首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteinase inhibitors were tested for their ability to inhibit prolactin (PRL) and growth hormone (GH) release by cultured anterior pituitary cells of the rat. Inhibitors of microbial origin (chymostatin, elastatinal, leupeptin) had either no or a moderate effect on hormone release while some tripeptide aldehydes, especially those with lysine at their C terminus, inhibited markedly PRL and to a lesser extent GH release. Boc-DPhe-Phe-lysinal was the most effective on lactotrophs inhibiting PRL release more than 50% at 10(-4) M. The site(s) of action of tripeptide aldehydes remain to be elucidated.  相似文献   

2.
There are forms of growth hormone (GH) in theplasma and pituitary of the rat and in the plasma of humans that areundetected by presently available immunoassays (iGH) but can bemeasured by bioassay (bGH). Although the regulation of iGHrelease is well documented, the mechanism(s) of bGH release is unclear.On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. Toexamine whether bGH secretion can be modulated by afferent input fromskeletal muscle, the proximal or distal ends of severed hindlimb fastmuscle nerves were stimulated (~2 times threshold) in anesthetizedrats. Plasma bGH increased ~250%, and pituitary bGH decreased~60% after proximal nerve trunk stimulation. The bGH response wasindependent of muscle mass or whether the muscles were flexors orextensors. Distal nerve stimulation had little or no effect on plasmaor pituitary bGH. Plasma iGH concentrations were unchanged afterproximal nerve stimulation. Although there may be multiple regulatorymechanisms of bGH, the present results demonstrate that the activationof low-threshold afferents from fast skeletal muscles can play aregulatory role in the release of bGH, but not iGH, from the pituitaryin anesthetized rats.

  相似文献   

3.
Cultured cells from adult rat anterior pituitaries or intermediate lobes were treated with the proteinase inhibitor tripeptide aldehydes BOC-DPhe-Pro-Arg-H (Boc-fPRH) and DPhe-Pro-Arg-H (fPRH), ovine corticotropin-releasing factor (oCRF), and bromocriptine. One millimolar fPRH stimulated basal, and slightly enhanced oCRF-induced ACTH release by melanotrophs in short-term experiments. The basal release of alpha-MSH was also stimulated by the drug. In long-term experiments, fPRH elevated markedly both the release and the intracellular level of ACTH; BOC-fPRH caused an increased alpha-MSH release. Tritiated fPRH had no preference for POMC-producing cells and BOC-fPRH or fPRH were harmless to the cell morphology. In anterior pituitary cell cultures, fPRH diminished slightly basal and oCRF-induced ACTH release. Bromocriptine was ineffective on corticotrophs, however, in melanotrophs it inhibited ACTH release markedly with or without fPRH in the medium. The dissimilar responsiveness of the corticotrophs and melanotrophs to the peptide aldehydes may be interpreted in terms of their differing membrane receptors or intracellular mechanism of stimulus-secretion coupling.  相似文献   

4.
G Gaál  E Bácsy  G Rappay 《Histochemistry》1988,88(3-6):401-406
Cultured cells from the anterior pituitary glands of adult rats were treated with the tripeptide aldehyde proteinase inhibitor, BOC-DPhe-Phe-Lys-H. The addition of this tripeptide aldehyde decreased the in vitro release of prolactin to 25% of the control value, while the release of growth hormone in the same cultures decreased to 33% of the control value. Prolactin immunostaining was stronger in semithin sections of proteinase-inhibitor-treated cultures than in control sections. After 2 h treatment with the inhibitor, prolactin- and growth hormone-containing secretory granules were numerous, and the number of crinophagic vacuoles had increased. In the presence of the inhibitor, the overall cytoarchitecture of parenchymal cells was well preserved, and the pathway of the uptake of cationic ferritin appeared to be unaffected.  相似文献   

5.
Studies have been performed on the relationship between PRL and GH production and the 45Ca2+ influx in high magnesium content in vitro. The obtained data show that an elevated magnesium concentration in Krebs-Ringer solution is capable of inhibiting some hormonal function of the pituitary gland. It has been found, that PRL and GH released into the media in normal KRB solution revealed nearly two times higher concentration than in the presence of high Mg2+. Instead the cellular iPRL and iGH did not show any significant differences in control and in treated cultures. The incorporation of 4.5-3H-leucine into the prolactin and growth hormone demonstrate a significant decrease in the presence of high Mg2+ indicating that the ion is able to inhibit the secretion of newly synthesized PRL an GH. High concentration of Mg2+ abolished either the stimulation effect of releasing hormones on calcium uptake.  相似文献   

6.
Summary Cultured cells from adult rat anterior pituitaries or intermediate lobes were treated with the proteinase inhibitor tripeptide aldehydes BOC-DPhe-Pro-Arg-H (Boc-tPRH) and DPhe-Pro-Arg-H (fPRH), ovine corticotropin-releasing factor (oCRF), and bromocriptine. One millimolar fPRH stimulated basal, and slightly enhanced oCRF-induced ACTH release by melanotrophs in short-term experiments. The basal release of alpha-MSH was also stimulated by the drug. In long-term experiments, fPRH elevated markedly both the release and the intracellular level of ACTH; BOC-fPRH caused an increased alpha-MSH release. Tritiated fPRH had no preference for POMC-producing cells and BOC-fPRH or fPRH were harmless to the cell morphology. In anterior pituitary cell cultures, fPRH diminished slightly basal and oCRF-induced ACTH release. Bromocriptine was ineffective on corticotrophs, however, in melanotrophs it inhibited ACTH release markedly with or without fPRH in the medium. The dissimilar responsiveness of the corticotrophs and melanotrophs to the peptide aldehydes may be interpreted in terms of their differing membrane receptors or intracellular mechanism of stimulus-secretion coupling.In honour of Prof. P. van Duijn  相似文献   

7.
Summary Cultured cells from the anterior pituitary glands of adult rats were treated with the tripeptide aldehyde proteinase inhibitor, BOC-DPhe-Phe-Lys-H. The addition of this tripeptide aldehyde decreased the in vitro release of prolactin to 25% of the control value, while the release of growth hormone in the same cultures decreased to 33% of the control value. Prolactin immunostaining was stronger in semithin sections of proteinase-inhibitor-treated cultures than in control sections. After 2 h treatment with the inhibitor, prolactin- and growth hormone-containing secretory granules were numerous, and the number of crinophagic vacuoles had increased. In the presence of the inhibitor, the overall cytoarchitecture of parenchymal cells was well preserved, and the pathway of the uptake of cationic ferritin appeared to be unaffected.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

8.
G J Law  K P Ray  M Wallis 《FEBS letters》1985,179(1):12-16
Human pancreatic growth hormone-releasing factor (GRF-44-NH2) stimulated growth hormone (GH) secretion and intracellular cyclic AMP levels in cultured pituitary cells from both sheep and rat. Somatostatin (SRIF), over a wide range of doses and time, showed no significant effect on the elevated cyclic AMP levels in sheep cells, but did block the GH release in a dose-dependent manner. In rat cells, however, SRIF inhibited GRF-stimulated cyclic AMP levels by 75% maximum (still 8-fold greater than the basal levels) and GH release to almost half the basal value. We conclude that somatostatin inhibits GRF-elevated cyclic AMP levels in rat pituitary cells but not in sheep cells.  相似文献   

9.
Gonadotropin releasing hormone (GnRH) and its potent analog [D-Ser(tBu)6]des-Gly10-GnRH N-ethylamide elevate pituitary cyclic GMP levels while stimulating gonadotropin release in cultured pituitary cells. Addition of mycophenolic acid to pituitary cell cultures decreased basal and GnRH-induced cGMP production to undetectable levels, but did not reduce basal or GnRH-stimulated luteinizing hormone (LH) release. Elevation of endogenous cGMP levels by sodium nitroprusside, or addition of cGMP or its potent derivatives, was also without effect on basal or GnRH-stimulated LH release. These findings demonstrate that the elevation of intracellular cGMP during GnRH action does not mediate the release of LH by pituitary cells.  相似文献   

10.
Cultured cells from the anterior pituitary glands of adult rats were treated with the tripeptide aldehyde proteinase inhibitor, Boc-Gln-Leu-Lys-H. The oligopeptide had a profound releasing effect on growth hormone, whereas the prolactin release remained unchanged at 10(-3) mol/l drug concentration after an incubation for 2 h. In the presence of the oligopeptide a time- and dose-dependent calcium influx into cultured cells has been shown which was proved to be almost completely antagonized with magnesium ions but not with Nifedipine. In addition, radioactive calcium ions could be detected in a number of cells by light microscopic autoradiography when cultures were treated with Boc-Gln-Leu-Lys-H for short periods. The selective Gel action of the oligopeptide on growth hormone producing cells has been demonstrated also in fine structural investigations: multigranular and single exocytotic profiles have been observed. Accordingly, we have postulated that Boc-Gln-Leu-Lysinal mimics the effects of the known ionophores. Its mode of action needs, however, further studies especially on isolated somatotrophs.  相似文献   

11.
P H Li 《Life sciences》1987,41(22):2493-2501
The effect of cortisol or adrenocorticotropic hormone (ACTH) on basal and gonadotropin-releasing hormone (GnRH)-induced secretion of luteinizing hormone (LH) was studied in vitro using dispersed pig pituitary cells. Pig pituitary cells were dispersed with collagenase and DNAase and then grown in McCoy's 5a medium containing 10% dextran charcoal-pretreated horse serum and 2.5% fetal calf serum for 3 days. Cells were preincubated with cortisol or ACTH before GnRH was added. When pituitary cells were incubated with 400 micrograms cortisol/ml medium for 6 h or longer, increase basal secretion of LH was observed. However, GnRH-induced LH release was reduced by cortisol. The degree of this reduction was dependent on cortisol, and a concentration of cortisol higher than 100 micrograms/ml was needed. Cortisol also inhibited the 17 beta-estradiol-induced increase in GnRH response. ACTH-(1-24), ACTH-(1-39), or porcine ACTH had no influence on GnRH-induced LH secretion. Our results show that cortisol can act directly on pig pituitary to inhibit both normal and estradiol-sensitized LH responsiveness to GnRH.  相似文献   

12.
The role of osmotic pressure in the exocytosis of prolactin from rat pituitary tumor (GH) cells in culture was investigated. Reducing the osmotic strength of the medium from 300 mosm to 150 mosm by removal of NaCl did not alter basal secretion of prolactin but inhibited secretion stimulated by thyrotropin-releasing hormone (TRH) and forskolin. Both basal and stimulated secretion of prolactin were inhibited by increasing the osmotic strength of the medium with NaCl (IC50 at approximately 500 mosm). The stimulated release of hormone from GH-cells was independent of sodium and unaffected by replacement of sodium ion with tetramethylammonium or choline, or by addition of 500 nM tetrodotoxin. Secretagogue-stimulated release was, however, dependent upon chloride. Exchange of medium chloride with benzoate or isethionate significantly inhibited the stimulated release of prolactin (IC50 at approximately 60 mM exchange) regardless of the secretagogue utilized (phorbol ester, forskolin, depolarization plus BAY K8644, or TRH). Exchange of medium chloride with either isethionate or benzoate reduced cell volume by 10% compared to 60% for sucrose and mannitol, suggesting that inhibition of secretion by isethionate exchange was not a result of increased intracellular osmotic pressure. Complete exchange of medium chloride with isethionate did not alter equilibrium [3H]methyl-TRH binding, resting internal [Ca2+], or the [Ca2+]i response to depolarization and TRH as measured with intracellularly trapped Fura 2. Chloride removal did not change resting internal pH and recovery from an acid load as measured by the intracellular pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. The stimulated secretion of prolactin was also inhibited by exchange of chloride with isethionate in normal pituitary cells in primary culture and the ability of normal cells to respond to the dopamine agonist bromocryptine was not affected by the exchange. These results suggest that exocytosis of prolactin from GH-cells and normal pituitary cells in culture is an osmotically driven process that is chloride-dependent. Stimulated release is more chloride-dependent than constitutive release. The inhibitory effect of isethionate substitution occurs after signal transduction and is distinct from the site of dopamine inhibition of prolactin release.  相似文献   

13.
Pituitary adenylate cyclase activating polypeptide (PACAP) is produced by hypothalamic neurons which terminate within the median eminence suggesting that it may be a hypophysiotropic hormone. However, little endocrine activity has been ascribed to the peptide. Therefore we studied the effects of PACAP on prolactin (Prl) release from dispersed cultivated rat pituitary cells in vitro using conventional cultures as well as the reverse hemolytic plaque assay (RHPA). Furthermore the effects of the peptide on in vitro GH release were assessed. In addition, the activity of the peptide on in vivo release of Prl and GH was studied in hypothalamus-lesioned animals. PACAP dose dependently inhibited Prl release form dispersed pituitary cells in both, monolayer cell cultures and the RHPA, whereas GH secretion was not affected. In hypothalamus-lesioned rats which have high Prl levels due to the absence of hypothalamic dopamine, PACAP further stimulated Prl release. Serum GH increased more than 20 fold in response to the intravenous PACAP infusion. Thus in vitro (inhibition of Prl release, no effect on GH release) and in vivo (stimulation of both hormones) experiments yielded contradicting effects of PACAP on pituitary hormone release. We suggest that PACAP may stimulate the release of a paracrine, yet unknown factor which in the intact pituitary overrides the direct inhibitory action of PACAP on the lactotropes. The same or another paracrine factor may also enhance in vivo GH release. In cell culture the paracrine factor is diluted by the medium. Therefore the peptide never reaches effective concentrations which are present within the intact pituitary tissue.  相似文献   

14.
In an in vitro bioassay using rat pituitary cell cultures the effect of contraceptive progestins was tested on basal and gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion in vitro. Progestins diminished gonadotropin release in pituitary cells stimulated with GnRH, but did not alter basal values. This inhibitory effect was dose dependent in a range of 10(-10)-10(-5) M tested and the inhibitory action of most of the progestins examined was more potent than that of progesterone. The maximal reduction of LH and FSH values was by 60% of GnRH-induced control levels. Progestins also caused a shift in sensitivity of cells to GnRh (10(-12)-10(-6) M). When time dependence was investigated, some progestins potentiated GnRH effect on gonadotropins in pituitary cell cultures pre-incubated for a short time (4 h) with steroids. More prolonged pre-incubations from 23 to 71 h resulted in a progressive suppression of LH and FSH response to GnRH (10(-7) M). In order to examine intracellular effects, cells were pretreated with progestins and inositol phosphate metabolism was investigated. The data obtained in pituitary cells give evidence that polyphosphoinositide breakdown is potentially an early step in the action of GnRH on gonadotropin secretion by providing diacylglycerol and inositol phosphates. Addition of gonadotropin-releasing hormone to myo-2[3H]inositol-prelabeled rat pituitary cells in primary culture evoked a dose-dependent increase of the accumulation of [3H]inositol phosphates with a rise of inositol triphosphate, inositol diphosphate and inositol monophosphate within 1 min. Using one contraceptive progestin, gestoden, inositol phosphate production was inhibited by 80% compared to controls of GnRH-treated cells without the addition of steroids. The data obtained in this study suggest that this in vitro bioassay using rat pituitary cells is a useful tool in testing progestational compounds regarding their potency on gonadotropin release. In addition, these results show that one possible site of interference of progestins with GnRH-induced gonadotropin secretion may involve polyphosphoinositide breakdown.  相似文献   

15.
Summary Cultured cells from the anterior pituitary glands of adult rats were treated with the tripeptide aldehyde proteinase inhibitor, Boc-Gln-Leu-Lys-H. The oligopeptide had a profound relesing effect on growth hormone, whereas the prolactin release remained unchanged at 10–3 mol/l drug concentration after an incubation for 2 h. In the presence of the oligopeptide a time- and dose-dependent calcium influx into cultured cells has been shown which was proved to be almost completely antagonized with magnesium ions but not with Nifedipine. In addition, radioactive calcium ions could be detected in a number of cells by light microscopic autoradiography when cultures were treated with Boc-Gln-Leu-Lys-H for short periods. The selective Gel action of the oligopeptide on growth hormone producing cells has been demonstrated also in fine structural investigations: multigranular and single exocytotic profiles have been observed. Accordingly, we have postulated that Boc-Gln-Leu-Lysinal mimics the effects of the known ionophores. Its mode of action needs, however, further studies especially on isolated somatotrophs.  相似文献   

16.
Cyclo (His-Pro): a selective inhibitor of rat prolactin secretion in vitro   总被引:1,自引:0,他引:1  
Cyclo (His-Pro) (10 ng/ml), inhibits KCl (59 mM) or thyrotropin-releasing hormone (10 ng/ml) stimulated, but not basal, release of prolactin from rat hemipituitaries in vitro. However, cyclo (His-Pro) has no effect on the basal or stimulated release of thyrotropin and growth hormone. Cyclo (His-Pro) does not inhibit the binding of thyrotropin-releasing hormone to pituitary membrane suggesting that cyclo (His-Pro) inhibition of prolactin release is not mediated via the pituitary TRH-receptor.  相似文献   

17.
Morphine and the endogenous opioid peptides (EOP) exert similar effects on the neuroendocrine system. When adminstered acutely, they stimulate growth hormone (GH), prolactin (PRL), and adrenocorticotropin (ACTH) release, and inhibit release of luteinizing hormone (LH), follicle stimulating hormone (FSH),and thyrotropin (TSH). Recent studies indicate that the EOP probably have a physiological role in regulating pituitary hormone secretion. Thus injection of naloxone (opiate antagonist) alone in rats resulted in a rapid fall in serum concentrations of GH and PRL, and a rise in serum LH and FSH, suggesting that the EOP help maintain basal secretion of these hormones. Prior administration of naloxone or naltrexon inhibited stress-induced PRL release, and elevated serum LH in castrated male rats to greater than normal castrate levels. Studies on the mechanisms of action of the EOP and morphine on hormone secretion indicate that they have no direct effect on the pituitary, but act via the hypothalamus. There is no evidence that the EOP or morphine alter the action of the hypothalamic hypophysiotropic hormones on pituitary hormone secretion; they probably act via hypothalamic neurotransmitters to influence release of the hypothalamic hormones into the pituitary portal vessels. Preliminary observations indicate that they may increase serotonin and decrease dopamine metabolism in the hypothalamus, which could account for practically all of their effects on pituitary hormone secretion.  相似文献   

18.
The ability of prolactin to influence the responsiveness of the lactating rat pituitary to luteinising hormone releasing hormone has been examinedin vitro. The pituitary responsivenessin vivo to luteinising hormone releasing hormone decreased as a function of increase in the lactational stimulus. Prolactin inhibited the spontaneousin vitro release of luteinising hormone and follicle stimulating hormone to a small extent, from the pituitary of lactating rats with the suckling stimulus. However, it significantly inhibited the release of these two hormones from luteinising hormone releasing hormone-stimulated pituitaries. The responsiveness of pituitaries of rats deprived of their litter 24 h earlier, to luteinising hormone releasing hormone was also inhibited by prolactin, although minimal. It was concluded that prolactin could be influencing the functioning of the pituitary of the lactating rat by (a) partially suppressing the spontaneous release of gonadotropin and (b) inhibiting the responsiveness of the pituitary to luteinising hormone releasing hormone.  相似文献   

19.
GH(4)C(1) cells are a clonal strain of rat pituitary cells that synthesize and secrete prolactin and growth hormone. Chronic treatment (longer than 24 h) of GH(4)C(1) cells with epidermal growth factor (EGF) (10(-8) M) decreased by 30-40 percent both the rate of cell proliferation and the plateau density reached by cultures. Inhibition of cell proliferation was accompanied by a change in cellular morphology from a spherical appearance to an elongated flattened shape and by a 40-60 percent increase in cell volume. These actions of EGF were qualitatively similar to those of the hypothalamic tripeptide thyrotropin-releasing hormone (TRH) (10(-7) M) which decreased the rate of cell proliferation by 10-20 percent and caused a 15 percent increase in cell volume. The presence of supramaximal concentrations of both EGF (10(-8)M) and TRH (10(-7)M) resulted in greater effects on cell volume and cell multiplication than either peptide alone. EGF also altered hormone production by GH(4)C(1) cells in the same manner as TRH. Treatment of cultures with 10(-8) M EGF for 2-6 d increased prolactin synthesis five- to ninefold compared to a two- to threefold stimulation by 10(-7) M TRH. Growth hormone production by the same cultures was inhibited 40 percent by EGF and 15 percent by TRH. The half- maximal effect of EGF to increase prolactin synthesis, decrease growth hormone production, and inhibit cell proliferation occurred at a concentration of 5 x 10 (-11) M. Insulin and multiplication stimulating activity, two other growth factors tested, did not alter cell proliferation, cell morphology, or hormone production by GH(4)C(1) cells, indicating the specificity of the EGF effect. Fibroblast growth factor, however, had effects similar to those of EGF and TRH. Of five pituitary cell strains tested, all but one responded to chronic EGF treatment with specifically altered hormone production. Acute chronic EGF treatment with specifically altered hormone production. Acute treatment (30 min) of GH(4)C(1) cells with 10(-8) M EGF caused a 30 percent enhancement of prolactin release compared to a greater than twofold increase caused by 10(-7) M TRH. Therefore, although EGF and TRH have qualitatively similar effects on GH(4)C(1) cells, their powers to affect hormone release acutely or hormone synthesis and cell proliferation chronically are distinct.  相似文献   

20.
Incubations of rat anterior pituitary cells with transforming growth factor (TGF)-beta 1 for 48 hr suppressed the secretion of basal prolactin (PRL) in a dose-dependent manner (ED50, 100 pg/ml). Activin, a gonadal hormone processing cysteine distribution similar to TGF beta, also suppressed basal PRL secretion, but it was less effective (ED50, 4 mg/ml). Treatment with TGF beta 1 significantly suppressed basal PRL secretion from the pituitary after 24 hr and up to 72 hr of incubation. TGF beta 1 also inhibited thyrotropin-releasing hormone-mediated PRL secretion and activin inhibited thyrotropin-releasing hormone-mediated PRL secretion slightly, but significantly. In addition, we also measured the secretion of growth hormone by cultured pituitary cells treated with TGF beta 1 or activin for 24 to 72 hr. TGF beta 1 and activin showed an opposite effect on growth hormone secretion; TGF beta stimulated and activin inhibited basal secretion of growth hormone. These results suggest that TGF beta 1 is a potent inhibitor of basal secretion of PRL by the pituitary, and both TGF beta 1 and activin play a multifunctional role in basal secretion of pituitary hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号