首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquinone-binding proteins were isolated from beef heart submitochondrial particles by a simple fractionation procedure using ethanol and ammonium acetate after solubilization of the particles with deoxycholate. The ubiquinone-binding proteins were further purified by passing them through a column of phenyl-Sepharose CL-4B to eliminate the free form of ubiquinone and hydrophobic proteins such as cytochromes. At least 25% of the total ubiquinone present in the submitochondrial particles was associated with the purified proteins. Applying the same method, ubiquinone-binding proteins could be isolated from complexes I and III.  相似文献   

2.
Mitochondrial respiration was studied as a function of the total adenine nucleotide content of rat liver mitochondria. The adenine nucleotide content was varied by treating isolated mitochondria with pyrophosphate or by incubating pyrophosphate-treated mitochondria with ATP. Mitochondria with at least 4 nmol adenine nucleotides/mg protein maintained at least 80% of the State 3 activity of control mitochondria, which had approximately 10 nmol/mg protein. However, State 3 decreased rapidly once the adenine nucleotide content fell below 4 nmol/mg protein. Between 2 and 4 nmol adenine nucleotides/mg, State 3 was not limited by the maximal capacity of electron flow as measured by the uncoupled respiration. However, at very low adenine nucleotide levels (<2 nmol/mg), the uncoupled rates of respiration were markedly depressed. State 4 was not affected by changes in the mitochondrial adenine nucleotide content. Adenine translocase activity varied in almost direct correlation with changes in the adenine nucleotide content. Therefore, adenine translocase activity was more sensitive than State 3 to changes in total adenine nucleotides over the range of 4 to 10 nmol/mg protein. The results suggest that (i) State 3 is dependent on the level of intramitochondrial adenine nucleotides, particularly in the range below 4 nmol/mg protein, (ii) adenine translocase activity is not rate-limiting for oxidative phosphorylation in mitochondria with the normal complement of adenine nucleotides, however, at low adenine nucleotide levels, depressed State 3 rates may be explained in part by the low rate of ADP translocation, and (iii) a mechanism of net ATP uptake exists in mitochondria with low internal adenine nucleotides.  相似文献   

3.
The consequence of blocking the de novo synthesis of ubiquinone (coenzyme Q) on mitochondrial ubiquinone content and respiratory function was studied in cultured C1300 (Neuro 2A) murine neuroblastoma cells. Mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, was used to suppress the synthesis of mevalonate, an essential precursor for the isoprenoid side chain of ubiquinone. At a concentration of 25 microM, mevinolin completely inhibited the incorporation of [3H]acetate into ubiquinone, isolated from cell extracts by two-dimensional thin-layer chromatography. Similar results were obtained when [14C]tyrosine was used as a precursor for the quinone ring. Through the use of reverse-phase thin-layer chromatography, it was established that the principal product of the ubiquinone pathway in murine neuroblastoma cells was ubiquinone-9. Inhibition of ubiquinone synthesis for 24h in cells cultured in the presence of 10% fetal calf serum (which contains 0.14 nmol of ubiquinone/ml of serum) resulted in a 40-57% decline in the concentration of ubiquinone in the mitochondria. However, the activities of succinate-cytochrome c reductase and succinate dehydrogenase in whole-cell homogenates or mitochondria were not inhibited. The state 3 and uncoupled rates of respiration, determined by polarographic measurements of oxygen consumption in homogenates and mitochondria, were elevated slightly in the mevinolin-treated cells. The data demonstrate that, although mevalonate synthesis is important for the maintenance of the intramitochondrial ubiquinone pool in cultured cells, major changes in the ubiquinone content of the mitochondria can occur in intact cells without perturbation of respiratory function. However, the coincidence of decreased mitochondrial ubiquinone concentration and the inhibition of cell cycling previously observed in mevinolin-treated cells (Maltese, W.A. (1984) Biochem. Biophys. Res. Commun. 120, 454-460) suggests that the availability of ubiquinone may play a role in the regulation of mitochondrial and cellular proliferation.  相似文献   

4.
A large–scale purification procedure for mitochondria from spinach ( Spinacia oteracea L, cv Medania) leaves is described. It involves differential centrifugation and density gradient centrifugation on a self–generating gradient of Percoll, From 3 kg of spinach leaves, 150 mg mitochondrial protein are obtained. The thylakoid contamination is lower than 0.2% on a chlorophyll basis. The mitochondria oxidize malate and glycine with state 3 rates of 108 and 140 nmol (mg protein)-1 min-1, with respiratory control ratios of 2,7 and 3,8 and ADP/O ratios of 2,0 and 2.1, respectively. The present large–scale purification procedure will facilitate further biochemical and molecular biological studies of leaf mitochondrial proteins.
A pure and active catalytic moiety of the F1–ATPase (EC 3,6,1,3) was purified from the isolated mitochondria. The yield was 5 mg of F1–ATPase from 150 mg mitochondria. The F1–ATPase contained five polypeptides of apparent molecular mass 54 kDa (α), 52 kDa (β), 33 kDa (γ), 22 kDa (ω) and 11 kDa (ɛ). An additional component at 24 kDa was present in variable amounts in some preparations and was therefore not ascribed to the ATPase complex. The enzyme catalyzed ATP hydrolysis at a rate of 12.5 nmol (mg protein)-1 min-1. Antibodies against the spinach mitochondrial F1–ATPase cross–reacted only with the a and β subunits of F1–ATPases of spinach chloroplasts, photosynthetic bacteria Rhodospirillum rubrum and beef heart mitochondria.  相似文献   

5.
The biosynthetic mechanism for determining the side-chain length of ubiquinone in rat heart mitochondria was investigated. The biosynthesis of nonaprenyl ubiquinone (UQ-9) and decaprenyl ubiquinone (UQ-10) in the mitochondria from rat hearts previously perfused with mevalonolactone was accelerated depending on the concentration of mevalonolactone. Furthermore the synthesis ratio between UQ-10 and UQ-9 (UQ-10/UQ-9) increased in accordance with the increasing concentration of mevalonolactone used. In addition, an enhancement of the synthesis ratio (UQ-10/UQ-9) was observed when the rats were treated with isoproterenol to increase the activity of 3-hydroxymethylglutaryl-CoA (HMG-CoA) reductase, a rate-limiting enzyme which forms mevalonate. Moreover, the addition of isopentenyl pyrophosphate, which is a metabolite of mevalonate, elevated the synthetic ratios UQ-10/UQ-9 in intact mitochondria and decaprenyl pyrophosphate/solanesyl pyrophosphate in the partially purified polyprenyl pyrophosphate synthetase from rat heart. These results suggest that the HMG-CoA reductase could be involved as a determining factor of the side-chain length of ubiquinone in rat heart.  相似文献   

6.
1. Purified mitochondria have been prepared from wild type Paramecium tetraurelia and from the mutant Cl1 which lacks cytochrome aa3. Both mitochondrial preparations are characterized by cyanide insensitivity. Their spectral properties and their redox potentials have been studied. 2. Difference spectra (dithionite reduced minus oxidized) of mitochondria from wild type P. tetraurelia at 77 K revealed the alpha peaks of b-type cytochrome (s) at 553 and 557 nm, of c-type cytochrome at 549 nm and a-type cytochrome at 608 nm. Two alpha peaks at 549 and 545 nm could be distinguished in the isolated cytochrome c at 77 K. After cytochrome c extraction from wild type mitochondria, a new peak at 551 nm was unmasked, probably belonging to cytochdrome c1. The a-type cytochrome was characterized by a split Soret band with maxima at 441 and 450 nm. The mitochondria of the mutant Cl1 in exponential phase of growth differed from the wild type mitochondria in that cytochrome aa3 was absent while twice the quantity of cytochrome b was present. In stationary phase, mitochondria of the mutant were characterized by a new absorption peak at 590 nm. 3. Cytochrome aa3 was present at a concentration of 0.3 nmol/mg protein in wild type mitochondria and ubiquinone at a concentration of 8 nmol/mg protein both in mitochondria of the wild type and the mutant Cl1. Cytochrome aa3 was more susceptible to heat than cytochromes b and c,c1.  相似文献   

7.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine has been analyzed by fast detergent fractionation of isolated frog heart cells. Digitonin fractionation (0.5 mg/ml, 10 s at 2 degrees C in 20 mM 4-morpholinepropanesulfonic acid/3 mM EDTA/230 mM mannitol medium) was used to separate mitochondria and myofilaments from cytosol. To separate myofilaments from the other cellular compartments. Triton X-100 was used (2%, 15 s in the same medium as digitonin). For either resting or beating cells the total cellular contents of ATP, ADP, creatine phosphate and creatine was similar, nevertheless the O2 consumption was 6-times higher. The compartmentation of these metabolites was also identical. Myofilaments contain 1.1 nmol ADP per mg total cellular proteins. In the cytosolic compartment the metabolite concentrations, all measured in nmol per mg total cellular proteins, were: ATP, 13; ADP, 0.25-0.05; creatine phosphate, 18.5 and creatine, 14. This indicated that the reaction catalyzed by creatine kinase was in a state of (or near) equilibrium.  相似文献   

8.
The electrogenic NADH:Q oxidoreductase from the enterobacterium Klebsiella pneumoniae transports Na(+) ions. The complex was purified with an increase of the specific Na(+) transport activity from 0.2 micromol min(-1) mg(-1) in native membrane vesicles to 4.7 micromol min(-1) mg(-1) in reconstituted enzyme specimens. The subunit pattern resembled that of complex I from Escherichia coli, and two prominent polypeptides were identified as the NuoF and NuoG subunits of complex I. During purification the typical cofactors of complex I were enriched to yield approximately 17 nmol mg(-1) iron, 24 nmol mg(-1) acid-labile sulfide, and 0.79 nmol mg(-1) FMN in the purified sample. The enzyme contained approximately 1.2 nmol mg(-1) Q6 and 1.5 nmol mg(-1) Q8. The reduction of ubiquinone by NADH was Na(+)-dependent, which indicates coupling of the chemical and the vectorial reaction of the pump. The Na(+) activation profile corresponded to the Hill equation with a Hill coefficient K(H)(Na(+)) = 1.96 and with a half-maximal saturation at 0.33 mm Na(+). The reconstituted complex I from Klebsiella pneumoniae catalyzed deamino-NADH oxidation, Q1 reduction, and Na(+) translocation with specific activities of 2.6 units mg(-1), 2.4 units mg(-1), and 4.7 units mg(-1), respectively, which indicate a Na(+)/electron stoichiometry of one.  相似文献   

9.
The derivatisation of intact rat hepatocytes with monobromobimane resulted in rapid labelling of accessible protein thiols in several subcellular fractions. The derivatisation procedure did not cause acute cytotoxicity, nor did it alter the buoyant densities of the fractions or their gross protein compositions. Quantitation of the fluorescence irreversibly associated with the fractions demonstrated considerable intracellular heterogeneity in this pool of thiols. Values were highest in cytosol (ca. 90 nmol/mg protein), intermediate in microsomes (ca. 65 nmol/mg protein) and mitochondria (ca. 45 nmol/mg protein) and lowest in a crude fraction containing both nuclei and plasma membrane (ca. 35 nmol/mg protein). Similar values were obtained from microsomes and cytosol derivatised after fractionation but there were significant increases of ca. 100% in corresponding values from isolated mitochondria and the nuclear/plasma membrane fraction. These results are discussed in terms of the dynamic fluxes in monobromobimane protein thiols during fractionation and the applicability of this noninvasive method to studies of the mechanism(s) of toxicity of reactive xenobiotics and the role(s) of protein thiols in normal cellular function.  相似文献   

10.
A ubiquinone-cytochrome b-c1 complex was removed from chromatophoremembranes of a Rhodopseudomonas sphaeroides green mutant bydeoxycholate-cholate treatment of the chromatophores. The complexwas purified by ammonium sulfate fractionation and gel filtration. The molecular weight of the purified complex was 240,000 (240kD) and it was composed of seven subunits with molecular weightsof 47 kD, 42 kD, 38 kD, 32 kD, 30 kD, 24 kD and 16 kD. The complexcontained 1.54 and 3.42 nmol of cytochrome c1 and two differentcytochrome b species per mg protein, respectively. It also contained7.07 nmol of ubiquinone, 6.37 nmol of non-heme iron and about3 nmol of carotenoids per mg protein. No flavins were detected.Heme staining indicated that the 32 kD-and 24 kD-subunits werecytochromes. The midpoint potential of cytochrome c1 was 245 mV, and thevalues for the cytochromes b were 60 mV and –75 mV atpH 7.2. The peak of the -band of the reduced-minus-oxidizeddifference spectrum of cytochrome c1 was located at 552.5 nm,arid peaks of the b-type cytochromes with higher and lower midpointpotentials were located at 562 nm and 563 nm. The chemical and the subunit compositions of the purified complexreported here were similar to those obtained for the inner membranesof mitochondria of various organisms. (Received April 5, 1982; Accepted June 14, 1982)  相似文献   

11.
Connexin 43 (Cx43), which is highly expressed in the heart and especially in cardiomyocytes, interferes with the expression of nitric oxide synthase (NOS) isoforms. Conversely, Cx43 gene expression is down‐regulated by nitric oxide derived from the inducible NOS. Thus, a complex interplay between Cx43 and NOS expression appears to exist. As cardiac mitochondria are supposed to contain a NOS, we now investigated the expression of NOS isoforms and the nitric oxide production rate in isolated mitochondria of wild‐type and Cx43‐deficient (Cx43Cre‐ER(T)/fl) mice hearts. Mitochondria were isolated from hearts using differential centrifugation and purified via Percoll gradient ultracentrifugation. Isolated mitochondria were stained with an antibody against the mitochondrial marker protein adenine‐nucleotide‐translocator (ANT) in combination with either a neuronal NOS (nNOS) or an inducible NOS (iNOS) antibody and analysed using confocal laser scanning microscopy. The nitric oxide formation was quantified in purified mitochondria using the oxyhaemoglobin assay. Co‐localization of predominantly nNOS (nNOS: 93 ± 4.1%; iNOS: 24.6 ± 7.5%) with ANT was detected in isolated mitochondria of wild‐type mice. In contrast, iNOS expression was increased in Cx43Cre‐ER(T)/fl mitochondria (iNOS: 90.7 ± 3.2%; nNOS: 53.8 ± 17.5%). The mitochondrial nitric oxide formation was reduced in Cx43Cre‐ER(T)/fl mitochondria (0.14 ± 0.02 nmol/min./mg protein) in comparison to wild‐type mitochondria (0.24 ± 0.02 nmol/min./mg). These are the first data demonstrating, that a reduced mitochondrial Cx43 content is associated with a switch of the mitochondrial NOS isoform and the respective mitochondrial rate of nitric oxide formation.  相似文献   

12.
Additional characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, in the mitochondria of Trypanosoma brucei brucei has been obtained. Both proline:cytochrome c reductase and NADH:ubiquinone oxidoreductase of procyclic T. brucei were inhibited by the specific inhibitors of complex I rotenone, piericidin A, and capsaicin. These inhibitors had no effect on succinate: cytochrome c reductase activity. Antimycin A, a specific inhibitor of the cytochrome bc1 complex (ubiquinol:cytochrome c oxidoreductase), blocked almost completely cytochrome c reductase activity with either proline or succinate as electron donor, but had no inhibitory effect on NADH:ubiquinone oxidoreductase activity. The rotenone-sensitive NADH:ubiquinone oxidoreductase of procyclic T. brucei was partially purified by sucrose density centrifugation of mitochondria solubilized with dodecyl-beta-D-maltoside, with an approximately eightfold increase in specific activity compared to that of the mitochondrial membranes. Four polypeptides of the partially purified enzyme were identified as the homologous subunits of complex I (51 kDa, PSST, TYKY, and ND4) by immunoblotting with antibodies raised against subunits of Paracoccus denitrificans and against synthetic peptides predicted from putative complex I subunit genes encoded by mitochondrial and nuclear T. brucei DNA. Blue Native polyacrylamide gel electrophoresis of T. brucei mitochondrial membrane proteins followed by immunoblotting revealed the presence of a putative complex I with a molecular mass of 600 kDa, which contains a minimum of 11 polypeptides determined by second-dimensional Tricine-SDS/PAGE including the 51 kDa, PSST and TYKY subunits.  相似文献   

13.
Neuronal death in response to excitotoxic levels of glutamate is dependent upon mitochondrial Ca2+ accumulation and is associated with a drop in ATP levels and a loss in ionic homeostasis. Yet the mapping of temporal events in mitochondria subsequent to Ca2+ sequestration is incomplete. By isolating mitochondria from primary cultures, we discovered that glutamate treatment of cortical neurons for 10 min caused 44% inhibition of ADP-stimulated respiration, whereas the maximal rate of electron transport (uncoupler-stimulated respiration) was inhibited by approximately 10%. The Ca2+ load in mitochondria from glutamate-treated neurons was estimated to be 167 +/- 19 nmol/mg protein. The glutamate-induced Ca2+ load was less than the maximal Ca2+ uptake capacity of the mitochondria determined in vitro (363 +/- 35 nmol/mg protein). Comparatively, mitochondria isolated from cerebellar granule cells demonstrated a higher Ca2+ uptake capacity (686 +/- 71 nmol/mg protein) than the cortical mitochondria, and the glutamate-induced load of Ca2+ was a smaller percentage of the maximal Ca2+ uptake capacity. Thus, this study indicated that Ca(2+)-induced impairment of mitochondrial ATP production is an early event in the excitotoxic cascade that may contribute to decreased cellular ATP and loss of ionic homeostasis that precede commitment to neuronal death.  相似文献   

14.
Previous morphological studies of the mineralizing epiphysis suggested that some mitochondria were concerned with Ca2+ accumulation while others were associated with cellular energetics and metabolism. To determine if there was mitochondrial heterogeneity in chondrocytes of the epiphyseal growth plate, mitochondria were isolated from four different regions of the plate and subjected to continuous sucrose gradient centrifugation. Centrifugation of the organelles in a narrow density sucrose gradient (1.5–2.0 M) in the presence of inhibitors of Ca2+ transport (ruthenium red and 5,5′-dithiobis-(2-nitrobenzoic acid)) revealed that considerable heterogeneity existed. In the least calcified zone 20% of the mitochondria formed a low density band of low Ca2+ concentration (309 nmol/mg protein). Organelles isolated from more calcified tissue zones showed a concomitant increase in Ca2+ concentration (up to 5700 nmol/mg protein) as well as an increase in the total percentage of mitochondria sedimenting in 2.0 M sucrose. The banding patterns of mitochondria isolated from rachitic and hypertrophic cartilage were similar. In addition, similarities were also noted in the Ca2+ concentration and the cytochrome oxidase activities of mitochondria of these tissues. During recovery from the rachitic condition, there was a change in the density centrifugation characteristics of this tissue and a substantial increase was noted in the proportion of mitochondria sedimenting in 2.0 M sucrose. The Ca2+ concentration of mitochondria of this rapidly calcifying tissue suggested that the critical Ca2+ concentration necessary for initiation of the calcification mechanism was 4 μmol/mg protein.  相似文献   

15.
Administration of 2-methyl-4-dimethylaminobenzene in the diet (0.1%, w/w) for 85-90 days doubled the content of mitochondria in the livers of rats. The azodye was covalently bound to liver proteins, and about 15% of the amount found in liver was associated with the mitochondrial fraction. Mitochondria isolated from the livers of azodye-fed animals showed drastically lowered ability to oxidize NAD+-linked substrates. The inhibited electron-transfer step was the reduction of ubiquinone. The organelles showed a large increase in succinate oxidase activity. The activity of cytochrome oxidase and the content of cytochrome aa3 were substantially higher in these organelles. Azodye-fed animals showed depressed serum cholesterol concentrations. The content of ubiquinone in liver also registered a small increase.  相似文献   

16.
The pathway of glutamate metabolism in rat brain mitochondria   总被引:9,自引:2,他引:7       下载免费PDF全文
1. The pathway of glutamate metabolism in non-synaptic rat brain mitochondria was investigated by measuring glutamate, aspartate and ammonia concentrations and oxygen uptakes in mitochondria metabolizing glutamate or glutamine under various conditions. 2. Brain mitochondria metabolizing 10mm-glutamate in the absence of malate produce aspartate at 15nmol/min per mg of protein, but no detectable ammonia. If amino-oxyacetate is added, the aspartate production is decreased by 80% and ammonia production is now observed at a rate of 6.3nmol/min per mg of protein. 3. Brain mitochondria metabolizing glutamate at various concentrations (0-10mm) in the presence of 2.5mm-malate produce aspartate at rates that are almost stoicheiometric with glutamate disappearance, with no detectable ammonia production. In the presence of amino-oxyacetate, although the rate of aspartate production is decreased by 75%, ammonia production is only just detectable (0.3nmol/min per mg of protein). 4. Brain mitochondria metabolizing 10mm-glutamine and 2.5mm-malate in States 3 and 4 were studied by using glutamine as a source of intramitochondrial glutamate without the involvement of mitochondrial translocases. The ammonia production due to the oxidative deamination of glutamate produced from the glutamine was estimated as 1nmol/min per mg of protein in State 3 and 3nmol/min per mg of protein in State 4. 5. Brain mitochondria metabolizing 10mm-glutamine in the presence of 1mm-amino-oxyacetate under State-3 conditions in the presence or absence of 2.5mm-malate showed no detectable aspartate production. In both cases, however, over the first 5min, ammonia production from the oxidative deamination of glutamate was 21-27nmol/min per mg of protein, but then decreased to approx. 1-1.5nmol/min per mg. 6. It is concluded that the oxidative deamination of glutamate by glutamate dehydrogenase is not a major route of metabolism of glutamate from either exogenous or endogenous (glutamine) sources in rat brain mitochondria.  相似文献   

17.
Membranes were isolated from highly purified peroxisomes, mitochondria, and rough and smooth microsomes of rat liver by the one-step Na2CO3 procedure described in the accompanying paper (1982, J. Cell Biol. 93:97-102). The polypeptide compositions of these membranes were determined by SDS PAGE and found to be greatly dissimilar. The peroxisomal membrane contains 12% of the peroxisomal protein and consists of three major polypeptides (21,700, 67,700 and 69,700 daltons) as well as some minor polypeptides. The major peroxisomal membrane proteins as well as most of the minor ones are absent from the endoplasmic reticulum (ER). Conversely, most ER proteins are absent from peroxisomes. By electron microscopy, purified peroxisomal membranes are approximately 6.8 nm thick and have a typical trilaminar appearance. The phospholipid/protein ratio of peroxisomal membranes is approximately 200 nmol/mg; the principal phospholipids are phosphatidyl choline and phosphatidyl ethanolamine as in ER and mitochondrial membranes. In contrast to the mitochondria, peroxisomal membranes contain no cardiolipin. All the membranes investigated contain a polypeptide band with a molecular mass of approximately 15,000 daltons. Whether this represents an exceptional common membrane protein or a coincidence is unknown. The implications of these results for the biogenesis of peroxisomes are discussed.  相似文献   

18.
An ubiquinone-binding protein (QP) was purified from mitochondrial NADH-ubiquinone reductase (Complex I). Complex I was separated into 3 fragments: a fraction of hydrophobic proteins, that of soluble iron-sulfur protein (IP) and soluble NADH dehydrogenase of flavoprotein by a procedure involving the resolution with DOC and cholate, followed by ethanol and ammonium acetate fractionations. About 40% of the total ubiquinone was recovered in the IP fragment which consisted of 12 polypeptides. The QP was purified from the IP fragment with a hydrophobic affinity chromatography. SDS-polyacrylamide gel electrophoresis showed that the purified QP corresponded to 14-kDa polypeptide of the IP fragment and was a different protein from the QP (12.4 kDa) in Complex III. The purified QP (14 kDa) contained one mol ubiquinone per mol. The ubiquinone-depleted IP fragment could rebind ubiquinone. These results indicate that an ubiquinone-binding site in Complex I is on the 14-kDa polypeptide of the IP fragment.  相似文献   

19.
NADH:ubiquinone oxidoreductase (complex I) was purified from bovine heart mitochondria by solubilization with n-dodecyl beta-D-maltoside (lauryl maltoside), ammonium sulfate fractionation, and chromatography on Mono Q in the presence of the detergent. Its subunit composition was very similar to complex I purified by conventional means. Complex I was dissociated in the presence of N,N-dimethyldodecylamine N-oxide and beta-mercaptoethanol, and two subcomplexes, I alpha and I beta, were isolated by chromatography. Subcomplex I alpha catalyzes electron transfer from NADH to ubiquinone-1. It is composed of about 22 different and mostly hydrophilic subunits and contains 2.0 nmol of FMN/mg of protein. Among its subunits is the 51-kDa subunit, which binds FMN and NADH and probably contains a [4Fe-4S] cluster also. Three other potential Fe-S proteins, the 75- and 24-kDa subunits and a 23-kDa subunit (N-terminal sequence TYKY), are also present. All of the Fe-S clusters detectable by EPR in complex I, including cluster 2, are found in subcomplex I alpha. The line shapes of the EPR spectra of the Fe-S clusters are slightly broadened relative to spectra measured on complex I purified by conventional means, and the quinone reductase activity is insensitive to rotenone. Similar changes were found in samples of the intact chromatographically purified complex I, or in complex I prepared by the conventional method and then subjected to chromatography in the presence of lauryl maltoside. Subcomplex I beta contains about 15 different subunits. The sequences of many of them contain hydrophobic segments that could be membrane spanning, including at least two mitochondrial gene products, ND4 and ND5. The role of subcomplex I beta in the intact complex remains to be elucidated.  相似文献   

20.
1. Ubiquinone contents were determined in species of marine invertebrates, and in heart, red and white muscle and liver of three species of fish. 2. Three different methods of determination were compared, based on spectrophotometry, reduction and a reaction with the dimethoxy groups of ubiquinone. 3. Using ubiquinone homologues 6-10 prepared from beef heart and commercially available microorganisms (SCP) as standards, ubiquinone 10 was found in all samples. In addition were found minor amounts of Q-9 in samples of saithe heart and red muscle. 4. Less than 10 mg/kg wet wt of ubiquinone was found in the samples of marine invertebrates and in white muscle and liver of the fish samples, with one exception: 40 mg/kg in a sample of mackerel liver. 5. Higher contents of ubiquinone were found in fish heart and red muscle tissues, ranging from 24 to 116 mg/kg wet wt. The ubiquinone contents were comparable in the two tissues. 6. A test on cellular fragments of red muscle tissue of saithe showed that the ubiquinone was concentrated in the mitochondria fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号