microinjection. The migration of the antihistone F(ab)2 into the nucleus results in inhibition of uridine incorporation in the nuclei of the microinjected cells. We conclude that non-nuclear proteins, devoid of specific signal sequences, traverse the nuclear membrane and accumulate in the nucleus provided their radius of gyration is less than 55A and the nucleus contains binding sites for these molecules. These findings support the model of "quasibifunctional binding sites" as a driving force for nuclear accumulation of proteins. The results also indicate that active F(ab)2 fragments, microinjected into somatic cells, can bind to their antigenic sites suggesting that microinjection of active antibody fragments can be used to study the location and function of nuclear components in living cells.  相似文献   

14.
To investigate the fate of nuclear ribonucleoprotein (RNP) during apoptosis, we performed a cytochemical and immunocytochemical study of apoptotic mammalian cells by fluorescence and electron microscopy using specific antibodies which recognize different RNP-associated proteins. Light and electron microscopy showed that during apoptosis nuclear RNPs are rearranged, with the formation of fibrogranular heterogeneous clusters which are extruded from the nucleus into the cytoplasm, and finally released at the cell surface, as apoptotic blebs. Restructuring and extrusion of nuclear RNPs apparently determine the arrest of RNP maturation, thus effectively blocking protein synthesis in apoptotic cells.  相似文献   

15.
The transport of proteins into the nucleus requires the recognition of a nuclear localization signal sequence. Several proteins that interact with these sequences have been identified, including one of about 66 kDa. We have prepared antibodies that recognize the 66-kDa nuclear localization signal binding protein (NLSBP) and inhibit nuclear localization in vitro. By immunofluorescence, it is seen that the NLSBP is predominantly cytoplasmic and is distributed peripherally around the nucleus and the microtubule organizing center. There is also a weak punctate staining of the surface of the nucleus. Methanol-fixed cells can also be stained directly with fluorescently labeled karyophilic proteins. These stains reveal the same cytoplasmic structures as anti-NLSBP. The expression of the NLSBP is growth dependent. When cells grown to confluence are examined, the cytoplasmic staining is greatly reduced, leaving the punctate nuclear staining as the predominant feature. In serum-starved cells, very little staining of either the cytoplasm or the nucleus can be seen. Upon simulation by the addition of serum, the original cytoplasmic and nuclear envelope staining is restored. Cells grown in the presence of colchicine or taxol have an altered NLSBP distribution but apparently normal cytoplasmic nuclear transport.  相似文献   

16.
H Mehlin  B Daneholt  U Skoglund 《Cell》1992,69(4):605-613
A specific premessenger ribonucleoprotein (RNP) particle in the salivary glands of the dipteran Chironomus tentans was studied with electron microscope tomography during translocation from the cell nucleus to the cytoplasm. The RNP particle consists of a thin RNP fiber tightly folded into a ribbon, which is bent into a ring-like structure. Upon translocation through the pore, the particle is first orientated in a specific manner at the pore entrance, and subsequently the bent ribbon is gradually straightened and transported through the pore with the 5' end of the RNA in the lead. Concomitantly, the elementary RNP fiber constituting the ribbon is gradually unpacked and will appear more or less extended on the cytoplasmic side of the pore complex. The ordered nature of the process suggests a specific recognition of the RNP particle at the nuclear pore.  相似文献   

17.
Proteins of various molecular weights were conjugated with rhodamine and microinjected into the cytoplasm or nucleus of HeLa cells. The injected proteins were then localized within the cells at various times thereafter with fluorescence microscopy. Proteins below approx. 60 kD rapidly crossed the HeLa nuclear envelope. Some larger proteins also were able to pass into or out of the nucleus, while others were unable to do so, indicating the selective permeability of the HeLa nuclear envelope to large proteins. The nuclear protein HMG17 accumulated within the nucleus shortly after cytoplasmic microinjection.  相似文献   

18.
There is a wealth of information regarding the import and export of nuclear proteins in general. Nevertheless, the available data that deals with the nucleocytoplasmic movement of steroid hormone receptors remains highly limited. Some research findings reported during the past five years have succeeded in identifying proteins related to the movement of estrogen receptor alpha from the cytoplasm to the nucleus. What is striking in these findings is the facilitatory role of estradiol in the transport process. A similar conclusion has been drawn from the studies on the plasma membrane-to nucleus movement of the alternative form of estrogen receptor, the non-activated estrogen receptor (naER). The internalization of naER from the plasma membrane takes place only in the presence of estradiol. While the gene regulatory functions of ER alpha appear to get terminated following its ubiquitinization within the nucleus, the naER, through its deglycosylated form, the nuclear estrogen receptor II (nER II) continues to remain functional even beyond its existence within the nucleus. Recent studies have indicated the possibility that the estrogen receptor that regulates the nucleo cytoplasmic transport of m RNP is the nERII. This appears to be the result of the interaction between nERII and three proteins belonging to a group of small nuclear ribonucleo proteins (snRNP). The interaction of nERII with two of this protein appears to activate the inherent Mg2+ ATPase activity of the complex, which leads to the exit of the RNP through the nuclear pore complex.  相似文献   

19.
Nascent pre-mRNAs associate with hnRNP proteins in hnRNP complexes, the natural substrates for mRNA processing. Several lines of evidence indicate that hnRNP complexes undergo substantial remodeling during mRNA formation and export. Here we report the isolation of three distinct types of pre-mRNP and mRNP complexes from HeLa cells associated with hnRNP A1, a shuttling hnRNP protein. Based on their RNA and protein compositions, these complexes are likely to represent distinct stages in the nucleocytoplasmic shuttling pathway of hnRNP A1 with its bound RNAs. In the cytoplasm, A1 is associated with its nuclear import receptor (transportin), the cytoplasmic poly(A)-binding protein, and mRNA. In the nucleus, A1 is found in two distinct types of complexes that are differently associated with nuclear structures. One class contains pre-mRNA and mRNA and is identical to previously described hnRNP complexes. The other class behaves as freely diffusible nuclear mRNPs (nmRNPs) at late nuclear stages of maturation and possibly associated with nuclear mRNA export. These nmRNPs differ from hnRNPs in that while they contain shuttling hnRNP proteins, the mRNA export factor REF, and mRNA, they do not contain nonshuttling hnRNP proteins or pre-mRNA. Importantly, nmRNPs also contain proteins not found in hnRNP complexes. These include the alternatively spliced isoforms D01 and D02 of the hnRNP D proteins, the E0 isoform of the hnRNP E proteins, and LRP130, a previously reported protein with unknown function that appears to have a novel type of RNA-binding domain. The characteristics of these complexes indicate that they result from RNP remodeling associated with mRNA maturation and delineate specific changes in RNP protein composition during formation and transport of mRNA in vivo.  相似文献   

20.
The biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, and U5 involves: (a) migration of the snRNA molecules from the nucleus to the cytoplasm; (b) assembly of a group of common proteins (Sm proteins) and their binding to a region on the snRNAs called the Sm-binding site; and (c) translocation of the RNP back to the nucleus. A first prerequisite for understanding the assembly pathway and nuclear transport of the snRNPs in more detail is the knowledge of all the snRNP proteins that play essential roles in these processes. We have recently observed a previously undetected 69- kD protein in 12S U1 snRNPs isolated from HeLa nuclear extracts under non-denaturing conditions that is clearly distinct from the U1-70K protein. The following evidence indicates that the 69-kD protein is a common, rather than a U1-specific, protein, possibly associating with the snRNP core particles by protein-protein interaction. (a) Antibodies raised against the 69-kD protein, which did not cross-react with any of the Sm proteins B'-G, precipitated not only U1 snRNPs, but also the other spliceosomal snRNPs U2, U4/U6 and U5, albeit to a lower extent. (b) U1, U2, and U5 core RNP particles reconstituted in vitro contain the 69-kD protein. (c) Xenopus laevis oocytes contain an immunologically related homologue of the human 69-kD protein. When U1 snRNA as well as a mutant U1 snRNA, that can bind the Sm core proteins but lacks the capacity to bind the U1-specific proteins 70K, A, and C, were injected into Xenopus oocytes to allow assembly in vivo, they were recognized by antibodies specific against the 69-kD protein in the ooplasm and in the nucleus. The 69-kD protein is under-represented, if present at all, in purified 17S U2 and in 25S [U4/U6.U5] tri-snRNPs, isolated from HeLa nuclear extracts. Our results are consistent with the working hypothesis that this protein may either play a role in the cytoplasmic assembly of the core domain of the snRNPs and/or in the nuclear transport of the snRNPs. After transport of the snRNPs into the nucleus, it may dissociate from the particles as for example in the case of the 17S U2 or the 25S [U4/U6.U5] tri-snRNP, which bind more than 10 different snRNP specific proteins each in the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号