首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been demonstrated by our laboratory that the irreversibly sickled cell (ISC) spectrin-4.1-actin complex dissociates slowly as compared to ternary complexes formed out of control (AA) and reversibly sickle cell (RSCs) core skeletons. These studies indicated that the molecular basis for the inability of irreversibly sickled cells (ISCs) to change shape is a skeleton that disassembles, and therefore reassembles, very slowly. The present study is based on the following observations: a) alpha-spectrin repeats 20 and 21 contain ubiquitination sites, and b) The spectrin repeats beta-1 and beta-2 are in direct contact with spectrin repeats alpha-20 and alpha-21 during spectrin heterodimer formation, and contain the protein 4.1 binding domain. We demonstrate here that alpha-spectrin ubiquitination at repeats 20 and 21 increases the dissociation of the spectrin-protein-4.1-actin ternary complex thereby regulating protein 4.1's ability to stimulate the spectrin-actin interaction. Performing in vitro ternary complex dissociation assays with AA control and sickle cell SS spectrin (isolated from high-density sickle cells), we further demonstrate that reduced ubiquitination of alpha-spectrin is, in part, responsible for the locked membrane skeleton in sickle cell disease.  相似文献   

2.
Irreversibly sickled cells (ISCs) remain sickled even under conditions where they are well oxygenated and hemoglobin is depolymerized. In our studies we demonstrate that triton extracted ISC core skeletons containing only spectrin, protein 4.1, and actin also retain their sickled shape; while reversibly sickled cell (RSC) skeletons remodel to a round or biconcave shape. We also demonstrate that these triton extracted ISC core skeletons dissociate more slowly upon incubation at 37 degrees C than do RSC or control (AA) core skeletons. This observation may supply the basis for the inability of the ISC core skeleton to remodel its shape. Using an in vitro ternary complex dissociation assay, we demonstrate that a modification in beta-actin is the major determinant of the slow dissociation of the spectrin-protein 4.1-actin complex isolated from the ISC core skeleton. We demonstrate that the difference between ISC and control beta-actin is the inaccessibility of two cysteine residues in ISC beta-actin to labeling by thiol reactive reagents; due to the formation of a disulfide bridge between cysteine284 and cysteine373 in ISC beta-actin, or alternatively another modification of cysteine284 and cysteine373 which is reversible with DTT and adds less than 100 D to the molecular weight of beta-actin.  相似文献   

3.
We demonstrate that ubiquitinated red blood cell (RBC) spectrin dissociates more rapidly from the spectrin-adducin-actin ternary complex, than non-ubiquitinated spectrin. Homozygous (SS) sickle cell spectrin has substantially diminished ubiquitination of alpha-spectrin resulting in slower dissociation from the spectrin-adducin-actin ternary complex, than normal (AA) cell spectrin. These results supply a partial explanation of the slow dissociation of the irreversible sickle cell (ISC) membrane skeleton, which leads to the inability of the ISC to change shape.  相似文献   

4.
We have previously demonstrated that an oxidative change, the formation of a disulfide bridge between two cysteine residues, in the membrane protein beta-actin is primarily responsible for locking the irreversibly sickled red blood cells (ISCs) of sickle cell anemic patients into the sickle shape. To support studies on biological and chemical characterization of the oxidized beta-actin and pharmacological research toward the reversal of the oxidation, we attempted to prepare oxidized beta-actin from normal red blood cell (RBC) beta-actin by a chemical reaction, expecting a product equivalent to that found in ISCs. 5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB, or Ellman's reagent) was used for the oxidation. We proved the absence of accessible sulfhydryl groups in the oxidized product using liquid chromatography (LC) with both UV and fluorescence detection. Polymerization assays indicated that the chemically produced ISC actin demonstrated the same kinetics as ISC actin obtained from patients with sickle cell disease. The effect of the oxidation could be reversed by the use of the reducing agent tris(carboxyethyl)phosphine (TCEP).  相似文献   

5.
6.
Irreversibly sickled cells (ISCs) are sickle erythrocytes which retain bipolar enlongated shapes despite reoxygenation and owe their biophysical abnormalities to acquired membrane alterations. Freeze-etched membranes both of ISCs produced in vitro and ISCs isolated in vivo reveal microbodies fixed to the internal (PS) surface which obscure spectrin filaments. Intramembranous particles (IMPs) on the intramembrane (PF) surface aggregate over regions of subsurface microbodies. Electron microscopy of diaminobenzidine-treated ISC ghosts show the microbodies to contain hemoglobin and/or hemoglobin derivatives. Scanning electron microscopy and freeze-etching demonstrate that membrane–hemoglobin S interaction in ISCs enhances the membrane loss by microspherulation. Membrane-bound hemoglobin is five times greater in in vivo ISCs than non-ISCs, and increases during ISC production, paralleling depletion of adenosine triphosphate. Polyacrylamide gel electrophoresis of ISC membranes shows the presence of high-molecular-weight heteropolymers in the pre–band 1 region, a decrease in band 4.1 and an increase in bands 7, 8, and globin. The role of cross-linked membrane protein polymers in the generation of ISCs is discussed and is synthesized in terms of a unified concept for the determinants of the genesis of ISCs.  相似文献   

7.
《Fly》2013,7(6):310-312
Stem cells are typically supported by local tissue microenvironment named niche. Intestinal stem cells (ISCs) in the Drosophila midgut do not seem to be typical: they are scattered along the basement membrane composed of extracellular matrix, and are not associated with any obvious cellular niches. In addition, regulatory mechanisms controlling ISC self-renewal remain unknown. Recently, we have obtained evidence to show that Wingless signaling is critical for ISC self-renewal. Wingless is specifically produced from the underlying circular muscles and is able to transverse through the basement membrane and reach ISCs, where it activates a canonical Wnt signaling pathway to promote ISC self-renewal. Our study reveals a muscular niche for ISCs and Wnt signaling as a conserved mechanism regulating ISC self-renewal from Drosophila to mammals. Here we provide a brief overview of our findings, and discuss future perspectives on the regulatory mechanisms underlying ISC self-renewal and differentiation.  相似文献   

8.
Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thereby maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration after enteric infection by the bacterium Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis.  相似文献   

9.
This review covers the observations that erythrocyte spectrin has a E2 ubiquitin conjugating enzymatic activity that allows it to transfer ubiquitin to a target site in the alpha-spectrin repeats 20/21. The position of this ubiquitination site suggests that ubiquitination may regulate alpha beta spectrin heterodimer nucleation, spectrin-4.1-actin ternary complex formation, and adducin stimulated spectrin-actin attachment in the mature erythrocyte. In sickle cells, which contain altered redox status (high GSSG/GSH ratio), ubiquitin attachment to the E2 and target sites in alpha-spectrin is greatly diminished. We propose that this attenuated ubiquitination of spectrin may be due to glutathiolation of the E2 active site cysteine leading to diminished ubiquitin-spectrin adduct and conjugate formation. Furthermore we propose that lack of ubiquitin-spectrin complex formation leads to dysregulation of the membrane skeleton in mature SS erythrocytes and may diminish spectrin turnover in SS erythropoietic cells via the ubiquitin proteasome machinery. In hippocampal neurons, spectrin is the major ubiquitinated protein and a component of the cytoplasmic ubiquitinated inclusions observed in Alzheimer's and Parkinson's diseases. The two primary neuronal spectrin isoforms: alpha SpI Sigma*/beta SpI Sigma 2 and alpha SpII Sigma 1/beta SpII Sigma 1 are both ubiquitinated. Future work will resolve whether neuronal spectrins also contain E2-ubiquitin conjugating activity and the molecular basis for formation of ubiquitinated inclusions in neurological disorders.  相似文献   

10.
Erythroid spectrin is the main component of the red cell membrane skeleton, which is very important in determining the shape, resistance to mechanical stresses and deformability of red cells. Previously we demonstrated that human erythroid alpha-spectrin is ubiquitinated in vitro and in vivo, and using recombinant peptides we identified on repeat 17 the main ubiquitination site of alpha-spectrin. In order to identify the lysine(s) involved in the ubiquitination process, in the present study we mutated the lysines by site-directed mutagenesis. We found that ubiquitination was dramatically inhibited in peptides carrying the mutation of lysine 27 on repeat 17 (mutants K25,27R and K27R). We also demonstrated that the correct folding of this protein is fundamental for its recognition by the ubiquitin conjugating system. Furthermore, the region flanking lysine 27 showed a 75% similarity with the leucine zipper pattern present in many regulatory proteins. Thus, a new potential ubiquitin recognition motif was identified in alpha-spectrin and may be present in several other proteins.  相似文献   

11.
The major feature of sickle cell anemia is the tendency of erythrocytes to sickle when exposed to decreased oxygen tension and to unsickle when reoxygenated. Irreversible sickle cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation. ISCs are believed to owe their biophysical abnormalities to acquired membrane alterations which decrease membrane deformability. While increased membrane surface viscosity has been measured in ISCs, the lateral dynamics of membrane lipids in these cells have not heretofore been examined. We have measured the lateral diffusion of the lipid analog 3,3'-dioctadecylindocyanine iodide (DiI) in the plasma membrane of intact normal erythrocytes, reversible sickle cells (RSCs), and irreversible sickle cells by fluorescence photobleaching recovery (FPR). The diffusion coefficients +/- standard errors of the mean of DiI in intact normal red blood cells (RBCs), RSCs, and ISCs at 37 degrees C are (8.06 +/- 0.29) X 10(-9) cm2 X s-1, (7.74 +/- 0.22) X 10(-9) cm2 X s-1, and (7.29 +/- 0.24) X 10(-9) cm2 X s-1, respectively. A similar decrease in the diffusion coefficient of DiI in the plasma membranes of the three cell types was observed at 4, 10, 17, 23, and 30 degrees C. ANOVA analysis of the changes in DiI diffusion showed significant differences between the RBC and ISC membranes at all temperatures examined. The characteristic breaks in Arrhenius plots of the diffusion coefficients for the RBCs, RSCs, and ISCs occurred at 20, 19, and 18.6 degrees C, respectively. Photobleaching recovery data were used to estimate (Boullier, J.A., Melnykovich, G. and Barisas, B.G. (1982) Biochim. Biophys. Acta 692, 278-286) the microviscosities of the plasma membranes of the three cell types at 25 degrees C. We find significant differences between our microviscosity values and those obtained in previous fluorescence depolarization studies. However, both methods indicate qualitatively similar differences in membrane microviscosity among the various cell types.  相似文献   

12.
Intestinal stem cells (ISCs) in the adult Drosophila melanogaster midgut can respond to damage and support repair. We demonstrate in this paper that the tuberous sclerosis complex (TSC) plays a critical role in balancing ISC growth and division. Previous studies have shown that imaginal disc cells that are mutant for TSC have increased rates of growth and division. However, we report in this paper that loss of TSC in the adult Drosophila midgut results in the formation of much larger ISCs that have halted cell division. These mutant ISCs expressed proper stem cell markers, did not differentiate, and had defects in multiple steps of the cell cycle. Slowing the growth by feeding rapamycin or reducing Myc was sufficient to rescue the division defect. The TSC mutant guts had a thinner epithelial structure than wild-type tissues, and the mutant flies were more susceptible to tissue damage. Therefore, we have uncovered a context-dependent phenotype of TSC mutants in adult ISCs, such that the excessive growth leads to inhibition of division.  相似文献   

13.
The Toxoplasma inner membrane complex (IMC) is a specialized organelle underlying the parasite's plasma membrane that consists of flattened rectangular membrane sacs that are sutured together and positioned atop a supportive cytoskeleton. We have previously identified a novel class of proteins localizing to the transverse and longitudinal sutures of the IMC, which we named IMC sutures components (ISCs). Here, we have used proximity‐dependent biotin identification at the sutures to better define the composition of this IMC subcompartment. Using ISC4 as bait, we demonstrate biotin‐dependent labeling of the sutures and have uncovered two new ISCs. We also identified five new proteins that exclusively localize to the transverse sutures that we named transverse sutures components (TSCs), demonstrating that components of the IMC sutures consist of two groups: those that localize to the transverse and longitudinal sutures (ISCs) and those residing only in the transverse sutures (TSCs). In addition, we functionally analyze the ISC protein ISC3 and demonstrate that ISC3‐null parasites have morphological defects and reduced fitness in vitro. Most importantly, Δisc3 parasites exhibit a complete loss of virulence in vivo. These studies expand the known composition of the IMC sutures and highlight the contribution of ISCs to the ability of the parasite to proliferate and cause disease.  相似文献   

14.
Mammalian red blood cell alpha-spectrin is ubiquitinated in vitro and in vivo [Corsi, D., Galluzzi, L., Crinelli, R., Magnani, M. (1995) J. Biol. Chem. 270, 8928-8935]. This process shows a cell age-dependent decrease, with senescent red blood cells having approximately one third of the amount of ubiquitinated alpha-spectrin found in young cells. In-vitro ubiquitination of alpha-spectrin was dependent on the source of the red cell membranes (those from older cells are less susceptible to ubiquitination than those from younger cells), on the source of ubiquitin-conjugating enzymes (those from older cells catalyze the process at a reduced rate compared to those from younger cells) and on the ubiquitin isopeptidase activity (which decreases during red cell ageing). However, once alpha-spectrin has been extracted from the membranes of young or old red blood cells, it is susceptible to ubiquitination to a similar extent regardless of source. This suggests that it is the membrane architecture, and not spectrin itself, that is responsible for the age-dependent decline in ubiquitination. Furthermore, spectrin oligomers, tetramers and dimers are also equally susceptible to ubiquitination. As spectrin ubiquitination occurs on domains alphaIII and alphaV of alpha-spectrin, and domain alphaV contains the nucleation site for the association of the alpha- and beta-spectrin chains, alterations in ubiquitination during red cell ageing could affect the stability and deformability of the erythrocyte membrane.  相似文献   

15.
16.
17.
Xu N  Wang SQ  Tan D  Gao Y  Lin G  Xi R 《Developmental biology》2011,354(1):2780-43
Tissue-specific adult stem cells are commonly associated with local niche for their maintenance and function. In the adult Drosophila midgut, the surrounding visceral muscle maintains intestinal stem cells (ISCs) by stimulating Wingless (Wg) and JAK/STAT pathway activities, whereas cytokine production in mature enterocytes also induces ISC division and epithelial regeneration, especially in response to stress. Here we show that EGFR/Ras/ERK signaling is another important participant in promoting ISC maintenance and division in healthy intestine. The EGFR ligand Vein is specifically expressed in muscle cells and is important for ISC maintenance and proliferation. Two additional EGFR ligands, Spitz and Keren, function redundantly as possible autocrine signals to promote ISC maintenance and proliferation. Notably, over-activated EGFR signaling could partially replace Wg or JAK/STAT signaling for ISC maintenance and division, and vice versa. Moreover, although disrupting any single one of the three signaling pathways shows mild and progressive ISC loss over time, simultaneous disruption of them all leads to rapid and complete ISC elimination. Taken together, our data suggest that Drosophila midgut ISCs are maintained cooperatively by multiple signaling pathway activities and reinforce the notion that visceral muscle is a critical component of the ISC niche.  相似文献   

18.
19.
In Drosophila, intestinal stem cells (ISCs) respond to oxidative challenges and inflammation by increasing proliferation rates. This phenotype is part of a regenerative response, but can lead to hyperproliferation and epithelial degeneration in the aging animal. Here we show that Nrf2, a master regulator of the cellular redox state, specifically controls the proliferative activity of ISCs, promoting intestinal homeostasis. We find that Nrf2 is constitutively active in ISCs and that repression of Nrf2 by its negative regulator Keap1 is required for ISC proliferation. We further show that Nrf2 and Keap1 exert this function in ISCs by regulating the intracellular redox balance. Accordingly, loss of Nrf2 in ISCs causes accumulation of reactive oxygen species and accelerates age-related degeneration of the intestinal epithelium. Our findings establish Keap1 and Nrf2 as a critical redox management system that regulates stem cell function in high-turnover tissues.  相似文献   

20.
Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号