首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary— Recently, several proteins immunologically related to erythrocyte membrane skeletal proteins, such as protein 4.1 and fodrin (non-erythroid spectrin), have been found in keratinocytes. In the present study, in order to investigate the roles of these proteins in cell-cell contact, we analyzed the distribution of non-erythroid protein 4.1, β-fodrin and actin in cultured human keratinocytes at low (0.15 mM) and standard (1.85 mM) Ca2+ concentrations. Immunofluorescence microscopy revealed that immunoreactive forms of protein 4.1, β-fodrin and actin filaments were present in the cytoplasm of cells cultured in low Ca2+ medium, while in cells in the standard Ca2+ medium, these proteins were localized at the cell boundary and partially in the cytoplasm. When cells in the low-Ca2+ medium were treated with 100 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) for 1 h, these proteins were also present at the cell boundary. Increasing extracellular Ca2+ concentration from low to standard in the medium induces cell-cell contact among the cultured human keratinocytes, accompanied by the translocation of protein 4.1 and β-fodrin from the cytoplasm to the membrane. On the basis of the present study, movement of membrane skeletal proteins from the cytosol to the membrane suggests that either these proteins or the membrane skeletal lattice plays an important role in the regulation of cell-cell intergigitations in response to changes in the Ca2+ concentrations in culture medium, and that phosphorylation of these skeletal proteins might be involved in the regulation of the membrane skeletal proteins of keratinocytes in response to Ca2+.  相似文献   

2.
Ca2+ regulates keratinocyte differentiation by increasing intracellular Ca2+ levels. Ca2+-ATPase in the Ca2+-induced differentiation of human keratinocytes was investigated by measuring Ca2-ATPase mRNA, protein, and activity levels. Human keratinocytes were grown in Keratinocyte Growth Medium containing 0.03, 0.1, or 1.2 mM Ca2+ and assayed on days 2, 5, 7, 14, and 21. Ca2+-ATPase mRNA levels were found to be modestly increased in 5-, 7-, and 14-day cultured cells as compared with 2-day cultured cells, but levels fell below that of the 2-day cultured cells in the 21-day cultured cells. The Ca2+-ATPase mRNA levels were not affected by Ca2+ levels. A 135-kDa protein in human keratinocytes cross reacted with the monoclonal antibody against human erythrocyte Ca2+-ATPase. The level of this protein was decreased by Ca2+ and lost during differentiation, in parallel with the loss of enzymatic activity. Ca2+ influx of postconfluent 1.2 mM Ca2-grown cells was higher than that of cells grown in lower Ca2+ concentrations. Ca2+ efflux from postconfluent cells grown in 0.03 mM Ca2+ was less than that from cells grown in stronger Ca2+ concentrations. These results suggest that the loss of the plasma membrane Ca2+-ATPase with time in culture contributes to the rise in intracelluar Ca2+, thus promoting keratinocyte differentiation. J. Cell. Physiol. 172:146–154, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Abstract The expression of differentiation stages in a murine epidermal cell transformation model has been investigated as a basis for studies of chemically-induced differentiation. Antibodies in sera of patients with the autoimmune diseases bullous pemphigoid and pemphigus vulgaris exhibit specific reactivity to antigenic determinants of basal and spinous cells, respectively, in sections of mouse and human epidermis. In addition, spinous cells in epidermis are reactive with a mouse monoclonal antibody to desmoplakin, a desmosomal component immunologically distinct from pemphigus. These antibodies were used to identify and attempt to quantify keratinocyte subpopulations in culture based on differentiation stage. Epidermal cell lines were cultured under conditions which favour proliferation (0.02 to 0.04 mm extracellular Ca2+, i.e. low Ca2+ conditions) or differentiation (0.1 mM to 1.4 mM Ca2+), as previously shown using primary cultures of mouse keratinocytes. Two independently-derived normal keratinocyte lines demonstrated Ca2+-dependent reactivity with pemphigoid and pemphigus antiserum, like that which has been observed in primary cultures. Furthermore, a Ca2+ and time-dependent reactivity with the three antisera was also observed in a papilloma cell line (derived from one of the normal cell lines after treatment in vitro with 7,12-dimethylbenz[α]anthracene). Papilloma cells cultured under conditions of low extracellular Ca2+ were comprised of three subpopulations: cells reactive only with pemphigoid anti-serum, cells reactive with pemphigoid and desmoplakin antibody (intracellular location), and cells reactive only with desmoplakin antibody. However, like the normal cell lines, papilloma cells underwent a transition to predominantly a spinous cell population (i.e. reactive with pemphigus and desmoplakin antibody) in response to extracellular Ca2+. A slower loss of pemphigoid antibody reactivity was noted in papilloma cells, consistent with an abnormal regulation of differentiation. The attempt to characterize these dynamic transitions from basal to spinous cell subpopulations in culture was considered to be prerequisite for the use of the model to investigate differentiation-inducing agents in carcinoma therapy.  相似文献   

4.
The role of intracellular Ca2+ in the regulation of Ca2+-induced terminal differentiation of mouse keratinocytes was investigated using the intracellular Ca2+ chelator 1,2-bis(o-aminophenoxy)-ethane-N, N, N′, N′-tetraacetic acid (BAPTA). A cell permeable acetoxymethyl (AM) ester derivative BAPTA (BAPTA/AM) was loaded into primary mouse keratinocytes in 0.05 mM Ca2+ medium, and then the cells were induced to differentiate by medium containing 0.12 or 0.5 mM Ca2+. Intracellular BAPTA loaded by BAPTA/AM (15–30 μM) inhibited the expression of epidermal differentiation-specific proteins keratin 1 (K1), keratin 10 (K10), filaggrin and loricrin as detected by immunoblotting. The differentiation-associated redistribution of E-cadherin on the cell membrane was delayed but not inhibited as determined by immunofluorescence. BAPTA also inhibited the expression of K1, K10 and Ioricrin mRNA. Furthermore, BAPTA prevented the decrease in DNA synthesis induced by 0.12 and 0.5 mM Ca2+, indicating the drug was inhibiting differentiation but was not toxic to keratinocytes. To evaluate the influence of BAPTA on intracellular Ca2+, the concentration of intracellular free Ca2+ (Cai) in BAPTA-loaded keratinocytes was examined by digital image analysis using the Ca2+-sensitive fluorescent probe fura-2, and Ca2+ influx was measured by 45Ca2+ uptake studies. Increase in extracellular Ca2+ (Cao) in the culture medium of keratinocytes caused a sustained increase in both Cai and Ca2+ localized to ionomycin-sensitive intracellular stores in keratinocytes. BAPTA lowered basal Cai concentration and prevented the Cai increase. After 12 hours of BAPTA treatment, the basal level of Cai returned to the control value, but the Ca2+ localized in intracellular stores was substantially decreased. 45Ca2+ uptake was initially (within 30 min) increased in BAPTA-loaded cells. However, the total 45Ca2+ accumulation over 24 hours in BAPTA-loaded cells remained unchanged from control values. These results indicate that keratinocytes can maintain Cai and total cellular Ca2+ content in the presence of increased amount of intracellular Ca2+ buffer (e.g., BAPTA) by depleting intracellular Ca2+ stores over a long period. The inhibition by BAPTA of keratinocyte differentiation marker expression may result from depletion of the Ca2+-stores since this is the major change in intracellular Ca2+ detected at the time keratinocytes express the differentiation markers. In contrast, the redistribution of E-cadherin on the cell membrane may be more directly associated with Cai change. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Primary mouse keratinocytes in culture are induced to terminally differentiate by increasing extracellular Ca2+ concentrations (CaO) from 0.05 mM to ≥ 0.1 mM. The addition of Sr2+ (≥ 2.5 mM) to medium containing 0.05 mM Ca2+ induces focal stratification and terminal differentiation, which are similar to that found after increasing the CaO to 0.12 mM. Sr2+ in 0.05 mM Ca2+ medium induces the expression of the differentiation-specific keratins, keratin 1 (K1), keratin 10 (K10), and the granular cell marker, filaggrin, as determined by both immunoblotting and immunofluorescence. Sr2+ induces the expression of those differentiation markers in a dose dependent manner, with an optimal concentration of 5 mM. In the absence of Ca2+ in the medium, the Sr2+ effects are reduced, and Sr2+ is ineffective when both Ca2+ and serum are deleted from the medium. Sr2+ treatment increases the ratio of fluorescence intensity of the intracellular Ca2+ sensitive probe, fura-2, indicating an associated rise in the level of intracellular free Ca2+ and/or Sr2+. At doses sufficient to induce differentiation, Sr2+ also increases the level of inositol phosphates in primary keratinocytes within 30 min. The uptake curves of 85Sr2+ by primary keratinocytes are similar to those of 45Ca2+. At low concentrations, the initial uptake of both 45Ca2+ and 85Sr2+ reaches a plateau within 1 hr; at higher concentrations, the uptake of both 45Ca2+ and 85Sr2+ increases continuously for 12 hr. In keratinocytes pre-equilibrated with 45Ca2+ in 0.05 mM Ca2+ medium, Sr2+ causes an increase of 45Ca2+ uptake, which is dependent on the presence of serum. These results suggest that Sr2+ utilizes the same signalling pathway as Ca2+ to induce keratinocyte terminal differentiation and that Ca2+ may be required to exert these effects. © 1993 Wiley-Liss, Inc.  相似文献   

6.
The transformation of certain cells reduces the requirement of extracellular Ca2+ for growth. The SV-40 transformed human lung fibroblasts, WI-38 VA13, require less Ca2+ than normal WI-38 cells. Spreading area of normal cells decreases when cultured in 10 μM Ca2+ medium. Intracellular calcium concentration ([Ca2+]i), of the normal and transformed cells cultured in 10μM and 2 mM Ca2+ media was measured by the fluorescence microscope technique using fura-2 as a probe. The [Ca2+], is measured in the resting state and during mobilization by serum or bradykinin stimulation. The lowering of extracellular calcium concentration results in a decrease in the resting state [Ca2+],i of both normal and transformed cells. Although the total decrease in [Ca2+]i is the same for both cell, the rate of decrease is much faster in normal cells than in transformed cells. Low extracellular Ca2+ reduces the number of cells responsive to the serum or bradykinin stimulation and decreases the peak [Ca2+]i value in both cells. In addition, we investigated, using BCECF as a fluorecent probe, the intracellular pH (pHi) of normal and transformed cells maintained at low and normal Ca2+. The low Ca2+ condition makes pHi acidic in normal cells but not in transformed cells. The acidification of the normal cell is accompanied by a decrease in the spreading area of the cells. The decrease of the cell attacment, followed by the reduced spreading area, induced the acidic pHi. These results suggest that the reduced Ca2+ requirement of transformed cells for growth is related to the mechanism of pHi regulation rather than Ca2+ homeostasis and, possibly, to the anchorage-independent growth, which is a unique feature of transformed cells. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The spontaneously immortalized human keratinocyte cell line HaCaT is widely used as a human keratinocyte model. In a previous comparative study between normal human keratinocytes (NHKs) and HaCaT, we reported that Ca2+ concentrations greater than 1 mM induced differentiation in vitro in both cell types, notably characterized by increased expression of differentiation markers keratins 1 (K1), 10 (K10) and involucrin. Surprisingly, cells had a higher proliferative activity than those cultured with low Ca2+ levels. These results raised many questions; in particular concerning the emergence of HaCaT cells subpopulation which would have different differentiation states and/or proliferation rates throughout Ca2+-induced differentiation. To isolate these subpopulations, we used sedimentation field-flow fractionation (SdFFF). Results demonstrated that the most differentiated cells (HC-F1), characterized by the highest expression of keratinocyte differentiation markers, had the lowest proliferative activity. In contrast, less differentiated cells (HC-F2) maintained a higher proliferative activity. SdFFF is a tool to sort differentiated and/or proliferating cells from a total pool previously treated with a Ca2+ concentration inducing differentiation, and can be use to prepare biological models necessary for studying HaCaT cell proliferation after Ca2+-induced differentiation treatment.  相似文献   

8.
The state of the Ca2+ signaling system has been assessed in proliferating and in differentiating C2C12 myoblasts. Proliferating myoblasts exhibit no features of a functional system: the intracellular ATP-controlled Ca2+ store is low (perhaps only mitochondrial) and no Ca2+ entry from the medium is registered upon its exhaustion, there is no cytosolic response to KCl-induced depolarization. The Ca2+ signaling system starts to form at the early stages of differentiation (within 10 h after transfer of cells to the differentiation medium). This is seen as appearance of capacitive and voltage-dependent Ca2+ entry and its accumulation in the endoplasmic reticulum. A small contribution to the ATP-evoked rise in cytosolic Ca2+ is also made by mitochondria.  相似文献   

9.
Ionic gradients are found across a variety of tissues and organs. In this report, we apply the phasor representation of fluorescence lifetime imaging data to the quantitative study of ionic concentrations in tissues, overcoming technical problems of tissue thickness, concentration artifacts of ion-sensitive dyes, and calibration across inhomogeneous tissue. We used epidermis as a model system, as Ca2+ gradients in this organ have been shown previously to control essential biologic processes of differentiation and formation of the epidermal permeability barrier. The approach described here allowed much better localization of Ca2+ stores than those used in previous studies, and revealed that the bulk of free Ca2+ measured in the epidermis comes from intracellular Ca2+ stores such as the Golgi and the endoplasmic reticulum, with extracellular Ca2+ making a relatively small contribution to the epidermal Ca2+ gradient. Due to the high spatial resolution of two-photon microscopy, we were able to measure a marked heterogeneity in average calcium concentrations from cell to cell in the basal keratinocytes. This finding, not reported in previous studies, calls into question the long-held hypothesis that keratinocytes increase intracellular Ca2+, cease proliferation, and differentiate passively in response to changes in extracellular Ca2+. The experimental results obtained using this approach illustrate the power of the experimental and analytical techniques outlined in this report. Our approach can be used in mechanistic studies to address the formation, maintenance, and function of the epidermal Ca2+ gradient, and it should be broadly applicable to the study of other tissues with ionic gradients.  相似文献   

10.
In an attempt to elucidate the relationship between phosphatidylinositol breakdown and alpha-adrenergic responses, effects of phosphatidic acid and phosphatidylinositol related metabolites on Ca2+ mobilization and glucose output in cultured hepatocytes were examined. Norepinephrine induced the net 45Ca2+ efflux from preloaded cells and stimulated glucose output via alpha-adrenergic receptor stimulation, whereas phosphatidic acid caused 45Ca2+ uptake to cells and did not stimulate glucose output. Myo-inositol-monophosphate, diglyceride and arachidonic acid, which are released by phosphatidylinositol breakdown, had no effect on 45Ca2+ efflux and glucose output in cells. These results suggest that phosphatidic acid and phosphatidylinositol related metabolites can not mimic the alpha-adrenergic actions in cultured hepatocytes.  相似文献   

11.
A mutation of Atp2a2 gene encoding the sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) causes Darier's disease in human and null mutation in one copy of Atp2a2 leads to a high incidence of squamous cell tumor in a mouse model. In SERCA2 heterozygote (SERCA2+/−) mice keratinocytes, mechanisms involved in partial depletion of SERCA2 gene and its related tumor induction have not been studied. In this study, we investigated Ca2+ signaling and differential gene expression in primary cultured keratinocytes from SERCA2+/− mice. SERCA2+/− keratinocytes showed reduced initial increases in intracellular concentration of calcium in response to ATP, a G-protein coupled receptor agonist, and higher store-operated Ca2+ entry with the treatment of thapsigargin, an inhibitor of SERCA, compared to wild type kerationcytes. Protein expressions of plasma membrane Ca2+ ATPases, NFATc1, phosphorylated ERK, JNK, and phospholipase γ1 were increased in SERCA2+/− keratinocytes. Using the gene fishing system, we first found in SERCA2+/− keratinocytes that gene level of tumor-associated calcium signal transducer 1, crystalline αB, procollagen XVIII α1, and nuclear factor I-B were increased. Expression of involucrin, a marker of keratinocyte differentiation, was decreased in SERCA2+/− keratinocytes. These results suggest that the alterations of Ca2+ signaling by SERCA2 haploinsufficiency alternate the gene expression of tumor induction and differentiation in keratinocytes.  相似文献   

12.
Low-density (LD) lipoproteins inhibit phytohaemagglutinin-enhanced turnover of phosphatidylinositol in human peripheral lymphocytes. Turnover was assessed by 32P incorporation into phospholipids and by loss of 32P from [32P]phosphatidylinositol. Inhibition of lipid turnover by LD lipoproteins is not the result of a change in the amount of phytohaemagglutinin required for maximum cellular response. Neither phytohaemagglutinin nor LD lipoproteins influence 32P incorporation into phosphatidylethanolamine and phosphatidylcholine during the first 60min after mitogenic challenge. The extent of inhibition of phosphatidylinositol turnover by LD lipoproteins depends on the concentration of LD lipoproteins present in the incubation medium: 50% of maximum inhibition occurs at a low-density-lipoprotein protein concentration of 33μg/ml and maximum inhibition occurs at low-density-lipoprotein protein concentrations above 100μg/ml. Phytohaemagglutinin stimulates 32P incorporation into phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. However, LD lipoproteins abolish 32P incorporation into phosphatidylinositol without affecting incorporation into phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. The ability of LD lipoproteins to inhibit phytohaemagglutinin-induced phosphatidylinositol turnover is mimicked by EGTA. Furthermore, inhibition of LD lipoproteins by phytohaemagglutinin-induced 32P incorporation into phosphatidylinositol correlates directly with inhibition by LD lipoproteins of Ca2+ accumulation. These results suggest that Ca2+ accumulation and turnover of phosphatidylinositol are coupled responses in lymphocytes challenged by mitogens. The step in phosphatidylinositol metabolism that is sensitive to LD lipoproteins and, by inference, that is coupled to Ca2+ accumulation is release of [32P]phosphoinositol from phosphatidylinositol.  相似文献   

13.
The regulatory role of Ca2+ on the conversion of arachidonic acid (AA) into thromboxane B2 (TXB2) was examined in washed rabbit platelets, whose secretoary processes are known to have requirements for extracellular CA2+. Varying the extracellular free Ca2+ [Caf2+] concentration from < 10?8 to 10?3 M had no significant effect on the synthesis of immunoreactive TXB2 by rabbit platelets incubated with 1–4 μM AA. On the other hand, 8-(N,N-diethylamino) octyl-3,4,5- trimethoxybenzoate (TMB-8), a putative antagonist of intracellular Ca2+ movement, inhibited AA-stimulated synthesis of TXB2 in a concentration dependent manner--an effect which could be partially overcome by increasing the AA concentration. The TMB-8 inhibition could not be reversed by increasing the [Ca2+f]. Studies examining platelet metabolism of 14C-AA and 14C-prostaglandin H2 demonstrated that TMB-8 inhibited platelet cyclooxygenase, but not thromboxane synthetase. These studies demonstrate the absence of a requirement for [Ca2+f] but suggest the presence of a TMB-8 sensitive intracellular Ca2+ pool in the rabbit platelet synthesis of TXB2 from AA.  相似文献   

14.
Ca2+ transport by sarcoplasmic reticulum vesicles was examined by incubating sarcoplasmic reticulum vesicles (0.15 mg/ml) at 37°C in, either normal medium that contained 0.15 M sucrose, 0.1 M KCl, 60 μM CaCl2, 2.5 mM ATP and 30 mM Tes at pH 6.8, or a modified medium for elimination of ADP formed from ATP hydrolysis by including, in addition, 3.6 mM phosphocreatine and 33 U/ml of creatine phosphokinase. In normal medium, Ca2+ uptake of sarcoplasmic reticulum vesicles reached a plateau of about 100 nmol/mg. In modified medium, after this phase of Ca2+ uptake, a second phase of Ca2+ accumulation was initiated and reached a plateau of about 300 nmol/mg. The second phase of Ca2+ accumulation was accompanied by phosphate uptake and could be inhibited by ADP. Since, under these experimental conditions, there was no significant difference of the rates of ATP hydrolysis in normal medium and modified medium, extra Ca2+ uptake in modified medium but not in normal medium could not be explained by different phosphate accumulation in the two media. Unidirectional Ca2+ influx of sarcoplasmic reticulum near steady state of Ca2+ uptake was measured by pulse labeling with 45Ca2+. The Ca2+ efflux rate was then determined by subtracting the net uptake from the influx rate. At the first plateau of Ca2+ uptake in normal medium, Ca2+ influx was balanced by Ca2+ efflux with an exchange rate of 240 nmol/mg per min. This exchange rate was maintained relatively constant at the plateau phase. In modified medium, the Ca2+ exchange rate at the first plateau of Ca2+ uptake was about half of that in normal medium. When the second phase of Ca2+ uptake was initiated, both the influx and efflux rates started to increase and reached a similar exchange rate as observed in normal medium. Also, during the second phase of Ca2+ uptake, the difference between the influx and efflux rates continued to increase until the second plateau phase was approached. In conditions where the formation of ADP and inorganic phosphate was minimized by using a low concentration of sarcoplasmic (7.5 μg/ml) and/or using acetyl phosphate instead of ATP, the second phase of Ca2+ uptake was also observed. These data suggest that the Ca2+ load attained by sarcoplasmic reticulum vesicles during active transport is modulated by ADP accumulated from ATP hydrolysis. ADP probably exerts its effect by facilitating Ca2+ efflux, which subsequently stimulates Ca2+ exchange.  相似文献   

15.
In order to investigate the involvement of phosphoinositide-specific phospholipase C (PLC), an enzyme associated with phosphoinositide signal transduction pathway, for the occurrence of Ca2+-paradox (loss of contractile activity associated with contracture), rat hearts perfused with Ca2+-free medium (1 to 5 min) were reperfused (5 to 10 min) with medium containing 1.25 mM Ca2+. Crude membranes isolated from hearts perfused with Ca2+-free medium exhibited a significantly increased activity of PLC, whereas normal activity was detected in hearts reperfused with Ca2+-containing medium. A significant rise in PLC activity was observed at 1 min of Ca2+-free perfusion; maximal increase was seen at 4 min of Ca2+-free perfusion. Minimal concentration of Ca2+ in the perfusion medium required for showing an increase in PLC activity was 10 M, whereas that required for the occurrence of Ca2+-paradoxic changes in heart function upon reperfusion was 50M. Perfusion of the hearts with Ca2+-free medium in the presence of low Na+ or at low temperature, which prevents the occurrence of Ca2+-paradox upon reperfusion, did not prevent the increase in PLC activity. An increase during Ca2+-free perfusion similar to that seen for PLC was also observed for two other enzymes, namely the phosphatidylinositol (PI) 4-kinase and the PI-4-monophosphate (PIP) 5-kinase, which synthesize the PLC substrate, phosphatidylinositol 4,5-bisphosphate (PIP2). No alteration of the alpha-adrenoreceptors was observed after 5 min of Ca2+-free perfusion. On the other hand, the observed changes in PLC activity during Ca2+-free perfusion appear to be due to some redistribution of the enzyme in the myocardium. These results suggest a possible role of the phosphoinositide/PLC pathway in the induction of Ca2+-paradox via mechanisms which do not appear to be associated with changes in the characteristics of alpha-adrenergic receptors. (Mol Cell Biochem121: 181–190, 1993)  相似文献   

16.
Electrophysiologic properties of cultured human keratinocytes were studied using the patch voltage-clamp technique. Undifferentiated, proliferative keratinocytes grown in low Ca2+ medium had an average resting membrane potential of -24 mV. Voltage-clamp experiments showed that these cells had two membrane ionic currents: a large voltage-independent leak conductance, and a smaller voltage-dependent Cl- current that activated with depolarization. Increasing the extracellular Ca2+ concentration from 0.15 to 2 mM resulted in a doubling of the magnitude of the voltage-gated current and a shift in current activation to more negative potentials. Since levels of extracellular Ca2+ can alter the morphology and differentiation state of keratinocytes, the finding of a Ca2(+)-activated Cl- current in these cells suggests a role for this conductance in the initiation of differentiation.  相似文献   

17.
The importance of extracellular calcium in epidermal differentiation and intra-epidermal cohesion has been recognized for many years. Darier disease (DD) was the first genetic skin disease caused by abnormal epidermal calcium homeostasis to be identified. DD is characterized by loss of cell-to-cell adhesion and abnormal keratinization. DD is caused by genetic defects in ATP2A2 encoding the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 (SERCA2). SERCA2 is a calcium pump of the endoplasmic reticulum (ER) transporting Ca2+ from the cytosol to the lumen of ER. ATP2A2 mutations lead to loss of Ca2+ transport by SERCA2 resulting in decreased ER Ca2+ concentration in Darier keratinocytes. Here, we review the role of SERCA2 pumps and calcium in normal epidermis, and we discuss the consequences of ATP2A2 mutations on Ca2+ signaling in DD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

18.
Ca2+ transport by sarcoplasmic reticulum vesicles was examined by incubating sarcoplasmic reticulum vesicles (0.15 mg/ml) at 37°C in, either normal medium that contained 0.15 M sucrose, 0.1 M KCl, 60 μM CaCl2, 2.5 mM ATP and 30 mM Tes at pH 6.8, or a modified medium for elimination of ADP formed from ATP hydrolysis by including, in addition, 3.6 mM phosphocreatine and 33 U/ml of creatine phosphokinase. In normal medium, Ca2+ uptake of sarcoplasmic reticulum vesicles reached a plateau of about 100 nmol/mg. In modified medium, after this phase of Ca2+ uptake, a second phase of Ca2+ accumulation was initiated and reached a plateau of about 300 nmol/mg. The second phase of Ca2+ accumulation was accompanied by phosphate uptake and could be inhibited by ADP. Since, under these experimental conditions, there was no significant difference of the rates of ATP hydrolysis in normal medium and modified medium, extra Ca2+ uptake in modified medium but not in normal medium could not be explained by different phosphate accumulation in the two media. Unidirectional Ca2+ influx of sarcoplasmic reticulum near steady state of Ca2+ uptake was measured by pulse labeling with 45Ca2+. The Ca2+ efflux rate was then determined by subtracting the net uptake from the influx rate. At the first plateau of Ca2+ uptake in normal medium, Ca2+ influx was balanced by Ca2+ efflux with an exchange rate of 240 nmol/mg per min. This exchange rate was maintained relatively constant at the plateau phase. In modified medium, the Ca2+ exchange rate at the first plateau of Ca2+ uptake was about half of that in normal medium. When the second phase of Ca2+ uptake was initiated, both the influx and efflux rates started to increase and reached a similar exchange rate as observed in normal medium. Also, during the second phase of Ca2+ uptake, the difference between the influx and efflux rates continued to increase until the second plateau phase was approached. In conditions where the formation of ADP and inorganic phosphate was minimized by using a low concentration of sarcoplasmic (7.5 μg/ml) and/or using acetyl phosphate instead of ATP, the second phase of Ca2+ uptake was also observed. These data suggest that the Ca2+ load attained by sarcoplasmic reticulum vesicles during active transport is modulated by ADP accumulated from ATP hydrolysis. ADP probably exerts its effect by facilitating Ca2+ efflux, which subsequently stimulates Ca2+ exchange.  相似文献   

19.
Our group has previously demonstrated the capacity of human keratinocytes to release 14‐3‐3σ into conditioned medium through the mechanism of exosome externalization. In this study the release of other proteins through the same mechanism and the differences in the profiles of 14‐3‐3 proteins between differentiated (diff‐K) and undifferentiated keratinocytes (undiff‐K) were investigated. The stimulatory effect of other 14‐3‐3 isoforms on the expression of MMP‐1 in dermal fibroblasts was also evaluated. Exosomes isolated from undiff‐K (low Ca2+) and diff‐K (high Ca2+) were subjected to proteomic and Western blot analysis. The results showed that more than 50 different cytoplasmic proteins including all seven 14‐3‐3 protein isoforms (β, σ, η, ε, τ, ζ, and γ) were released from diff‐K through the mechanism of exosome externalization. However, in exosomes of undiff‐K only four of the 14‐3‐3 protein isoforms (β, η, ζ, and γ) were detected. Ca2+ treatment increased the release of exosomes from undiff‐K by at least two times relative to the control. Consistent with this finding, the stimulatory effect of exosomes containing 14‐3‐3σ from diff‐K had higher MMP‐1 stimulatory effect in fibroblasts relative to those exosomes isolated from undiff‐K. MMP‐1 stimulatory effect of recombinant 14‐3‐3β and η, tested in this study, in dermal fibroblasts, suggests additional anti‐fibrogenic factors other than 14‐3‐3σ. In conclusion, keratinocytes release many proteins through the mechanism of exosome externalization from which some such as 14‐3‐3 isoforms may function as extracellular matrix (ECM) modulating factors for dermal fibroblasts. These findings revealed the presence of a novel mechanism by which keratinocytes can potentially interact with fibroblasts. J. Cell. Physiol. 221: 221–231, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号