首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study analyses the rhodolith-bearing deposits in the largest and most rhodolith-rich outcrop of the Polish Outer Carpathian flysch, located in the Silesian Nappe, at the village of Melsztyn. The rhodoliths and sparse associated biota occur as resedimented components in a deep-marine succession of siliciclastic conglomerates and coarse-grained sandstones, deposited by high-density turbidity currents and debris flows. The sediment was derived from a fan-delta system located at the southern margin of the Silesian flysch basin. Stratigraphic data indicate that the succession represents the Upper Istebna Sandstone deposited during the Late Paleocene. The rhodoliths are composed mostly of coralline red algae with seven genera and eight species representing the family Sporolithaceae and the subfamilies Mastophoroideae and Melobesioideae. Rhodoliths show sub-spheroidal and sub-ellipsoidal shapes with encrusting, warty and lumpy growth forms. Lumpy growth forms show massive inner arrangements, whereas the encrusting growth forms are usually made of thin thalli and show more loosely packed inner arrangements. The rhodoliths grew on a moderately mobile siliciclastic substrate in a shallow-marine environment with a low net sedimentation rate. It is inferred that the growth of rhodoliths was favored during a relative sea-level rise. During the subsequent sea-level fall, the rhodoliths and associated siliciclastic deposits were resedimented by gravity flows into the deep-sea setting. The analyzed deposits, like other Paleocene–Eocene deposits of the Polish Outer Carpathians, provide no evidence of coeval widespread shallow-marine carbonate sedimentation along the margins of the Outer Carpathian flysch basins.  相似文献   

2.
Werner Buggisch  Stefan Krumm 《Facies》2005,51(1-4):566-583
In this paper, we report the highest and lowest carbon isotope values known from Palaeozoic carbonate rocks. These unusual δ13C values (−50 to +23.5‰) are due to microbial methanogenesis and methanotrophy in Silurian to Carboniferous carbonates. Trace elements were used to decipher the primary mineralogy of the carbonate cements. Very high Sr values and low amounts of Mg, Fe and Mn point toward aragonite precursors, whereas high Fe and Mn values are indicative of primary calcites and allow reconstruction of the redox conditions. Four carbonate deposits are described from the Meseta and the Antiatlas of Morocco, the Pyrenees (France) and the Harz mountains (Germany). The highest δ13C values in concretion below the uppermost Silurian Spinatrypa Mound (Moroccan Meseta) give evidence, that CO2 was produced during methanogenesis. δ13C values between −10 and −32‰indicate that the formation of microbial carbonates and cements in the Middle Devonian Hollard Mound (Antiatlas) and in the Lower Carboniferous sediments of the Iberg (Harz) formed at thermogenetic methane or petroleum seeps. The Late Bashkirian carbonate mound of the High Pyrenees (Tantes Mound) is the first Palaeozoic carbonate with seepage fluids being dominated by biogenic methane. Matrix carbonates exhibit δ13C values as low as −34‰. In some parts, voids make up more than 50 vol% of the mound. They are filled with several generations of cement. The earliest void filling is isopachous fibrous cement, which represents former aragonite. Most negative δ13C values of −50‰were measured in these isopachous fibrous cements. The difference of 55‰in δ13C values between normal sediments and early aragonite cements can only be explained by the contribution of CO2 from anaerobic oxidation of biogenic methane in a cold seep setting.  相似文献   

3.
13C natural abundance variations were measured in peat soil and vegetation from two contrasting boreal forest wetlands: an upland watershed basin and a permanently saturated lowland mire. Evidence of methane oxidation was shown in the permanently saturated wetland with δ13C values as low as -97 ‰ in carbonate minerals found in floating peat mats. It is postulated that13C depleted CH4 is oxidized in the mat and reacts with calcium ions to form calcite (identified through x-ray diffraction). Methane flux measurements during the summer of 1992 showed much lower fluxes in areas with floating peat mats relative to open water. Secondary carbonates in the basin peat have isotope compositions close to the δ13C values of the peat organic carbon (-25 ‰), indicating their origin from fermentation and possibly from sulfate-reduction. In the upland basin peat deposits, the δ13CPDB values of organic C were constant with depth, while the permanently saturated mire had localities of13C enrichment in deeper layers of the peat. The13C enrichment may reflect areas of intense CH4 production in which13C enriched residual substrate is left behind during the production of highly13C depleted CH4.  相似文献   

4.
Kuechler, R.R., Birgel, D, Kiel, S, Freiwald, A, Goedert, J.L., Thiel, V & Peckmann, J. 2011: Miocene methane‐derived carbonates from southwestern Washington, USA and a model for silicification at seeps. Lethaia, Vol. 45, pp. 259–273. Exotic limestone masses with silicified fossils, enclosed within deep‐water marine siliciclastic sediments of the Early to Middle Miocene Astoria Formation, are exposed along the north shore of the Columbia River in southwestern Washington, USA. Samples from four localities were studied to clarify the origin and diagenesis of these limestone deposits. The bioturbated and reworked limestones contain a faunal assemblage resembling that of modern and Cenozoic deep‐water methane‐seeps. Five phases make up the paragenetic sequence: (1) micrite and microspar; (2) fibrous, banded and botryoidal aragonite cement, partially replaced by silica or recrystallized to calcite; (3) yellow calcite; (4) quartz replacing carbonate phases and quartz cement; and (5) equant calcite spar and pseudospar. Layers of pyrite frequently separate different carbonate phases and generations, indicating periods of corrosion. Negative δ13Ccarbonate values as low as ?37.6‰ V‐PDB reveal an uptake of methane‐derived carbon. In other cases, δ13Ccarbonate values as high as 7.1‰ point to a residual, 13C‐enriched carbon pool affected by methanogenesis. Lipid biomarkers include 13C‐depleted, archaeal 2,6,10,15,19‐pentamethylicosane (PMI; δ13C: ?128‰), crocetane and phytane, as well as various iso‐ and anteiso‐carbon chains, most likely derived from sulphate‐reducing bacteria. The biomarker inventory proves that the majority of the carbonates formed as a consequence of sulphate‐dependent anaerobic oxidation of methane. Silicification of fossils and early diagenetic carbonate cements as well as the precipitation of quartz cement – also observed in other methane‐seep limestones enclosed in sediments with abundant diatoms or radiolarians – is a consequence of a preceding increase of alkalinity due to anaerobic oxidation of methane, inducing the dissolution of silica skeletons. Once anaerobic oxidation of methane has ceased, the pH drops again and silica phases can precipitate. □Biomarkers, carbonates, isotopes, methane, Miocene, silicification, Washington.  相似文献   

5.
Summary Colonial serpulids (Sarcinella) are common within some limestones of the lower Chachao Formation (Valanginian) near Malargüe city at the northern border of the Neuquem basin, Argentina. The shallowing-upwards sequence is characterized by low-energetic micritic carbonates. The serpulid limestones mark the transition from a carbonate ramp stage to a platform stage.  相似文献   

6.
Bedded carbonate rocks from the 3.45 Ga Warrawoona Group, Pilbara Craton, contain structures that have been regarded either as the oldest known stromatolites or as abiotic hydrothermal deposits. We present new field and petrological observations and high‐precision REE + Y data from the carbonates in order to test the origin of the deposits. Trace element geochemistry from a number of laminated stromatolitic dolomite samples of the c. 3.40 Ga Strelley Pool Chert conclusively shows that they precipitated from anoxic seawater, probably in a very shallow environment consistent with previous sedimentological observations. Edge‐wise conglomerates in troughs between stromatolites and widespread cross‐stratification provide additional evidence of stromatolite construction, at least partly, from layers of particulate sediment, rather than solely from rigid crusts. Accumulation of particulate sediment on steep stromatolite sides in a high‐energy environment suggests organic binding of the surface. Relative and absolute REE + Y contents are exactly comparable with Late Archaean microbial carbonates of widely agreed biological origin. Ankerite from a unit of bedded ankerite–chert couplets from near the top of the stratigraphically older (3.49 Ga) Dresser Formation, which immediately underlies wrinkly stromatolites with small, broad, low‐amplitude domes, also precipitated from anoxic seawater. The REE + Y data of carbonates from the Strelley Pool Chert and Dresser Formation contrast strongly with those from siderite layers in a jasper–siderite–Fe‐chlorite banded iron‐formation from the base of the Panorama Formation (3.45 Ga), which is clearly hydrothermal in origin. The geochemical results, together with sedimentological data, strongly support: (1) deposition of Dresser Formation and Strelley Pool Chert carbonates from Archaean seawater, in part as particulate carbonate sediment; (2) biogenicity of the stromatolitic carbonates; (3) a reducing Archaean atmosphere; (4) ongoing extensive terrestrial erosion prior to ~3.45 Ga.  相似文献   

7.
The Late Eocene ‘Whiskey Creek’ deposit (Pysht Formation, Olympic Penisula, Washington State) formed at a methane-seep. Early diagenetic micrites and aragonite cement have δ13C values as low as −36‰ indicating that the seepage fluids contained methane. With respect to micrite samples, low δ13C values correlate with relatively high δ13O values andvice versa. Ongoing micrite formation after the cessation of the seepage during increased burial might have altered the isotopic composition of the microcrystalline carbonates toward lower δ13O values and higher δ13C values. Alternatively, the trend in isotope values may reflect a change in the composition of seepage fluids. The principal difference between these scenarios is the duration of seepage with respect to micrite formation. Two petrographically similar varieties of blocky calcite spar are related to different carbonate sources. The δ13C values range from −32 to −29‰ for one type of blocky spar and are either the result of methane oxidation or indicate thermal decarboxylation of organic matter. Low δ18O values are in favour of the latter. For the other type of spar, δ13C values as high as +6‰ indicate carbonate formation within the zone of methanogensis. The ‘Whiskey Creek’ limestone exhibits a chaotic fabric produced by a variety of processes, including bioturbation, concretionary carbonate formation, earlyin situ brecciation, carbonate corrosion, and late fracturing of the rock. Two varieties of micrite aggregates are responsible for the nodular fabric of the limestone. Smoothly-shaped pyritiferous micrite nodules are of diagenetic origin and formed in a manner similar to that which produces carbonate concretions. Apart from being induced by anaerobic oxidation of methane, their formation is proposed to be linked to iron reduction and sulphide formation. The second, dominant variety is represented by irregularly-shaped, nodular to angular micrite aggregates surrounded by massive rims of pyrite, resulting from carbonate corrosion. A pure, fluorescent seam-micrite, constructive in origin, lines cavities or surrounds micritic aggregates.  相似文献   

8.
The Lower Jurassic (upper Sinemurian) of the Hronicum domain (Tatra Mts., Western Carpathians, Poland) represents typical tropical shallow-water carbonates of the Bahamian-type. Eight microfacies recognized include oolitic-peloidal grainstone/packstone, peloidal-bioclastic grainstone, peloidal-lithoclastic-bioclastic-cortoidal grainstone/packstone, peloidal-bioclastic packstone/grainstone, peloidal-bioclastic wackestone, spiculitic wackestone, recrystallized peloidal-oolitic grainstone and subordinate dolosparites. The studied sediments were deposited on a shallow-water carbonate platform characterized by normal salinity, in high-energy oolite shoals, bars, back-margin, protected shallow lagoon and subordinately on restricted tidal flat. Some of them contain the microcoprolite Parafavreina, green alga Palaeodasycladus cf. mediterraneous (Pia) and Cayeuxia, typical of the Early Jurassic carbonate platforms of the Western Tethys. The spiculite wackestone from the upper part of the studied succession was deposited in a transitional to deeper-water setting. The studied upper Sinemurian carbonates of the Hronicum domain reveal microfacies similar to the other Bahamian-type platform carbonates of the Mediterranean region. Thereby, they record the northern range of the Lower Jurassic tropical shallow-water carbonates in the western part of the Tethys, albeit the thickness of the Bahamian-type carbonate successions generally decrease in a northerly direction. The sedimentation of the Bahamian-type deposits in the Hronicum domain, located during the Early Jurassic at about 28°N, besides other specific factors (i.e., light, salinity, and nutrients) was strongly controlled by the paleocirculation of warm ocean currents in the Western Tethys.  相似文献   

9.
Summary Following a phase of predominantly siliciclastic sedimentation in the Early and Middle Jurassic, a large-scale, low-latitude carbonate depositional system was established in the northern part of the Tabas Block, part of the central-east Iranian microplate, during the Callovian and persisted until the latest Oxfordian/Early Kimmeridgian. Running parallel to the present eastern block margin, a NNW/SSE-trending carbonate platform developed in an area characterized by reduced subsidence rates (Shotori Swell). The growth of this rimmed, flat-topped barrier platform strongly influenced the Upper Jurassic facies pattern and sedimentary history of the Tabas Block. The platform sediments, represented by the predominantly fine-grained carbonates of the Esfandiar Limestone Formation, pass eastward into slope to basin sediments of the Qal'eh Dokhtar Limestone Formation (platform-derived allochthonites, microbialites, and peri-platform muds). Towards the west, they interfinger with bedded limestones and marlstones (Kamar-e-Mehdi Formation), which were deposited in an extensive shelf lagoon. In a N−S direction, the Esfandiar Platform can be traced for about 170 km, in an E-W direction, the platform extended for at least 35–40 km. The width of the eastern slope of the platform is estimated at 10–15 km, the width of the western shelf lagoon varied considerably (>20–80 km). During the Late Callovian to Middle Oxfordian, the Esfandiar Platform flourished under arid climatic conditions and supplied the slope and basinal areas with large amounts of carbonates (suspended peri-platform muds and gravitational sediments). Export pulses of platform material, e.g. ooids and aggregate grains, into the slope and basinal system are interpreted as highstand shedding related to relative sealevel variations. The high-productivity phase was terminated in the Late Oxfordian when the eastern platform areas drowned and homogeneous deep water marls of the Upper Oxfordian to Kimmeridgian Korond Formation onlapped both the Qal'eh Dokhtar Limestone Formation and the drowned Esfandiar Limestone Formation. Tectonic instability, probably caused by faulting at the margins of the Tabas Block in connection with rotational movements of the east-central Iranian block assemblage, was responsible for the partial drowning of the eastern platform areas. In some areas, relicts of the platform persisted to produce shallow-water sediments into the Kimmeridgian.  相似文献   

10.
The Upper Ordovician (late Whiterockian to Mohawkian) Lourdes Formation represents a narrow (tens of kilometers), short-lived [∼5–7 million years (my)], open-ocean (high-energy) mixed siliciclastic-carbonate ramp that onlapped allochthonous strata along the orogen side of the local Taconic foreland basin. Platform development followed a 6–8 my hiatus during which weathering had concentrated chemically mature siliciclastics that were admixed with initial carbonate sediments. A cross-platform facies gradient contains paleokarst and peritidal carbonates and sandstones, shallow-ramp carbonate bioherms and skeletal shoals, and deeper ramp calcareous shales. Transgressive systems tracts are marked by ramp-wide sheets and shoals of skeletal grainstone and low accumulation rates, and highstand systems tracts are marked by significant admixture and interbedding of siliciclastics with cross-ramp carbonate facies. Platform demise coincides with increased siliciclastic input, which is likely tectonically influenced. The Lourdes platform is equivalent to epicontinental foreland ramps along eastern Laurentia, but its narrower width precluded formation of oceanographically restricted platform-interior facies.  相似文献   

11.
The Tale-Zang Formation in Zagros Mountains (south-west Iran) is a Lower to Middle Eocene carbonate sequence. Carbonate sequences of the Tale-Zang Formation consist mainly of large benthic foraminifera (e.g. Nummulites and Alveolina), along with other skeletal and non-skeletal components. Water depth during deposition of the formation was determined based on the variation and types of benthic foraminifera, and other components in different facies. Microfacies analysis led to the recognition of ten microfacies that are related to four facies belts such as tidal flat, lagoon, shoal and open marine. An absence of turbidite deposits, reefal facies, gradual facies changes and widespread tidal flat deposits indicate that the Tale-Zang Formation was deposited in a carbonate ramp environment. Due to the great diversity and abundance of larger benthic foraminifera, this carbonate ramp is referred to as a “foraminifera-dominated carbonate ramp system”. Based on the field observations, microfacies analysis and sequence stratigraphic studies, three third-order sequences in the Langar type section and one third-order sequence in the Kialo section were identified. These depositional sequences have been separated by both type-1 and type-2 sequence boundaries. The transgressive systems tracts of sequences show a gradual upward increase in perforate foraminifera, whereas the highstand systems tracts of sequences contain predominantly imperforate foraminifera.  相似文献   

12.
Successions of the Slovenian Basin structurally belong to the easternmost Southern Alps. During the Late Triassic, they were part of the Adriatic continental margin. Norian–Rhaetian successions of the Slovenian Basin are characterized mainly by dolomite of the Bača Dolomite Formation. However, in the northern part of the basin, Late Triassic limestone is preserved above Bača Dolomite Formation and is formalized as the Slatnik Formation. It is composed of hemipelagic limestone alternating with resedimented limestones. The succession documents an upward progradation of the slope environment composed of three high-frequency cycles. Most prominent progradation is referred to the second, i.e., Early Rhaetian cycle. The Slatnik Formation ends with thin-bedded hemipelagic limestone that records the end-Triassic productivity crisis, or rapid sea-level fall. The overlying resedimented limestones of the Early Jurassic Krikov Formation, document the recovery of production and shedding from the adjacent carbonate platform.  相似文献   

13.
We investigated methane production and oxidation and the depth distribution and phylogenetic affiliation of a functional gene for methanogenesis, methyl coenzyme M reductase subunit A (mcrA), at two sites of the Integrated Ocean Drilling Program Expedition 311. These sites, U1327 and U1329, are respectively inside and outside the area of gas hydrate distribution on the Cascadia Margin. Radiotracer experiments using 14C‐labelled substrates indicated high potential methane production rates in hydrate‐bearing sediments [128–223 m below seafloor (mbsf)] at U1327 and in sediments between 70 and 140 mbsf at U1329. Tracer‐free experiments indicated high cumulative methane production in sediments within and below the gas hydrate layer at U1327 and in sediments below 70 mbsf at U1329. Stable tracer experiments using 13C‐labelled methane showed high potential methane oxidation rates in near‐surface sediments and in sediments deeper than 100 mbsf at both sites. Results of polymerase chain reaction amplification of mcrA in DNA were mostly consistent with methane production: relatively strong mcrA amplification was detected in the gas hydrate‐bearing sediments at U1327, whereas at U1329, it was mainly detected in sediments from around the bottom‐simulating reflector (126 mbsf). Phylogenetic analysis of mcrA separated it into four phylotype clusters: two clusters of methanogens, Methanosarcinales and Methanobacteriales, and two clusters of anaerobic methanotrophic archaea, ANME‐I and ANME‐II groups, supporting the activity measurement results. These results reveal that in situ methanogenesis in deep sediments probably contributes to gas hydrate formation and are inconsistent with the geochemical model that microbial methane currently being generated in shallow sediments migrates downward and contributes to the hydrate formation. At Site U1327, gas hydrates occurred in turbidite sediments, which were absent at Site U1329, suggesting that a geological setting suitable for a gas hydrate reservoir is more important for the accumulation of gas hydrate than microbiological properties.  相似文献   

14.
Evidence supporting a key role for anaerobic methane oxidation in the global methane cycle is reviewed. Emphasis is on recent microbiological advances. The driving force for research on this process continues to be the fact that microbial communities intercept and consume methane from anoxic environments, methane that would otherwise enter the atmosphere. Anaerobic methane oxidation is biogeochemically important because methane is a potent greenhouse gas in the atmosphere and is abundant in anoxic environments. Geochemical evidence for this process has been observed in numerous marine sediments along the continental margins, in methane seeps and vents, around methane hydrate deposits, and in anoxic waters. The anaerobic oxidation of methane is performed by at least two phylogenetically distinct groups of archaea, the ANME-1 and ANME-2. These archaea are frequently observed as consortia with sulfate-reducing bacteria, and the metabolism of these consortia presumably involves a syntrophic association based on interspecies electron transfer. The archaeal member of a consortium apparently oxidizes methane and shuttles reduced compounds to the sulfate-reducing bacteria. Despite recent advances in understanding anaerobic methane oxidation, uncertainties still remain regarding the nature and necessity of the syntrophic association, the biochemical pathway of methane oxidation, and the interaction of the process with the local chemical and physical environment. This review will consider the microbial ecology and biogeochemistry of anaerobic methane oxidation with a special emphasis on the interactions between the responsible organisms and their environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The Triassic sediments of the External Zones of the Betic Cordillera were deposited on the Southern Iberian Continental Palaeomargin. Two coeval Ladinian formations, namely the Siles Formation and the Cehegín Formation, are described to illustrate the facies and lithostratigraphic variability in the Muschelkalk carbonates. There has been some dispute over the number of carbonate units present in the Siles Formation. Our studies assign a tectonic origin to these recurrent carbonate units. Both formations comprise only one carbonate unit, which is correlated to the Upper Muschelkalk of the Catalan and Germanic basins and some Iberian Range sections. To characterize the sedimentological features of these formations, 14 facies were defined. The most widespread sediment was originally lime mud, although bioclastic deposits are also common. In the facies succession, a main transgressive-regressive sequence could be identified. According to the facies model proposed here, a muddy coastal and shallow-water platform prograded over mid ramp deposits. There is no evidence for a seawards reefal or oolitic-bioclastic sandy barrier. The most significant feature of this sedimentary interpretation is that these carbonate facies show clear characteristics of an epicontinental platform.  相似文献   

16.
Statistical analysis of facies clustering in deep-water successions in combination with their facies characteristics has been applied to interpretation of the depositional sub-environment of two selected sedimentary sequences, which expose the Upper Eocene Kyčera Member of the Zlín Formation of the Rača Unit and the Middle Eocene–Lower Oligocene Racibor Formation of the Krynica (Oravská Magura) Unit of the Magura Zone of the Outer Western Carpathians. Clustering patterns of three bed-by-bed variables, namely coarse division thickness, coarse division thickness percentages, and basal grain size were analyzed. Apart from coarse division thickness percentages of the Kyčera Member section, all the datasets passed the Hurst K test and, according to their facies characteristics, revealed the lobe-interlobe motif. Although the employment of this technique confirmed the advantages of its practical utilization in interpretation of submarine fan environments, its widespread application is limited to good exposures where adequate quantity and quality of data is available.  相似文献   

17.
Summary Large limestone boulders are eroding from a landslide west of the mouth of Whiskey Creek, Clallam County, Washington State. These boulders are composed of micrite, carbonate cement, and densely-packed fossil bivalves. Siltstone in the landslide, and on the surfaces of the boulders, indicates that these limestones are derived from the lower part of the Pysht Formation. The molluscan taxa and their localised occurrence within limestone are typical features of ancient chemosymbiotic cold-seep communities. Formainiferans from both the siltstone and the limestone indicate that deposition occurred during Late Eocene time, at water depths of between 500 to 1,500 m. Lipid biomarkers, particularly isoprenoid hydrocarbons and fatty acids, with δ13C values as low as −101‰ PDB, reveal that the anaerobic oxidation of biogenic methane was an important component in the biogeochemical cycling of carbon in the ancient seep environment.  相似文献   

18.
《Palaeoworld》2016,25(4):496-507
The cause for the end Permian mass extinction, the greatest challenge life on Earth faced in its geologic history, is still hotly debated by scientists. The most significant marker of this event is the negative δ13C shift and rebound recorded in marine carbonates with a duration ranging from 2000 to 19 000 years depending on localities and sedimentation rates. Leading causes for the event are Siberian trap volcanism and the emission of greenhouse gases with consequent global warming. Measurements of gases vaulted in calcite of end Permian brachiopods and whole rock document significant differences in normal atmospheric equilibrium concentration in gases between modern and end Permian seawaters. The gas composition of the end Permian brachiopod-inclusions reflects dramatically higher seawater carbon dioxide and methane contents leading up to the biotic event. Initial global warming of 8–11 °C sourced by isotopically light carbon dioxide from volcanic emissions triggered the release of isotopically lighter methane from permafrost and shelf sediment methane hydrates. Consequently, the huge quantities of methane emitted into the atmosphere and the oceans accelerated global warming and marked the negative δ13C spike observed in marine carbonates, documenting the onset of the mass extinction period. The rapidity of the methane hydrate emission lasting from several years to thousands of years was tempered by the equally rapid oxidation of the atmospheric and oceanic methane that gradually reduced its warming potential but not before global warming had reached levels lethal to most life on land and in the oceans. Based on measurements of gases trapped in biogenic and abiogenic calcite, the release of methane (of ∼3–14% of total C stored) from permafrost and shelf sediment methane hydrate is deemed the ultimate source and cause for the dramatic life-changing global warming (GMAT > 34 °C) and oceanic negative-carbon isotope excursion observed at the end Permian. Global warming triggered by the massive release of carbon dioxide may be catastrophic, but the release of methane from hydrate may be apocalyptic. The end Permian holds an important lesson for humanity regarding the issue it faces today with greenhouse gas emissions, global warming, and climate change.  相似文献   

19.
Summary The Middle Devonian Hollard Mud Mound is situated in the eastern Hamar Laghdad, which is a small mountain range in the Tafilalt in SE Morocco. In contrast to the well known Lower Devonian Kess-Kess mounds, the Hollard Mound is of Middle Devonian age. The facies in the core of this mud mound differs from that of the other parts of the mound, and exhibits signatures of ancient hydrocarbon venting. The carbonate phases of the core facies are derived from the oxidation of vent fluids and consist of clotted micrite, a cryptocrystalline carbonate associated with spheres of uncertain origin, and a calcitic rim cement (rim cement B). These vent carbonates show δ13C values in the range of −11 to −20% PDB indicating that some of their carbon is derived from isotopically light hydrocarbons. Fossiliferous micrite has been affected by hydrocarbon venting in the proximity of the vent site, which is indicated by intermediate δ13C values between vent carbonates and not affected sediments. Bivalves occur in dense populations within the core facies. They form autochthonous shell accumulations and are almost exclusively articulated. it is likely that these bivalves were dependent on chemosynthesis similar to their counterparts at modern vents. The vent deposits also exhibit an unusual prasinophyte assemblage, which might have been linked to the specific nutrient availability at the vent site. The ancient vent site is characterized by an enhanced carbonate precipitation and rapid lithification. The latter is corroborated by the three-dimensional preservation of phytoplankton (prasinophytes and acritarchs) and the occurrence of stromatactoid pores. An early phase of carbonate corrosion predating the formation of vent carbonates affected the fossiliferous micrite of the core facies and is thought to be related to a phase of H2S-rich venting.  相似文献   

20.
The Lower Cretaceous Fahliyan Formation, part of the Khami Group, unconformably overlies the Hith Formation and is conformably overlain by the Gadvan Formation in the study area in southern Iran. The Fahliyan Formation is a reservoir rock in Zagros Basin. This formation was investigated by a detailed petrographic analysis in order to clarify the depositional facies and sedimentary environment in the Kuh-e Siah Anticline in Boushehr Province. Petrographic studies led to the recognition of 25 microfacies that were deposited in four facies belts: tidal flat, lagoon, and shoal in inner ramp and shallow open-marine in mid-ramp environment. An absence of turbidite deposits, reefal facies, and gradual facies changes indicate that the Fahliyan Formation was deposited on a carbonate ramp. Calcareous algae and benthic foraminifera are abundant in the shallow marine carbonates of the Fahliyan Formation. These skeletal grains have been studied in order to increase the understanding of their distributions in time and space. A total of ten genera belonging to different groups of calcareous algae and 16 genera of benthic foraminifera are recognized from the Fahliyan Formation at Kuh-e Siah section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号