首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiomyocytes experience a series of complex endogenous regulatory mechanisms against apoptosis induced by chronic hypoxia. MicroRNAs are a class of endogenous small non-coding RNAs that regulate cellular pathophysiological processes. Recently, microRNA-138 (miR-138) has been found related to hypoxia, and beneficial for cell proliferation. Therefore, we intend to study the role of miR-138 in hypoxic cardiomyocytes and the main mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected to test miR-138 expression. Agomir or antagomir of miR-138 was transfected into H9C2 cells to investigate its effect on cell apoptosis. Higher miR-138 expression was observed in patients with cyanotic CHD, and its expression gradually increased with prolonged hypoxia time in H9C2 cells. Using MTT and LDH assays, cell growth was significantly greater in the agomir group than in the negative control (NC) group, while antagomir decreased cell survival. Dual luciferase reporter gene and Western-blot results confirmed MLK3 was a direct target of miR-138. It was found that miR-138 attenuated hypoxia-induced apoptosis using TUNEL, Hoechst staining and Annexin V-PE/7-AAD flow cytometry analysis. We further detected expression of apoptosis-related proteins. In the agomir group, the level of pro-apoptotic proteins such as cleaved-caspase-3, cleaved-PARP and Bad significantly reduced, while Bcl-2 and Bcl-2/Bax ratio increased. Opposite changes were observed in the antagomir group. Downstream targets of MLK3, JNK and c-jun, were also suppressed by miR-138. Our study demonstrates that up-regulation of miR-138 plays a protective role in myocardial adaptation to chronic hypoxia, which is mediated mainly by MLK3/JNK/c-jun signaling pathway.  相似文献   

2.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates c-jun N-terminal kinase (JNK) and can induce cell death in neurons. By contrast, the activation of phosphatidylinositol 3-kinase and AKT/protein kinase B (PKB) acts to suppress neuronal apoptosis. Here, we report a functional interaction between MLK3 and AKT1/PKBalpha. Endogenous MLK3 and AKT1 interact in HepG2 cells, and this interaction is regulated by insulin. The interaction domain maps to the C-terminal half of MLK3 (amino acids 511-847), and this region also contains a putative AKT phosphorylation consensus sequence. Endogenous JNK, MKK7, and MLK3 kinase activities in HepG2 cells are significantly attenuated by insulin treatment, whereas the phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin reversed the effect. Finally, MLK3-mediated JNK activation is inhibited by AKT1. AKT phosphorylates MLK3 on serine 674 both in vitro and in vivo. Furthermore, the expression of activated AKT1 inhibits MLK3-mediated cell death in a manner dependent on serine 674 phosphorylation. Thus, these data provide the first direct link between MLK3-mediated cell death and its regulation by a cell survival signaling protein, AKT1.  相似文献   

3.
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is associated with a broad range of biological properties including antitumor activity. However, the effect of DHA on gastric cancer has not been clearly clarified. The aim of this study was to investigate the role and mechanism of DHA in human gastric cancer cell line BGC-823. Cell viability was assessed by MTT assay. Cell apoptosis was analyzed with flow cytometry. The expressions of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and their phosphorylated forms as well as apoptosis related proteins were examined by western blot analysis. The results demonstrated that DHA inhibited cell viability of BGC-823 cells in a dose- and time-dependent manner. DHA treatment upregulated the expression of Bax, cleaved caspase-3 and -9, and degraded form of PARP, and downregulated the Bcl-2 expression and Bcl-2/Bax ratio. Meanwhile, DHA increased the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. Synthetic inhibitors of JNK1/2 or p38 MAPK kinase activity, but not inhibitor of ERK1/2, significantly abolished the DHA-induced activation of caspase-3 and -9. In vivo tumor-suppression assay further indicated that DHA displayed significant inhibitory effect on BGC-823 xenografts in tumor growth. These results indicate that DHA induces apoptosis of BGC-823 cells through JNK1/2 and p38 MAPK signaling pathways and DHA could serve as a potential additional chemotherapeutic agent for treatment of gastric cancer.  相似文献   

4.
5.
Cerebellar granule neurons grown in high potassium undergo rapid apoptosis when switched to medium containing 5 mm potassium, a stimulus mimicking deafferentation. This cell death can be blocked by genetic deletion of Bax, a member of the pro-apoptotic Bcl-2 family, cycloheximide an inhibitor of macromolecular synthesis or expression of dominant-negative c-jun. These observations suggest that Bax activation is the result of c-jun target gene(s) up-regulation following trophic withdrawal. Candidate genes include the BH3-only Bcl-2 family members Dp5 and Bim. The molecular mechanisms underlying granule cell neuronal apoptosis in response to low potassium were investigated using CEP-1347 (KT7515), an inhibitor of the MLK family of JNKKK. CEP-1347 provided protection of potassium-serum-deprived granule cells, but such neuroprotection was not long term. The incomplete protection was not due to incomplete blockade of the JNK signaling pathway because c-jun phosphorylation as well as induction of c-jun RNA and protein were completely blocked by CEP-1347. Following potassium-serum deprivation the JNKK MKK4 becomes phosphorylated, an event blocked by CEP-1347. Cells that die in the presence of CEP-1347 activate caspases; and dual inhibition of caspases and MLKs has additive, not synergistic, effects on survival. A lack of synergism was also seen with the p38 inhibitor SB203580, indicating that the neuroprotective effect of the JNK pathway inhibitor cannot be explained by p38 activation. Activation of the JNK signaling pathway seems to be a key event in granule cell apoptosis, but these neurons cannot survive long term in the absence of sustained PI3 kinase signaling.  相似文献   

6.
Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity. Endoplasmic reticulum (ER) and oxidative stress are elicited by palmitate and high glucose concentrations further potentiating JNK activity. Our aim was to determine the role of the JNK subtypes JNK1, JNK2 and JNK3 in palmitate and high glucose-induced β-cell apoptosis. We established insulin-producing INS1 cell lines stably expressing JNK subtype specific shRNAs to understand the differential roles of the individual JNK isoforms. JNK activity was increased after 3 h of palmitate and high glucose exposure associated with increased expression of ER and mitochondrial stress markers. JNK1 shRNA expressing INS1 cells showed increased apoptosis and cleaved caspase 9 and 3 compared to non-sense shRNA expressing control INS1 cells when exposed to palmitate and high glucose associated with increased CHOP expression, ROS formation and Puma mRNA expression. JNK2 shRNA expressing INS1 cells did not affect palmitate and high glucose induced apoptosis or ER stress markers, but increased Puma mRNA expression compared to non-sense shRNA expressing INS1 cells. Finally, JNK3 shRNA expressing INS1 cells did not induce apoptosis compared to non-sense shRNA expressing INS1 cells when exposed to palmitate and high glucose but showed increased caspase 9 and 3 cleavage associated with increased DP5 and Puma mRNA expression. These data suggest that JNK1 protects against palmitate and high glucose-induced β-cell apoptosis associated with reduced ER and mitochondrial stress.  相似文献   

7.
8.
小檗碱是具有细胞保护作用的生物碱,能够在柯萨奇病毒B3(CVB3)感染引起的病毒性心肌炎小鼠中发挥心肌保护作用,但具体的机制未阐明。在内皮细胞中,小檗碱通过c-Jun氨基末端激酶(JNK)通路抑制细胞凋亡,因此本研究将分析小檗碱通过JNK通路调控CVB3感染心肌细胞凋亡的作用。H9c2心肌细胞分为对照组(不含药物的DMEM处理)、模型组(含CVB3的DMEM处理)、小檗碱组(含CVB3及小檗碱的DMEM处理)、小檗碱+JNK质粒组(含CVB3、小檗碱、JNK质粒的DMEM处理),检测细胞凋亡率、肿瘤坏死因子-α(TNF-α)、白介素-6(IL-6)、活性氧(ROS)、丙二醛(MDA)的含量、p-JNK、cleaved caspase-3、bax、bcl-2的表达量。结果显示,模型组的细胞凋亡率、TNF-α、IL-6、ROS、MDA的含量、p-JNK、cleaved caspase-3、bax的表达量高于对照组,bcl-2的表达量低于对照组(P<0.05);小檗碱组的细胞凋亡率、TNF-α、IL-6、ROS、MDA的含量、p-JNK、cleaved caspase-3、bax的表达量低于模型组,bcl-2的表达量高于模型组(P<0.05);小檗碱+JNK质粒组的细胞凋亡率、TNF-α、IL-6、ROS、MDA的含量、p-JNK、cleaved caspase-3、bax的表达量高于小檗碱组,bcl-2的表达量低于小檗碱组(P<0.05)。以上结果表明小檗碱对CVB3感染心肌细胞的凋亡具有抑制作用,抑制JNK通路是介导这一作用可能的分子机制。  相似文献   

9.
The sphingomyelin-derived messenger ceramides provoke neuronal apoptosis through caspase-3 activation, while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuronal survival and inhibits caspase-3 activity. However, the mechanisms leading to the opposite regulation of caspase-3 by C2-ceramide and PACAP are currently unknown. Here, we show that PACAP prevents C2-ceramide-induced inhibition of mitochondrial potential and C2-ceramide-evoked cytochrome c release. C2-ceramide stimulated Bax expression, but had no effect on Bcl-2, while PACAP abrogated the action of C2-ceramide on Bax and stimulated Bcl-2 expression. The effects of C2-ceramide and PACAP on Bax and Bcl-2 were blocked, respectively, by the JNK inhibitor L-JNKI1 and the MEK inhibitor U0126. L-JNKI1 prevented the alteration of mitochondria induced by C2-ceramide while U0126 suppressed the protective effect of PACAP against the deleterious action of C2-ceramide on mitochondrial potential. Moreover, L-JNKI1 inhibited the stimulatory effect of C2-ceramide on caspase-9 and -3 and prevented C2-ceramide-induced cell death. U0126 blocked PACAP-induced Bcl-2 expression, abrogated the inhibitory effect of PACAP on ceramide-induced caspase-9 activity, and promoted granule cell death. The present study reveals that C2-ceramide and PACAP exert opposite effects on Bax and Bcl-2 through, respectively, JNK- and ERK-dependent mechanisms. These data indicate that the mitochondrial pathway plays a pivotal role in the pro- and anti-apoptotic effects of C2-ceramide and PACAP.  相似文献   

10.
Mixed lineage kinase 3 (MLK 3) (also called SPRK or PTK-1) is a recently described member of the family of the mixed lineage kinase subfamily of Ser/Thr protein kinases that interacts with mitogen-activated protein kinase pathways. In order to test the biological relevance and potential interaction of MLK 3 with protein kinase C-mediated signaling pathways, human MLK 3 was stably expressed in rat glomerular mesangial cells using a retroviral vector (LXSN) and the effects of phorbol myristoyl acetate (PMA) on DNA synthesis and osteopontin mRNA expression were examined. In control (vector-transfected) mesangial cells PMA increased [3H]-thymidine incorporation in a concentration-dependent manner. In mesangial cells stably expressing MLK 3, the PMA-induced increase in [3H]-thymidine incorporation was significantly reduced (> 50%). However, the PMA-induced increase in osteopontin mRNA was not affected by MLK 3 expression. To determine the mechanisms of these effects, activation of ERK2, JNK1 and p38 in response to PMA was examined in both vector and MLK 3 transfected cells. ERK2 activation was increased several fold by PMA in control cells but was attenuated significantly in MLK 3 expressing cells, suggesting that MLK 3 expression in mesangial cells can negatively regulate the ERK pathway. PMA had no significant effect on JNK and P38 activation, in either vector- or MLK 3-expressing cells. PD98059, a MEK inhibitor blocked PMA-induced DNA synthesis without affecting osteopontin expression. These results suggest that while protein kinase C activation increases cellular proliferation and osteopontin mRNA expression, over-expression of MLK 3 affects only the PKC-induced DNA synthesis, probably through inhibition of ERK. These results also indicate a novel mechanism of growth regulation by a member of the mixed-lineage kinase family that might have significant therapeutic implications in proliferative glomerulonephritis.  相似文献   

11.
We investigated the mechanisms underlying the protective effects of loganin against hydrogen peroxide (H(2)O(2))-induced neuronal toxicity in SH-SY5Y cells. The neuroprotective effect of loganin was investigated by treating SH-SY5Y cells with H(2)O(2) and then measuring the reduction in H(2)O(2)-induced apoptosis using 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays. Following H(2)O(2) exposure, Hoechst 33258 staining indicated nuclear condensation in a large proportion of SH-SY5Y cells, along with an increase in reactive oxygen species (ROS) production and an intracellular decrease in mitochondria membrane potential (MMP). Loganin was effective in attenuating all the above-stated phenotypes induced by H(2)O(2). Pretreatment with loganin significantly increased cell viability, reduced H(2)O(2)-induced LDH release and ROS production, and effectively increased intracellular MMP. Pretreatment with loganin also significantly decreased the nuclear condensation induced by H(2)O(2). Western blot data revealed that loganin inhibited the H(2)O(2)-induced up-regulation of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspase-3, increased the H(2)O(2)-induced decrease in the Bcl-2/Bax ratio, and attenuated the H(2)O(2)-induced release of cytochrome c from mitochondria to the cytosol. Furthermore, pretreatment with loganin significantly attenuated the H(2)O(2)-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). These results suggest that the protective effects of loganin against H(2)O(2)-induced apoptosis may be due to a decrease in the Bcl-2/Bax ratio expression due to the inhibition of the phosphorylation of JNK, p38, and ERK 1/2 MAPKs. Loganin's neuroprotective properties indicate that this compound may be a potential therapeutic agent for the treatment of neurodegenerative diseases.  相似文献   

12.
13.
Reactive oxygen species (ROS) are important for intracellular signaling mechanisms regulating many cellular processes. Manganese superoxide dismutase (MnSOD) may regulate cell growth by changing the level of intracellular ROS. In our study, we investigated the effect of ROS on 7721 human hepatoma cell proliferation. Treatment with H2O2 (1-10 microM) or transfection with antisense MnSOD cDNA constructs significantly increased the cell proliferation. Recently, the mitogen-activated protein kinases (MAPK) and the protein kinase B (PKB) were proposed to be involved in cell growth. Accordingly, we assessed the ability of ROS to activate MAPK and PKB. PKB and extracellular signal-regulated kinase (ERK) were both rapidly and transiently activated by 10 microM H2O2, but the activities of p38 MAPK and JNK were not changed. ROS-induced PKB activation was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002, suggesting that PI3-K is an upstream mediator of PKB activation in 7721 cells. Transfection with sense PKB cDNA promoted c-fos and c-jun expression in 7721 cells, suggesting that ROS may regulate c-fos and c-jun expression via the PKB pathway. Furthermore we found that exogenous H2O2 could stimulate the proliferation of PKB-AS7721 cells transfected with antisense PKB cDNA, which was partly dependent on JNK activation, suggesting that H2O2 stimulated hepatoma cell proliferation via cross-talk between the PI3-K/PKB and the JNK signaling pathways. However, insulin could stimulate 7721 cell proliferation, which is independent of cross-talk between PI3-K/PKB and JNK pathways. In addition, H2O2 did not induce the cross-talk between the PI3-K/PKB and the JNK pathways in normal liver cells. Taken together, we found that ROS regulate hepatoma cell growth via specific signaling pathways (cross-talk between PI3-K/PKB and JNK pathway) which may provide a novel clue to elucidate the mechanism of hepatoma carcinogenesis.  相似文献   

14.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells.  相似文献   

15.
Kainate receptor glutamate receptor 6 (GluR6) subunit-deficient and c-Jun N-terminal kinase 3 (JNK3)-null mice share similar phenotypes including resistance to kainite-induced epileptic seizures and neuronal toxicity (Yang, D. D., Kuan, C-Y., Whitmarsh, A. J., Rincon, M., Zheng, T. S., Davis, R. J., Rakis, P., and Flavell, R. (1997) Nature 389, 865-869; Mulle, C., Seiler, A., Perez-Otano, I., Dickinson-Anson, H., Castillo, P. E., Bureau, I., Maron, C., Gage, F. H., Mann, J. R., Bettler, B., and Heinemmann, S. F. (1998) Nature 392, 601-605). This suggests that JNK activation may be involved in GluR6-mediated excitotoxicity. We provide evidence that post-synaptic density protein (PSD-95) links GluR6 to JNK activation by anchoring mixed lineage kinase (MLK) 2 or MLK3, upstream activators of JNKs, to the receptor complex. Association of MLK2 and MLK3 with PSD-95 in HN33 cells and rat brain preparations is dependent upon the SH3 domain of PSD-95, and expression of GluR6 in HN33 cells activated JNKs and induced neuronal apoptosis. Deletion of the PSD-95-binding site of GluR6 reduced both JNK activation and neuronal toxicity. Co-expression of dominant negative MLK2, MLK3, or mitogen-activated kinase kinase (MKK) 4 and MKK7 also significantly attenuated JNK activation and neuronal toxicity mediated by GluR6, and co-expression of PSD-95 with a deficient Src homology 3 domain also inhibited GluR6-induced JNK activation and neuronal toxicity. Our results suggest that PSD-95 plays a critical role in GluR6-mediated JNK activation and excitotoxicity by anchoring MLK to the receptor complex.  相似文献   

16.
Bax triggers cell apoptosis by permeabilizing the outer mitochondrial membrane, leading to membrane potential loss and cytochrome c release. However, it is unclear if proteasomal degradation of Bax is involved in the apoptotic process, especially in heart ischemia-reperfusion (I/R)-induced injury. In the present study, KPC1 expression was heightened in left ventricular cardiomyocytes of patients with coronary heart disease (CHD), in I/R-myocardium in vivo and in hypoxia and reoxygenation (H/R)-induced cardiomyocytes in vitro. Overexpression of KPC1 reduced infarction size and cell apoptosis in I/R rat hearts. Similarly, the forced expression of KPC1 restored mitochondrial membrane potential (MMP) and cytochrome c release driven by H/R in H9c2 cells, whereas reducing cell apoptosis, and knockdown of KPC1 by short-hairpin RNA (shRNA) deteriorated cell apoptosis induced by H/R. Mechanistically, forced expression of KPC1 promoted Bax protein degradation, which was abolished by proteasome inhibitor MG132, suggesting that KPC1 promoted proteasomal degradation of Bax. Furthermore, KPC1 prevented basal and apoptotic stress-induced Bax translocation to mitochondria. Bax can be a novel target for the antiapoptotic effects of KPC1 on I/R-induced cardiomyocyte apoptosis and render mechanistic penetration into at least a subset of the mitochondrial effects of KPC1.  相似文献   

17.
目的: 探讨miRNA-130a-3p对脂多糖(LPS)诱导的心肌细胞自噬与凋亡的影响及分子机制。方法: H9C2心肌细胞随机分为5组,即正常对照组,LPS模型组,miRNA阴性对照组(miRNA-negative control组),miRNA-130a-3p mimics组(过表达miRNA-130a-3p),miRNA-130a-3p mimics+LY294002组(过表达miRNA-130a-3p + PI3K抑制)。LPS模型组即终浓度为10 μg/ml的LPS诱导24 h,miRNA阴性对照组与miRNA-130a-3p mimics组是利用lipo3000将阴性对照miRNA及miRNA-130a-3p mimics转染至H9C2细胞,培养24 h后,再将LPS加入培养基中培养24 h。miRNA-130a-3p mimics + LY294002组是利用lipo3000将miRNA-130a-3p mimics转染至H9C2细胞,同时在培养基中加入10 μmol/L(终浓度)的LY294002,培养24 h后,再将浓度为10 μg/ml的LPS加入培养基中培养24 h。所有实验均重复5次以上。利用RT-qPCR检测细胞中miRNA-130a-3p mRNA的表达水平,利用CCK-8实验检测细胞活性,利用ELISA实验检测细胞培养液中肿瘤坏死因子-α(TNF-α),白细胞介素-6(IL-6),白细胞介素-1β (IL-1β)的含量,利用比色法检测细胞培养液中超氧化物歧化酶(SOD)、乳酸脱氢酶(LDH)的含量;利用Western blot检测细胞中p-PI3K蛋白,p-AKT蛋白,Bax蛋白,Bcl-2蛋白,cleaved-caspase-3蛋白,LC3蛋白,p62蛋白的表达水平。结果: 结果显示,与正常组相比较,LPS模型细胞中miRNA-130a-3p mRNA水平,p-PI3K蛋白与p-AKT蛋白的水平显著低于正常对照组(P<0.01);与LPS组相比较,miRNA-130a-3p mimics组细胞中p-PI3K,p-AKT蛋白的表达显著升高(P<0.01,P<0.05);与正常对照组相比较,LPS组细胞活性显著降低,细胞培养液中TNF-α,IL-6,IL-1β及 LDH的含量显著升高(P<0.01), SOD的含量显著降低(P<0.01),细胞中Bax蛋白,cleaved caspase-3蛋白,p62蛋白的表达显著升高(P<0.01),Bcl-2蛋白的表达和LC3II/I的比率显著降低(P<0.01);与LPS组相比较,miRNA-130a-3p mimics可提高细胞活性,降低细胞培养液中TNF-α,IL-6,IL-1β及LDH的含量(P<0.01,P<0.05),提高SOD的含量(P<0.05),降低细胞中Bax蛋白,cleaved caspase-3蛋白,p62蛋白的表达(P<0.01),促进Bcl-2蛋白的表达(P<0.01),提高LC3II/I的比率(P<0.05);与miRNA-130a-3p mimics组相比较,miRNA-130a-3p mimics+LY294002组,可部分逆转miRNA-130a-3p mimics对细胞的作用。结论: 过表达miRNA-130a-3p可部分通过激活PI3K/AKT信号通路促进细胞的自噬与抑制细胞凋亡,减轻LPS诱导的心肌细胞损伤。  相似文献   

18.
The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.  相似文献   

19.
Connective tissue growth factor (CTGF) plays an important role in lung fibrosis. In this study, we investigated the role of Rac1, mixed-lineage kinase 3 (MLK3), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CTGF-induced collagen I expression in human lung fibroblasts. CTGF caused concentration- and time-dependent increases in collagen I expression. CTGF-induced collagen I expression was inhibited by the dominant negative mutant (DN) of Rac1 (RacN17), MLK3DN, MLK3 inhibitor (K252a), JNK1DN, JNK2DN, a JNK inhibitor (SP600125), and an AP-1 inhibitor (curcumin). Treatment of cells with CTGF caused activation of Rac1, MLK3, JNK, and AP-1. The CTGF-induced increase in MLK3 phosphorylation was inhibited by RacN17. Treatment with RacN17 and the MLK3DN inhibited CTGF-induced JNK phosphorylation. CTGF caused increases in c-Jun phosphorylation and the recruitment of c-Jun and c-Fos to the collagen I promoter. Furthermore, stimulation of cells with the CTGF resulted in increases in AP-1-luciferase activity; this effect was inhibited by Rac1N17, MLK3DN, JNK1DN, and JNK2DN. Moreover, CTGF-induced α-smooth muscle actin (α-SMA) expression was inhibited by the procollagen I small interfering RNA (siRNA). These results suggest for the first time that CTGF acting through Rac1 activates the MLK3/JNK signaling pathway, which in turn initiates AP-1 activation and recruitment of c-Jun and c-Fos to the collagen I promoter and ultimately induces collagen I expression in human lung fibroblasts.  相似文献   

20.
Ghrelin is a multifunctional peptide that actively protects against cardiovascular ischemic diseases, but the underlying mechanisms are unclear. We used CoCl2 to mimic hypoxic conditions in cardiac H9c2 cells in order to study the mechanism by which ghrelin protects cardiac myocytes against hypoxic injury by regulating the content of intracellular ROS and autophagy levels. Cell apoptosis and necrosis were evaluated by the flow cytometry assay, Hoechst staining, and LDH activity. Cell viability was detected by the WST-1 assay; ROS levels were assessed using DCFH2-DA; and Nox1, catalase and Mn-SOD were assayed by real-time PCR and activity assays. LC3II was measured by Western blot analysis. We observed that CoCl2 induced apoptosis and death of H9c2 cells in a dose- and time-dependent manner. This was characterized by an increase in cell apoptosis, LDH activity, ROS content, Nox1 expression, and autophagy levels and a decrease in cell viability, catalase, and Mn-SOD activities. Ghrelin treatment significantly attenuated CoCl2-induced hypoxic injury by decreasing cell apoptosis, LDH activity, ROS content, and Nox1 expression and increasing cell viability, autophagy levels, catalase, and Mn-SOD mRNA levels and activities. Further experiments revealed that inhibiting autophagy using 3-MA or AMPK pathway with compound C almost abrogated the induction of ghrelin in autophagy. This was associated with a decrease in cell viability and an increase in LDH activity. Our results indicate that ghrelin protected cardiac myocytes against CoCl2-induced hypoxic injury by decreasing Nox1 expression, increasing the expression and activity of endogenous antioxidant enzymes, and inducing protective autophagy in an AMPK-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号