首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The events at the beginning of adipocyte differentiation are not well known. We previously cloned the genes expressed early in the differentiation of mouse 3T3-L1 preadipocyte cells. One of them, similar in sequence to human TC10, was identified as TC10-like/TC10betaLong (TCL/TC10betaL), a new Rho GTPase by the cloning of full-length cDNA. The expression of TCL/TC10betaL increased rapidly right after the addition of inducers for differentiation, whereas the levels of other Rho family genes were unchanged at this stage. The antisense TCL/TC10betaL-expressing experiment revealed that the differentiation of 3T3-L1 cells into adipocytes was inhibited. Moreover, the sense TCL/TC10betaL-expressing experiment using NIH-3T3 cells, which do not usually differentiate into adipocytes, clearly showed the accumulation of oil droplets as well as the elevated expression of various adipogenic marker genes in the presence of the ligand for peroxisome proliferator-activated receptor gamma (PPARgamma). These results strongly indicated that TCL/TC10betaL has a crucial role in the early stage of adipocyte differentiation, probably linked to the PPARgamma pathway. Using a subtraction protocol, the genes specifically regulated by TCL/TC10betaL were also isolated. The expression pattern of some of them was similar to TCL/TC10betaL expression in adipogenesis, suggesting that the expression of these genes would be regulated by TCL/TC10betaL.  相似文献   

2.
3.
TC10, a Rho family GTPase, has been shown to play an important role in the exocytosis of GLUT4 and other proteins, primarily by tethering the vesicles at the plasma membrane. Using a newly developed probe based on fluorescence resonance energy transfer, we found that TC10 activity at tethered vesicles dropped immediately before vesicle fusion in HeLa cells stimulated with epidermal growth factor (EGF), suggesting that GTP hydrolysis by TC10 is a critical step in vesicle fusion. In support of this model, a GTPase-deficient TC10 mutant potently inhibited EGF-induced vesicular fusion in HeLa cells and depolarization-induced neuronal secretion. Furthermore, we found that GTP hydrolysis by TC10 in the vicinity of the plasma membrane was dependent on Rac and the redox-regulated Rho GAP, p190RhoGAP-A. We propose that an EGF-stimulated GAP accelerates GTP hydrolysis of TC10, thereby promoting vesicle fusion.  相似文献   

4.
5.
Wu G  Li H  Yang Z 《Plant physiology》2000,124(4):1625-1636
The plant-specific Rop subfamily of Rho GTPases, most closely related to the mammalian Cdc42 and Rac GTPases, plays an important role in the regulation of calcium-dependent pollen tube growth, H(2)O(2)-mediated cell death, and many other processes in plants. In a search for Rop interactors using the two-hybrid method, we identified a family of Rho GTPase-activating proteins (GAP) from Arabidopsis, termed RopGAPs. In addition to a GAP catalytic domain, RopGAPs contain a Cdc42/Rac-interactive binding (CRIB) motif known to allow Cdc42/Rac effector proteins to bind activated Cdc42/Rac. This novel combination of a GAP domain with a CRIB motif is widespread in higher plants and is unique to the regulation of the Rop GTPase. A critical role for CRIB in the regulation of in vitro RopGAP activity was demonstrated using point and deletion mutations. Both types of mutants have drastically reduced capacities to stimulate the intrinsic Rop GTPase activity and to bind Rop. Furthermore, RopGAPs preferentially stimulate the GTPase activity of Rop, but not Cdc42 in a CRIB-dependent manner. In vitro binding assays show that the RopGAP CRIB domain interacts with GTP- and GDP-bound forms of Rop, as well as the transitional state of Rop mimicked by aluminum fluoride. The CRIB domain also promotes the association of the GAP domain with the GDP-bound Rop, as does aluminum fluoride. These results reveal a novel CRIB-dependent mechanism for the regulation of the plant-specific family of Rho GAPs. We propose that the CRIB domain facilitates the formation of or enhanced GAP-mediated stabilization of the transitional state of the Rop GTPase.  相似文献   

6.
Rho GTPases are key regulators of actin dynamics. We report that the Rho GTPase TCL, which is closely related to Cdc42 and TC10, localizes to the plasma membrane and the early/sorting endosomes in HeLa cells, suggesting a role in the early endocytic pathway. Receptor-dependent internalization of transferrin (Tf) is unaffected by suppression of endogenous TCL by small interfering RNA treatment. However, Tf accumulates in Rab5-positive uncoated endocytic vesicles and fails to reach the early endosome antigen-1-positive early endosomal compartments and the pericentriolar recycling endosomes. Moreover, Tf release upon TCL knockdown is significantly slower. Conversely, in the presence of dominant active TCL, internalized Tf accumulates in early endosome antigen-1-positive early/sorting endosomes and not in perinuclear recycling endosomes. Tf recycles directly from the early/sorting endosomes and it is normally released by the cells. The same phenotype is generated by replacing the C terminus of dominant active Cdc42 and TC10 with that of TCL, indicating that all three proteins share downstream effector proteins. Thus, TCL is essential for clathrin-dependent endocytosed receptors to enter the early/sorting endosomes. Furthermore, the active GTPase favors direct recycling from early/sorting endosomes without accumulating in the perinuclear recycling endosomes.  相似文献   

7.
Rho family GTPases have been shown to be involved in the regulation of neuronal cell morphology, including neurite extension and retraction. Rho activation leads to neurite retraction and cell rounding, whereas Rac and Cdc42 are implicated in the promotion of filopodia and lamellipodia formation in growth cones and, therefore, in neurite extension. In this study, we examined the morphological role of Rnd1, a new member of Rho family GTPases, in PC12 cells, and found that expression of Rnd1 by itself caused the formation of many neuritic processes from the cell body with disruption of the cortical actin filaments, the processes having microtubules but few filamentous actin and neurofilaments. Treatment with cytochalasin D, an inhibitor of actin polymerization, could mimic the effects of expression of Rnd1, in that this inhibitor disrupted the cortical actin filaments and induced the formation of many thin processes containing microtubules. The process formation induced by Rnd1 was inhibited by dominant negative Rac1. These results suggest that Rnd1 induces the Rac-dependent neuritic process formation in part by disruption of the cortical actin filaments.  相似文献   

8.
The cystic fibrosis transmembrane conductance regulator (CFTR)-interacting protein, CFTR-associated ligand (CAL) down-regulates total and cell surface CFTR by targeting CFTR for degradation in the lysosome. Here, we report that a Rho family small GTPase TC10 interacts with CAL. This interaction specifically up-regulates CFTR protein expression. Co-expression of the constitutively active form, TC10Q75L, increases total and cell surface CFTR in a dose-dependent fashion. Moreover, co-expression of the dominant-negative mutant TC10T31N causes a dose-dependent reduction in mature CFTR. The effect of TC10 is independent of the level of CFTR expression, because a similar effect was observed in a stable cell line that expresses one-tenth of CFTR. Co-expression of TC10Q75L did not have a similar effect on the expression of plasma membrane proteins such as Frizzled-3 and Pr-cadherin or cytosolic proteins such as tubulin and green fluorescent protein. TC10Q75L also did not have a similar effect on the vesicular stomatitis virus glycoprotein. Co-expression of constitutively active and dominant-negative forms of Cdc42 or RhoA did not affect CFTR expression in a manner similar to TC10, indicating that the effect of TC10 is unique within the Rho family. Metabolic pulse-chase experiments show that TC10 did not affect CFTR maturation, suggesting that it exerts its effects on the mature CFTR. Importantly, TC10Q75L reverses CAL-mediated CFTR degradation, suggesting that TC10Q75L inhibits CAL-mediated degradation of CFTR. TC10Q75L does not operate by reducing CAL protein expression or its ability to form dimers or interact with CFTR. Interestingly, the expression of TC10Q75L causes a dramatic redistribution of CAL from the juxtanuclear region to the plasma membrane where the two molecules overlap. These data suggest that TC10 regulates both total and plasma membrane CFTR expression by interacting with CAL. The GTP-bound form of TC10 directs the trafficking of CFTR from the juxtanuclear region to the secretory pathway toward the plasma membrane, away from CAL-mediated degradation of CFTR in the lysosome.  相似文献   

9.
Nadrin is a GTPase-activating protein (GAP) for the rho family of GTPases that controls Ca2+-dependent exocytosis in nerve endings. In this study, three novel splice variants of nadrin were identified and the variants were designated as nadrin-102, -104, -116 and -126 according to their relative molecular masses. All nadrin variants share the GAP domain, coiled-coil domain, serine/threonine/proline-rich domain, SH3-binding motif, and a successive repeat of 29 glutamines. Tissue distribution analyses using polyclonal antibodies that can discriminate each variant showed that the expression of nadrin-102, -104 and -116 was dominant in neuronal tissues and correlates well with the differentiation of neurons while nadrin-126 was strongly expressed in embryonic brain. Expression of nadrin-116 in PC12 cells strongly inhibited NGF-dependent neurite outgrowth and this effect was dependent on its GAP activity. In contrast, no significant effect on either cell morphology or neurite outgrowth was observed with other variants. All variants showed punctate appearance throughout the cytoplasm, while the 66-kDa carboxyl-terminal fragment of nadrin-102 and/or nadrin-116 was localized to the nucleus and its nuclear translocation was accelerated by NGF-induced differentiation of the cells. These results suggested that nadrin variants are different in their ability to regulate rho-mediated signaling and that, in addition to being a GTPase-activating protein, nadrin-102 and -116 have other distinct functions in the nucleus of the cell, implying a possible role in the cross-talk between the cytoskeleton and the nucleus.  相似文献   

10.
The rho family of GTPases has been implicated in regulating changes in cell morphology in response to extracellular signals. We have cloned three widely expressed members of this family from Drosophila melanogaster; a rho homologue (Rho1) and two rac homologues (Rac1 and Rac2). Flies harbouring a Rho1 transgene that is specifically expressed in the eye exhibit a dramatic dose dependent disruption of normal eye development. Flies bearing at least two copies of the transgene display a severe rough eye phenotype characterized by missing secondary and tertiary pigment cells, a substantial reduction in the number of photoreceptor cells and a grossly abnormal morphology of the rhabdomeres. Cell fate determination in the imaginal disc occurs normally and abnormalities become manifest late in pupariation, coincident with the phase when the cells undergo major morphological changes. This phenotype is modified by mutations at several other loci that have been implicated in signal transduction, but not by mutations in ras pathway components.  相似文献   

11.
Insulin stimulation results in the activation of cyclin-dependent kinase-5 (CDK5) in lipid raft domains via a Fyn-dependent phosphorylation on tyrosine residue 15. In turn, activated CDK5 phosphorylates the Rho family GTP-binding protein TC10alpha on threonine 197 that is sensitive to the CDK5 inhibitor olomoucine and blocked by small interfering RNA-mediated knockdown of CDK5. The phosphorylation deficient mutant T197A-TC10alpha was not phosphorylated and excluded from the lipid raft domain, whereas the phosphorylation mimetic mutant (T197D-TC10alpha) was lipid raft localized. Insulin resulted in the GTP loading of T197D-TC10alpha but not T197A-TC10alpha and in parallel, T197D-TC10alpha but not T197A-TC10alpha depolymerized cortical actin and inhibited insulin-stimulated GLUT4 translocation. These data demonstrate that CDK5-dependent phosphorylation maintains TC10alpha in lipid raft compartments thereby disrupting cortical actin, whereas subsequent dephosphorylation of TC10alpha through inactivation of CDK5 allows for the re-assembly of F-actin. Because cortical actin reorganization is required for insulin-stimulated GLUT4 translocation, these data are consistent with a CDK5-dependent TC10alpha cycling between lipid raft and non-lipid raft compartments.  相似文献   

12.
The Rho family of GTPases plays key roles in the regulation of cell motility and morphogenesis. They also regulate protein kinase cascades, gene expression, and cell cycle progression. This multiplicity of roles requires that the Rho GTPases interact with a wide variety of downstream effector proteins. An understanding of their functions at a molecular level therefore requires the identification of the entire set of such effectors. Towards this end, we performed a two-hybrid screen using the TC10 GTPase as bait and identified a family of putative effector proteins related to MSE55, a murine stromal and epithelial cell protein of 55 kDa. We have named this family the Borg (binder of Rho GTPases) proteins. Complete open reading frames have been obtained for Borg1 through Borg3. We renamed MSE55 as Borg5. Borg1, Borg2, Borg4, and Borg5 bind both TC10 and Cdc42 in a GTP-dependent manner. Surprisingly, Borg3 bound only to Cdc42. An intact CRIB (Cdc42, Rac interactive binding) domain was required for binding. No interaction of the Borgs with Rac1 or RhoA was detectable. Three-hemagglutinin epitope (HA(3))-tagged Borg3 protein was mostly cytosolic when expressed ectopically in NIH 3T3 cells, with some accumulation in membrane ruffles. The phenotype induced by Borg3 was reminiscent of that caused by an inhibition of Rho function and was reversed by overexpression of Rho. Surprisingly, it was independent of the ability to bind Cdc42. Borg3 also inhibited Jun kinase activity by a mechanism that was independent of Cdc42 binding. HA(3)-Borg3 expression caused substantial delays in the spreading of cells on fibronectin surfaces after replating, and the spread cells lacked stress fibers. We propose that the Borg proteins function as negative regulators of Rho GTPase signaling.  相似文献   

13.
The human XAB1/MBDin GTPase and its close homologues form one of the ten phylogenetically distinct families of the SIMIBI (after signal recognition particle, MinD and BioD) class of phosphate-binding loop NTPases. The genomic context and the partners identified for the archaeal and eukaryotic homologues indicate that they are involved in genome maintenance--DNA repair or replication. The crystal structure of PAB0955 from Pyrococcus abyssi shows that, unlike other SIMIBI class G proteins, these highly conserved GTPases are homodimeric, regardless of the presence of nucleotides. The nucleotide-binding site of PAB0955 is rather rigid and its conformation is closest to that of the activated SRP G domain. One insertion to the G domain bears a strictly conserved GPN motif, which is part of the catalytic site of the other monomer and stabilizes the phosphate ion formed. Owing to this unique functional feature, we propose to call this family as GPN-loop GTPase.  相似文献   

14.
15.
16.
A 1.6-kilobase cDNA (A-raf) has been isolated from a murine spleen cDNA library which encodes part of a protein related to the raf oncogene. Its amino acid sequence has 85% homology to raf in a central portion of 100 amino acids. In contrast to raf, A-raf shows a highly restricted tissue distribution of expression, with highest levels observed in epididymis, followed by intestine. When incorporated into a retrovirus, the resulting gag-A-raf fusion gene causes transformation in vitro and induces tumors in newborn mice. Thus, A-raf represents a new proto-oncogene. Transformation by A-raf is independent of ras gene function, as is the case for raf and mos but not other oncogenes.  相似文献   

17.
18.
Wrch-1 is a Rho family GTPase that shares strong sequence and functional similarity with Cdc42. Like Cdc42, Wrch-1 can promote anchorage-independent growth transformation. We determined that activated Wrch-1 also promoted anchorage-dependent growth transformation of NIH 3T3 fibroblasts. Wrch-1 contains a distinct carboxyl-terminal extension not found in Cdc42, suggesting potential differences in subcellular location and function. Consistent with this, we found that Wrch-1 associated extensively with plasma membrane and endosomes, rather than with cytosol and perinuclear membranes like Cdc42. Like Cdc42, Wrch-1 terminates in a CAAX tetrapeptide (where C is cysteine, A is aliphatic amino acid, and X is any amino acid) motif (CCFV), suggesting that Wrch-1 may be prenylated similarly to Cdc42. Most surprisingly, unlike Cdc42, Wrch-1 did not incorporate isoprenoid moieties, and Wrch-1 membrane localization was not altered by inhibitors of protein prenylation. Instead, we showed that Wrch-1 is modified by the fatty acid palmitate, and pharmacologic inhibition of protein palmitoylation caused mislocalization of Wrch-1. Most interestingly, mutation of the second cysteine of the CCFV motif (CCFV > CSFV), but not the first, abrogated both Wrch-1 membrane localization and transformation. These results suggest that Wrch-1 membrane association, subcellular localization, and biological activity are mediated by a novel membrane-targeting mechanism distinct from that of Cdc42 and other isoprenylated Rho family GTPases.  相似文献   

19.
The structure and distribution of a Mycobacterium bovis BCG insertion element of the IS21 family were investigated. Several IS21-like elements found in mycobacterial genomes were separated in four types, following their nucleic acid similarities. The M. bovis BCG IS21 element is highly similar to IS1533 (class I), 70% similar to IS1534 (class II), 52% similar to IS1532 (class III) of Mycobacterium tuberculosis, and 54% similar to both an Mycobacterium avium serovar 2 and an M. avium silvaticum IS (class IV). The M. bovis BCG IS21 element of the class I appears to be present in a single copy in the genome of M. bovis BCG, M. bovis, M. tuberculosis and Mycobacterium africanum and to be absent from all other tested species of the Corynebacteria-Mycobacteria-Nocardia group.  相似文献   

20.
A gene encoding a putative GTP-binding protein, a TrmE homologue that is highly conserved in both prokaryotes and eukaryotes, was cloned from Thermotoga maritima, a hyperthermophilic bacterium. T. maritima TrmE was overexpressed in Escherichia coli and purified. TrmE has a GTPase activity but no ATPase activity. The GTPase activity can be competed with GTP, GDP, and dGTP but not with GMP, ATP, CTP, or UTP. K(m) and k(cat) at 70 degrees C were 833 microM and 9.3 min(-1), respectively. Our results indicate that TrmE is a GTP-binding protein with a very high intrinsic GTP hydrolysis rate. We also propose that TrmE homologues constitute a novel subfamily of the GTPase superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号