首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normotensive adults homozygous for glycine (Gly) of the Arg16/Gly beta2-adrenergic-receptor polymorphism have 1) greater forearm beta2-receptor mediated vasodilation and 2) a higher heart rate (HR) response to isometric handgrip than arginine (Arg) homozygotes. To test the hypothesis that the higher HR response in Gly16 subjects serves to maintain the pressor response [increased cardiac output (CO)] in the setting of augmented peripheral vasodilation to endogenous catecholamines, we measured continuous HR (ECG), arterial pressure (Finapres), and CO (transthoracic echocardiography) during isometric, 40% submaximal handgrip to fatigue in healthy subjects homozygous for Gly (n = 30; mean age +/- SE: 30 +/- 1.2, 13 women) and Arg (n = 17, age 30 +/- 1.6, 11 women). Resting data were similar between groups. Handgrip produced similar increases in arterial pressure and venous norepinephrine and epinephrine concentrations; however, HR increased more in the Gly group (60.1 +/- 4.3% increase from baseline vs. 45.5 +/- 3.9%, P = 0.03), and this caused CO to be higher (Gly: 7.6 +/- 0.3 l/m vs. Arg: 6.5 +/- 0.3 l/m, P = 0.03), whereas the decrease in systemic vascular resistance in the Gly group did not reach significance (P = 0.09). We conclude that Gly16 homozygotes generate a higher CO to maintain the pressor response to handgrip. The influence of polymorphic variants in the beta2-adrenergic receptor gene on the cardiovascular response to sympathoexcitation may have important implications in the development of hypertension and heart failure.  相似文献   

2.
An essential epsilon-subunit of oligosaccharyltransferase Ost2 is a yeast homolog of mammalian highly conserved DAD1 (defender against apoptotic death). In hamster cells, the Gly38Arg mutation in DAD1 causes apoptosis at restrictive temperatures due to a defect in N-linked glycosylation. To analyze the function of Ost2 in yeast cell death, we constructed Saccharomyces cerevisiae strains expressing Gly58Arg (corresponding to the Gly38Arg mutation in hamster DAD1), Gly86Arg, and Glu113Val mutant Ost2. At elevated temperatures, ost2 mutants arrested growth by decreasing cell viability. Phosphatidylserine exposure, a phenotypic marker of apoptosis in mammalian cells, was found in ost2 mutant cells at 37 degrees C, although DNA fragmentation was not clearly detected. A high concentration of sorbitol compensates for the temperature sensitivity of the ost2 mutant. These results suggest that apoptosis-like cell death in ost2 mutants is caused by the secondary effect of overall reduced protein N-linked glycosylation.  相似文献   

3.
4.
The beta2-adrenergic receptors (beta2AR) play an important role in lung fluid regulation. Previous research has suggested that subjects homozygous for arginine at amino acid 16 of the beta2AR (Arg16) may have attenuated receptor function relative to subjects homozygous for glycine at the same amino acid (Gly16). We sought to determine if the Arg16Gly polymorphism of the beta2AR influenced lung fluid balance in response to rapid saline infusion. We hypothesized that subjects homozygous for Arg at amino acid 16 (n=14) would have greater lung fluid accumulation compared with those homozygous for Gly (n=15) following a rapid intravenous infusion of isotonic saline (30 ml/kg over 17 min). Changes in lung fluid were determined using measures of lung density and tissue volume (computerized tomography imaging) and measures of pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (DM, determined from the simultaneous assessment of the diffusing capacities of the lungs for carbon monoxide and nitric oxide). The saline infusion resulted in elevated catecholamines in both genotype groups (Arg16 283+/-117% vs. Gly16 252+/-118%, P>0.05). The Arg16 group had a larger decrease in DM and increase in lung tissue volume and lung water after saline infusion relative to the Gly16 group (DM -13+/-14 vs. 0+/-26%, P<0.05; lung tissue volume 13+/-11 vs. 3+/-11% and lung water +90+/-66 vs. +48+/-144 ml, P=0.10, P<0.05, for Arg vs. Gly16, respectively, means+/-SD). These data suggest that subjects homozygous for Arg at amino acid 16 of the beta2AR have a greater susceptibility for lung fluid accumulation relative to subjects homozygous for Gly at this position.  相似文献   

5.
To identify important amino acid residues involved in intracellular pH (pH(i)) sensing of Na(+)/H(+) exchanger 1, we produced single-residue substitution mutants in the region of the exchanger encompassing the putative 11th transmembrane segment (TM11) and its adjacent intracellular (intracellular loop (IL) 5) and extracellular loops (extracellular loop 6). Substitution of Arg(440) in IL5 with other residues except positively charged Lys caused a large shift in pH(i) dependence of (22)Na(+) uptake to an acidic side, whereas substitution of Gly(455) or Gly(456) within the highly conserved glycine-rich sequence of TM11 shifted pH(i) dependence to an alkaline side. The observed alkaline shift was larger with substitution of Gly(455) with residues with increasing sizes, suggesting the involvement of the steric effect. Interestingly, mutation of Arg(440) (R440D) abolished the ATP depletion-induced acidic shift in pH(i) dependence of (22)Na(+) uptake as well as the cytoplasmic alkalinization induced by various extracellular stimuli, whereas with that of Gly(455) (G455Q) these functions were preserved. These mutant exchangers did not alter apparent affinities for extracellular transport substrates Na(+) and H(+) and the inhibitor 5-(N-ethyl-N-isopropyl)amiloride. These results suggest that positive charge at Arg(440) is required for normal pH(i) sensing, whereas mutation-induced perturbation of the TM11 structure may be involved in the effects of Gly mutations. Thus, both Arg(440) in IL5 and Gly residues in the conserved segment of TM11 appear to constitute important elements for proper functioning of the putative "pH(i) sensor" of Na(+)/H(+) exchanger 1.  相似文献   

6.
Substitutions of amino acids for Gly 12 or Gly 13 in theras oncogene-encoded P21 proteins have been demonstrated to produce unique structural changes in these proteins that correlate with their ability to produce cell transformation. For example, the P21 proteins with Arg 12 or Val 13 are both known to be actively transforming. Recent site-specific mutagenesis experiments on the transforming Arg 12 protein have found that the substitution of Val for Gly 10 has no effect on transforming activity whereas the substitution of Val for Gly 13 led to a loss of transforming activity. In this study, we examine the structural effects of these substitutions on the amino terminal hydrophobic decapeptide (Leu 6-Gly 15) of P21 using conformational energy analysis. The results show that the transforming proteins with Gly 10 and Arg 12 or Val 10 and Arg 12 can both adopt the putative malignancy-causing conformation, whereas, for the nontransforming protein with Arg 12 and Val 13, this conformation is energetically disallowed. These results further support the theory that due to structural changes the transforming P21 proteins are unable to bind to some regulatory cellular element which may be the recently identified binding protein responsible for the induction of increased GTPase activity in normal P21 compared with transforming mutants.  相似文献   

7.
The beta1 adrenergic receptor genotypes (Ser49Gly and Arg389Gly) were determined in 190 individuals from 3 Mexican populations. Mestizos and Teenek present the highest frequencies for the *Arg allele and the lowest frequencies for the *Gly allele (Arg389Gly) compared to European, Asian, and African populations. Mayos present the highest frequency for the *Gly allele. The knowledge of the distribution of these alleles could help define the significance of these polymorphisms as genetic susceptibility markers in Amerindian populations.  相似文献   

8.
Creatine transporter 1 (CT1) defect is an X-linked disease that causes severe neurological impairment. No treatment has been available for this condition so far. Because the transport of creatine (Cr) precursors Gly and Arg is not affected in this disorder, we tested the possible corrective effect of these two amino acids on Cr depletion in lymphoblasts lacking the transporter. Substrates enriched with Arg or Arg plus Gly increased the concentration of intracellular Cr in affected cells as well as in control cells. The greatest effect was obtained with 10 and 15 mM Arg and 10mM Arg plus Gly. These results encourage an in vivo trial with Cr precursors in CT1 defect.  相似文献   

9.
Guan L  Jakkula SV  Hodkoff AA  Su Y 《Biochemistry》2012,51(13):2950-2957
The melibiose permease of Salmonella typhimurium (MelB(St)) catalyzes symport of melibiose with Na(+), Li(+), or H(+), and bioinformatics analysis indicates that a conserved Gly117 (helix IV) is part of the Na(+)-binding site. We mutated Gly117 to Ala, Pro, Trp, or Arg; the effects on melibiose transport and binding of cosubstrates depended on the physical-chemical properties of the side chain. Compared with WT MelB(St), the Gly117 → Ala mutant exhibited little difference in either cosubstrate binding or stimulation of melibiose transport by Na(+) or Li(+), but all other mutations reduced melibiose active transport and efflux, and decreased the apparent affinity for Na(+). The bulky Trp at position 117 caused the greatest inhibition of melibiose binding, and Gly117 → Arg yielded less than a 4-fold decrease in the apparent affinity for melibiose at saturating Na(+) or Li(+) concentration. Remarkably, the mutant Gly117 → Arg catalyzed melibiose exchange in the presence of Na(+) or Li(+), but did not catalyze melibiose translocation involving net flux of the coupling cation, indicating that sugar is released prior to release of the coupling cation. Taken together, the findings are consistent with the notion that Gly117 plays an important role in cation binding and translocation.  相似文献   

10.
The novel chromogranin A fragment catestatin (bovine chromogranin A(344-364); RSMRLSFRARGYGFRGPGLQL) is a potent inhibitor of catecholamine release (IC50, approximately 0.2-0.3 microM) by acting as a nicotinic cholinergic antagonist. To define the minimal active region within catestatin, we tested the potencies of synthetic serial three-residue deletion (amino-terminal, carboxyl-terminal, or bidirectional) fragments to inhibit nicotine-stimulated catecholamine secretion from PC12 pheochromocytoma cells. The results revealed that a completely active core sequence of catestatin was constituted by chromogranin A(344-364). Nicotinic cationic signal transduction was affected by catestatin fragments in a manner similar to that for secretion (confirming the functional importance of the amino-terminus). To identify crucial residues within the active core, we tested serial single amino acid truncations or single residue substitutions by alanine on nicotine-induced catecholamine secretion and desensitization. Nicotinic inhibition by the active catestatin core was diminished by even single amino acid deletions. Selective alanine substitution mutagenesis of the active core revealed important roles for Met346, Leu348, Phe350, Arg351, Arg353, Gly354, Tyr355, Phe357, and Arg358 on catecholamine secretion, whereas crucial roles to inhibit desensitization of catecholamine release were noted for Arg344, Met346, Leu348, Ser349, Phe350, Arg353, Gly354, Tyr355, Gly356, and Arg358. We conclude that a small, 15-amino acid core of catestatin (chromogranin A(344-364)) is sufficient to exert the peptide's typical inhibitory effects on nicotinic cholinergic-stimulated catecholamine secretion, signal transduction, and desensitization. These studies refine the biologically active domains of catestatin and suggest that the pharmacophores for inhibition of nicotinic secretion and desensitization may not be identical.  相似文献   

11.
Evidence of LRRK2 haplotypes associated with Parkinson’s disease (PD) risk was recently found in the Chinese population from Singapore, and a common LRRK2 missense variant, Gly2385Arg, was independently detected as a putative risk factor for PD in the Chinese population from Taiwan. To test the association between the Gly2385Arg variant in a large case-control sample of Chinese ethnicity from Singapore, and to perform functional studies of the wild type and Gly2385Arg LRRK2 protein in human cell lines. In a case-control study involving 989 Chinese subjects, the frequency of the heterozygous Gly2385Arg genotype was higher in PD compared to controls (7.3 vs. 3.6%, odds ratio = 2.1, 95% CI: 1.1–3.9, P = 0.014); these values yield an estimated population attributable risk (PAR) of ∼4%. In a multivariate logistic regression analysis with the disease group (PD vs. controls) as the dependent variable and the genotype as an independent factor with adjustments made for the effect of age and gender, the heterozygous Gly2385Arg genotype remained associated with an increased risk of PD compared to wild type genotype (odds ratio = 2.67, 95% CI: 1.43–4.99, P = 0.002). The glycine at position 2385 is a candidate site for N-myristoylation, and the Gly2385Arg variant replaces the hydrophobic glycine with the hydrophilic arginine, and increases the net positive charge of the LRRK2 WD40 domain. In transfection studies, we demonstrated that both the wild type and Gly2385Arg variant LRRK2 protein localize to the cytoplasm and form aggregates. However, under condition of oxidative stress, the Gly2385Arg variant was more toxic and associated with a higher rate of apoptosis. Our study lends support to the contention that the Gly2385Arg is a common risk factor for PD in the Chinese population. Our bioinformatics and in-vitro studies also suggest that the Gly2385Arg variant is biologically relevant and it might act through pro-apoptotic mechanisms.  相似文献   

12.
Brokx SJ  Talbot J  Georges F  Waygood EB 《Biochemistry》2000,39(13):3624-3635
Enzyme I mutants of the Salmonella typhimurium phosphoenolpyruvate:sugar phosphotransferase system (PTS), which show in vitro intragenic complementation, have been identified as Arg126Cys (strain SB1690 ptsI34), Gly356Ser (strain SB1681 ptsI16), and Arg375Cys (strain SB1476 ptsI17). The mutation Arg126Cys is in the N-terminal HPr-binding domain, and complements Gly356Ser and Arg375Cys enzyme I mutations located in the C-terminal phosphoenolpyruvate(PEP)-binding domain. Complementation results in the formation of unstable heterodimers. None of the mutations alters the K(m) for HPr, which is phosphorylated by enzyme I. Arg126 is a conserved residue; the Arg126Cys mutation gives a V(max) of 0.04% wild-type, establishing a role in phosphoryl transfer. The Gly356Ser and Arg375Cys mutations reduce enzyme I V(max) to 4 and 2%, respectively, and for both, the PEP K(m) is increased from 0.1 to 3 mM. It is concluded that this activity was from the monomer, rather than the dimer normally found in assays of wild-type. In the presence of Arg126Cys enzyme, V(max) for Gly356Ser and Arg375Cys enzymes I increased 6- and 2-fold, respectively; the K(m) for PEP decreased to <10 microM, but the K(m) became dependent upon the stability of the heterodimer in the assay. Gly356 is conserved in enzyme I and pyruvate phosphate dikinase, which is a homologue of enzyme I, and this residue is part of a conserved sequence in the subunit interaction site. Gly356Ser mutation impairs enzyme I dimerization. The mutation Arg375Cys also impairs dimerization, but the equivalent residue in pyruvate phosphate dikinase is not associated with the subunit interaction site. A 37 000 Da, C-terminal domain of enzyme I has been expressed and purified; it dimerizes and complements Gly356Ser and Arg375Cys enzymes I proving that the association/dissociation properties of enzyme I are a function of the C-terminal domain.  相似文献   

13.
An essential ε-subunit of oligosaccharyltransferase Ost2 is a yeast homolog of mammalian highly conserved DAD1 (defender against apoptotic death). In hamster cells, the Gly38Arg mutation in DAD1 causes apoptosis at restrictive temperatures due to a defect in N-linked glycosylation. To analyze the function of Ost2 in yeast cell death, we constructed Saccharomyces cerevisiae strains expressing Gly58Arg (corresponding to the Gly38Arg mutation in hamster DAD1), Gly86Arg, and Glu113Val mutant Ost2. At elevated temperatures, ost2 mutants arrested growth by decreasing cell viability. Phosphatidylserine exposure, a phenotypic marker of apoptosis in mammalian cells, was found in ost2 mutant cells at 37 °C, although DNA fragmentation was not clearly detected. A high concentration of sorbitol compensates for the temperature sensitivity of the ost2 mutant. These results suggest that apoptosis-like cell death in ost2 mutants is caused by the secondary effect of overall reduced protein N-linked glycosylation.  相似文献   

14.
Eglin c from the leech Hirudo medicinalis is a potent protein inhibitor of many serine proteinases including chymotrypsin and subtilisins. Unlike most small protein inhibitors whose solvent-exposed enzyme-binding loop is stabilized primarily by disulfide bridges flanking the reactive-site peptide bond, eglin c possesses an enzyme-binding loop supported predominantly by extensive electrostatic/H-bonding interactions involving three Arg residues (Arg48, Arg51, and Arg53) projecting from the scaffold of the inhibitor. As an adjacent residue, the C-terminal Gly70 participates in these interactions via its alpha-carboxyl group interacting with the side chain of Arg51 and the main chain of Arg48. In addition, the amide NH group of Gly70 donates an H-bond to the carbonyl C=O groups of Arg48 and Arg51. To understand the structural and functional relevance of the electrostatic/H-bonding network, we chemically synthesized wild-type eglin c and three analogues in which Gly70 was either deleted or replaced by glycine amide (NH(2)CH(2)CONH(2)) or by alpha-hydroxylacetamide (HOCH(2)CONH(2)). NMR analysis indicated that the core structure of eglin c was maintained in the analogues, but that the binding loop was significantly perturbed. It was found that deletion or replacement of Gly70 destabilized eglin c by an average of 2.7 kcal/mol or 20 degrees C in melting temperature. As a result, these inhibitors become substrates for their target enzymes. Binding assays on these analogues with a catalytically incompetent subtilisin BPN' mutant indicated that loss or weakening of the interactions involving the carboxylate of Gly70 caused a decrease in binding by approximately 2 orders of magnitude. Notably, for all four synthetic inhibitors, the relative free energy changes (DeltaDeltaG) associated with protein destabilization are strongly correlated (slope = 0.94, r(2) = 0. 9996) with the DeltaDeltaG values derived from a decreased binding to the enzyme.  相似文献   

15.
Stimulation of beta-adrenergic receptors (beta-AR) by the sympathetic nervous system (SNS) modulates energy expenditure (EE), but substantial interindividual variability is observed. We determined whether the thermogenic response to beta-AR stimulation is related to genetic variation in codon 16 of the beta(2)-AR, a biologically important beta-AR polymorphism, and whether differences in SNS activity (i.e., the stimulus for agonist-promoted downregulation) are involved. The increase in EE (DeltaEE, indirect calorimetry, ventilated hood) above resting EE in response to nonspecific beta-AR stimulation [iv isoproterenol: 6, 12, and 24 ng/kg fat-free mass (FFM)/min] was measured in 46 healthy adult humans [Arg16Arg: 9 male, 7 female, 48 +/- 5 yr; Arg16Gly: 11 male, 4 female, 53 +/- 5 yr; Gly16Gly: 3 male, 12 female, 48 +/- 5 yr (means +/- SE)]. Neither FFM-adjusted baseline resting EE (P = 0.83) nor the dose of isoproterenol required to increase EE 10% above resting (P = 0.87) differed among the three groups (Arg16Arg: 5,409 +/- 209 kJ/day, 11.2 +/- 2.1 ng x kg FFM(-1) x min(-1); Arg16Gly: 5,367 +/- 272 kJ/day, 11.1 +/- 2.1 ng x kg FFM(-1) x min(-1); Gly16Gly: 5,305 +/- 159 kJ/day, 10.5 +/- 1.4 ng x kg FFM(-1) x min(-1)). Consistent with this, muscle sympathetic nerve activity and plasma norepinephrine concentrations were not different among the groups. Group differences in sex composition did not influence the results. Our findings indicate that the thermogenic response to nonspecific beta-AR stimulation, an important mechanistic component of overall beta-AR modulation of EE, is not related to this beta(2)-AR polymorphism in healthy humans. This may be explained in part by a lack of association between this gene variant and tonic SNS activity.  相似文献   

16.
The unparalleled peroxisome-to-mitochondrion mistargeting of alanine:glyoxylate aminotransferase (AGT) in the hereditary disease primary hyperoxaluria type 1 is caused by the combined presence of a common Pro11 --> Leu polymorphism and a disease-specific Gly170 --> Arg mutation. The Pro11 --> Leu replacement generates a functionally weak N-terminal mitochondrial targeting sequence (MTS), the efficiency of which is increased by the additional presence of the Gly170 --> Arg replacement. AGT dimerization is inhibited in the combined presence of both replacements but not when each is present separately. In this paper we have attempted to identify the structural determinants of AGT dimerization and mitochondrial mistargeting. Unlike most MTSs, the polymorphic MTS of AGT has little tendency to adopt an alpha-helical conformation in vitro. Nevertheless, it is able to target efficiently a monomeric green fluorescent (GFP) fusion protein, but not dimeric AGT, to mitochondria in transfected COS-1 cells. Increasing the propensity of this MTS to fold into an alpha-helix, by making a double Pro11 --> Leu + Pro10 --> Leu replacement, enabled it to target both GFP and AGT efficiently to mitochondria. The double Pro11 --> Leu + Pro10 --> Leu replacement retarded AGT dimerization in vitro as did the disease-causing double Pro11 --> Leu + Gly170 --> Arg replacement. These data suggest that N-terminal alpha-helix formation is more important for maintaining AGT in a conformation (i. e. monomeric) compatible with mitochondrial import than it is for the provision of mitochondrial targeting information. The parallel effects of the Pro10 --> Leu and Gly170 --> Arg replacements on the dimerization and intracellular targeting of polymorphic AGT (containing the Pro11 --> Leu replacement) raise the possibility that they might achieve their effects by the same mechanism.  相似文献   

17.
在AOT/异辛烷反相胶束体系中酶法合成RGD前体二肽   总被引:1,自引:0,他引:1  
近十年来,在有机相中利用酶法合成短肽技术取得了长足的发展.但对于在有机相中合成含有亲水氨基酸的短肽,仍然是一个难题.利用反相胶束可以解决亲水氨基酸在有机相中的低溶解性问题[1].Arg-Gly-Asp(RGD)是近年来发现的一种具有粘合细胞作用的三肽...  相似文献   

18.
Spontaneous chromophore biosynthesis in green fluorescent protein (GFP) is initiated by a main-chain cyclization reaction catalyzed by the protein fold. To investigate the structural prerequisites for chromophore formation, we have substituted the conserved residues Arg96, Glu222, and Gly67. Upon purification, the variants can be ordered based on their decreasing extent of chromophore maturation according to the series EGFP, E222Q, R96K, G67A, and R96M. Arg96 and Glu222 appear to play catalytic roles, whereas Gly67 is likely important in interior packing to enforce correct hydrogen bonding to Arg96. The effect of Arg96 can be partially compensated for by a lysine, but not by a methionine residue, confirming its electrophilic role. Limited trypsinolysis data suggest that protein stability is largely unaffected by the presence of the chromophore, inconsistent with the mechanical compression hypothesis. Trends in optical properties may be related to the degree of chromophore charge delocalization, which is modulated by residue 96.  相似文献   

19.
According to the comparison of amino acid sequence between PGA (Penicillin G Acylase) and PBPs (Penicillin Binding Protein), We suggest that No. 565-595 peptide fragment in beta-subunit of PGA may be a substrate-binding site of enzyme. Plasmid pTZGA was constructed by cloning the 2.6 kb PGA gene of pWGA into phagemid pTZ18U The technique of site-specific mutagenesis was used to study the role of residue No. 579 (Ser) and No. 580 (Arg) of PGA. Four kinds of mutants were obtained (Ser579-->Gly579, Arg580-->Gly580, Arg580-->Glu580, Arg580-->Lys580), both Glu580 and Gly580 mutants showed no activity of enzyme and Lys580 mutant remained 30% and Gly579 mutant kept 70% activity of wilde type. The same protein expression of four mutants according to the results of ELISA indicate that mutation does not affect the expression of PGA, but Arg580 residue may be essential for substrate-binding or catalysis of PGA.  相似文献   

20.
Postprandial changes of Arg, Leu, Val, Ala, Asp, Glu, Gly, Pro and Tau as well as activities of three enzymes of the transdeamination system in the midgut mucosa and, for comparison, in the liver of freshwater and seawater acclimated Oncorhynchus mykiss were studied. In the mucosa a postprandial increase of Arg, Leu, Val, Ala, Asp, Glu, Gly and Pro occurred. In contrast, only the postprandial Arg level increased strongly in the liver. Levels of Leu, Val, Ala, Asp, Glu, Gly, Pro and Tau remained stable. Concentrations of Ala, Asp, Glu and Pro are higher in the liver than the mucosa. Tau is the most important osmotic effector in both organs, but its concentration is much lower in the liver. Its postprandial concentrations remained stable in both tissues but were significantly higher in seawater trout. The trend of a stronger postprandial rise of Arg, Leu, Val, Ala, Asp, Glu, Gly and Pro levels in seawater trout than in freshwater trout was shown. In mucosa tissue aspartate aminotransferase activities were higher in seawater trout. Ratios of aspartate aminotransferase, alanine aminotransferase and glutamate dehydrogenase are similar to those of the gills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号