首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological factors involved in immunity and tissue repair with regulate homeostasis, a physiological function of the connective tissue, are as yet unidentified. We earlier detected the granulation-promoting action of carnosine, and reported on the acceleration of tissue repair in experimental as well as clinical studies. In that study, immunoregulatory effects of carnosine and beta-alanine were examined by the plaque-forming cell (PFC) count and delayed hypersensitivity reaction (DHR). The PFC value increased in mice pretreated with these agents. In these mice, PFC reaction to 2 X 10(7) SRBC was enhanced but that to 1 X 10(9) SRBC was suppressed. The agents also suppressed excess immunoreaction in immature mice but increased weakened immunoreaction in aged animals. Furthermore, the agents had the optimal doses for the enhancement of both PFC reaction to 1 X 10(8) SRBC and DHR to 1% picryl chloride. They also induced recovery of immunofunction suppressed by the administration of MMC. Carnosine and beta-alanine exerts immunoregulatory effects by activating both T and B cells. Our observations indicated that the agents not only promote tissue repair but also help maintain homeostasis and accelerate spontaneous healing.  相似文献   

2.
Supernatants from concanavalin A- (Con A) activated murine spleen cells have been shown to suppress the in vitro plaque-forming cell (PFC) response to sheep red blood cells (SRBC). The present study examined the effect of such Con A-activated spleen cell supernatants (herein termed CONS) on the in vivo immune response to SRBC in C57BL/6, BALB/c and CDF1 mice. CONS derived from BALB/c spleen cells suppressed direct PFC 4 and 8 days after immunization with 2 X 10(8) SRBC. CONS also suppressed indirect PFC 8 days after immunization, as well as serum hemagglutinins to SRBC. The PFC response of C57BL/6 (H-2b) mice was suppressed as much as that of BALB/c (H-2d) by CONS derived from BALB/c mice, indicating a lack of H-2 specificity of the CONS. In addition to suppression of the antibody response to SRBC, in vivo CONS administration resulted in reduction in spleen cell number. This reduction was not sufficient to explain the decreased PFC response. When the CONS was separated into less than 10,000 m.w. and greater than or equal to 10,000 m.w. fractions, the immunosuppressive activity was found in the less than 10,000 m.w. fraction. This observation suggests that intact interferon, SIRS, and MIF were not responsible for the results obtained.  相似文献   

3.
The effects of feeding various quantities of a particulate antigen, sheep red blood cells (SRBC), on plaque-forming cells (PFC) in the spleen were determined. Mice were given various numbers of SRBC orally daily for 14 days, then injected with SRBC intravenously. Splenic IgA PFC responses to SRBC were enhanced in the mice fed 5 X 10(8) SRBC and splenic IgG PFC responses to SRBC were depressed in the mice fed 5 X 10(9) SRBC. Adoptive transfer experiments showed that enhancement of splenic IgA PFC responses and suppression of splenic IgG PFC responses were induced by the T-cell rich fraction from Peyer's patches (PP) and the spleen in 5 X 10(8) SRBC- and 5 X 10(9) SRBC-fed mice, respectively. Kinetic studies revealed that IgA helper cells or IgG suppressor cells appeared in PP 2 days after oral administration and 4 days after it in the spleen.  相似文献   

4.
Synergistic effects of two synthetic adjuvants, dimethyldioctadecylammonium bromide (DDA) and dextran sulfate (DXS) on the humoral response to sheep red blood cells (SRBC) were investigated. Mice received intraperitoneal (ip) injections of adjuvant and antigen simultaneously. The number of plaque-forming cells (PFC) in the spleen were determined 5 days later and circulating anti-SRBC antibodies were measured till 16 weeks after immunization. Although combinations of DDA and DXS were very effective in enhancing the PFC response to both moderate (2 X 10(7] and low (2 X 10(6] doses of SRBC, synergy between the adjuvants was only observed at the low dose of SRBC. Optimal augmentation of the primary response to the low antigen dose was evoked by the combination of the highest dose tested of either adjuvant (1 mumol DDA and 1 nmol DXS) resulting in a 560-fold increase of the number of PFC in the spleen as compared to controls. Even combinations of relatively small amounts of both adjuvants were very effective in augmenting the response to SRBC. Mice receiving half the amounts of both adjuvants with 2 X 10(6) SRBC displayed increased numbers of PFC in the spleen at Day 5 as well as increased titers of total anti-SRBC antibodies at Week 1 and Week 2 and 2-mercaptoethanol-resistant antibodies from Week 4 till Week 16 as compared to the calculated sum of responses in mice which received either DDA (0.05 mumol per mouse) or DXS (0.05 nmol per mouse). The mechanism behind the synergy between these adjuvants is discussed and the possibility of discerning adjuvants on their modes of action is suggested.  相似文献   

5.
Effects of catecholamines and osmotical and physical stimuli on the induction of anti-sheep red blood cells (SRBC) plaque-forming cells (PFC) were investigated in (C57BL/6 X BALB/c)F1 mice in vivo and in vitro. The anti-SRBC PFC from mice immunized with 5 X 10(7) SRBC was markedly increased by daily s.c. injections of epinephrine. The enhancement of PFC by epinephrine was completely blocked by preadministration with propranolol and hexamethonium, but not with phentolamine. The PFC was increased by osmotic and physical stimuli given once a day for 4 days after immunization with SRBC. The enhancement of PFC by these stimuli was completely blocked by preadministration with propranolol and hexamethonium. The enhancement of PFC by physical stimuli was observed in nonimmunized mice when spleen cells from stimulated mice were cultured with SRBC in vitro. In normal mice, the enhancement of PFC was observed 2 hr after one physical stimulation. However, spleen cells from mice given two physical stimuli did not show the enhancement of PFC after treatment with anti-Thy-1.2 antibody and complement, nor after removal of nonadherent cells. Next, the serum obtained from mice 30 to 60 min after a physical stimulation enhanced PFC of normal mice spleen cells in vitro, but the enhancement was abolished by the addition of propranolol. The enhancement of anti-SRBC PFC by s.c. injection of epinephrine suggested that the autonomic nervous system, especially the sympathetic nervous system, was activated by a local stimulus effect of the injection. This enhancement of anti-SRBC PFC appear to be due to the activation of antigen non-specific helper T lymphocytes by the beta-actin of endogenous catecholamines from the adrenal gland.  相似文献   

6.
Mouse spleen cell antigenic responses to the thymic-dependent antigen sheep red blood cells (SRBC), and the thymic-independent antigens, E. Coli lipopolysaccharide (LPS) and pneumococcal polysaccharides Type I and II (SI, SII) were studied as as a function of age, employing both in vitro spleen cell stimulation and plaque-forming cell (PFC) assay systems. Primary spleen cell proliferative and PFC responses to SRBC, were either absent or meager in comparison to adult (8–12 weeks) values for the first 3 weeks of life. Thereafter responses rose achieving adult values between 4 and 8 weeks of age. The inability of young mice to respond to SRBC was not because of a different immunizing dose requirement for SRBC, since immunization with SRBC over a 200-fold range did not enhance their capability to respond. Also, addition of adherent cells or macrophages from adult mice did not enhance the immune responses of young mice. Furthermore, immunization of 2–4 week old mice with SRBC inhibited the secondary response to SRBC. In contrast, young murine spleen cell proliferative and PFC responses to SI, SII, and LPS were approximately the same as the adult by 7–14 days of life. These data suggest that B-cell immunologic activity, as measured by immunologic assays utilized in this study, develops much earlier than does T-cell responsiveness.  相似文献   

7.
Seven-day-old C57BL/10 mice injected with 3 X 10(6) normal adult lymph node cells (NAL) from syngeneic donors were compared with uninjected littermates when 5 to 7 wk old. The direct PFC response to sheep erythrocytes was suppressed by 60%. Responses to PHA and Con A but not LPS were suppressed by 60 to 90%. Primary and secondary (after skin graft rejection) MLR responses were suppressed by 30 to 40%. Active suppressor cells were demonstrable in these mice. Skin grafts incompatible for H-2 were rejected in normal time. NAL derived from adult mice conferred the effect, but not cells from 7-day-old donors. Mice inoculated with Rous sarcoma virus within the 1st day of life and 3 X 10(6) NAL at 7 days of age displayed up to 5-fold increased incidence of primary sarcomas.  相似文献   

8.
Microwave exposure has been reported to affect various components of the immune system. In this study, we examined the effect of a single whole-body exposure of hamsters to microwave (mw) energy (2.45 GHz; 5-25 mW/cm2; 1 h) on the IgM antibody (Ab) response of spleen cells to sheep red blood cells (SRBC). MW-exposed, sham-exposed, and cage-control hamsters were immunized with SRBC and plaque-forming cells (PFC) in spleens assayed using the direct hemolytic plaque assay. In cage-control hamsters the Ab response was highest between days 4 and 5, returning to baseline by day 9. MW exposure (25 mW/cm2 for 1 h) significantly augmented PFC response only on days 4 and 5 postimmunization, causing approximately a 4.3- and 3.5-fold increase over controls, respectively. Exposure to 15 mW/cm2 caused a lesser, but significant increase in PFC. Exposure to intensities below 15 mW/cm2 for 1 h did not produce any increase in Ab response. Immunization with different concentrations of SRBC following 1 h of 25 mW/cm2 MW exposure revealed a stimulation in PFC at all concentrations ranging from 5 X 10(7) to 5 X 10(8) SRBC. Pretreatment of hamsters with MW radiation prior to immunization showed that the animals retained an increased sensitivity to SRBC for as long as 4 days after MW exposure. In contrast, exposure of hamsters to MW energy on different days after immunization showed an effect of the PFC response only if given between 0 and 1 day after immunization. These results suggest that MW exposure augments the primary IgM response to SRBC by affecting some early event in the immune response process. The various possible explanations for this phenomenon are discussed.  相似文献   

9.
Previous work suggested that gonadal steroids influence immunity through the thymus, but the mechanisms were unclear. To investigate the effects of these hormones on immune responses to T1 and TD antigens in autoimmune mice, we studied hybrid NZB/W mice and the nonautoimmune DBA/2 strain. Mice castrated at 14 days of age were implanted with Silastic capsules releasing, in adults, physiologic levels of E2 in males or Te in females. Sham-operated controls received empty capsules. Splenic PFC were quantified 4 to 5 days after challenge with the TI2 antigen TNP-Ficoll, the TI1 antigen TNP-LPS, or the TD antigen SRBC. Young castrated NZB/W males implanted with E2 had striking enhancement of IgM responses to TNP-Ficoll when compared to castrated Te-treated females and comparable sham-operated controls of both sexes. E2 also stimulated responses to TNP-LPS. In response to challenge with SRBC, young E2-treated NZB/W males had a consistent trend to increased IgM PFC, and the stimulatory effect of E2 on IgG plaques was variable. Physiologic doses of Te had no consistent effect on responses in young mice. In old female NZB/W mice, Te caused PFC response after immunization with TNP-Ficoll to resemble age-matched NZB/W males. As sham-operated NZB/W females grew older, PFC responses to SRBC fell. This age-related phenomenon was delayed, however, in female castrates implanted with Te. In contrast, Te clearly suppressed responses to TNP-LPS. Implantation of E2 did not alter responses to TNP-Ficoll, TNP-LPS, or SRBC in nonautoimmune DBA/2 males. This finding suggested that exogenous E2 given in physiologic doses did not influence immunologic responsiveness in a normal strain to the degree seen in hormone-sensitive NZB/W mice. It was concluded that E2 enhanced responses to a variety of exogenous antigens in autoimmune NZB/W mice. The most consistent E2-induced increase in PFC response was observed with TI antigens, suggesting that E2 exerted its effects on B cells or Ts.  相似文献   

10.
Spleen cells from na?ve adult immunocompetent and immunodeficient XID mice were cultured on agar containing sheep red blood cells (SRBC) with and without myo-inositol, scyllo-inositol, lithium chloride, or heparin, and after 1 or 2 days the number of colonies of antiSRBC antibody-forming cells (PFC) were determined. It was found that myo-inositol and scyllo-inositol at one-tenth the concentration were equally effective in increasing the number of specific PFC. Myo-inositol, scyllo-inositol, and lithium chloride accelerated the appearance of direct foci in cultures of spleen cells from normal and XID mice. When heparin was added to cultures of XID spleen cells, PFC were found to be increased on Day 1; however, PFC and foci were not increased in cultures of spleen cells from competent mice until 1 day later. The addition of combinations of these agents to cultures of spleen cells had no positive or negative effect on the generation of foci or PFC. Normal mice given heparin intraperitoneally with SRBC had increased splenic PFC on Days 3 and 4 but not on Day 7. The results suggest that these agents modulate B-cell responses by increasing the rate of proliferation and/or secretion through a signaling pathway(s) distal to, or more likely, independent of Bruton's tyrosine Kinase (BTK). It is not clear that the mechanism is the same with each agent.  相似文献   

11.
Palmerston North (PN) mice spontaneously develop autoimmune disease resembling SLE. Because immune responsiveness has not been defined in this strain, a study was designed to assay primary splenic plaque-forming cell (PFC) responses to thymus-dependent (TD) and thymus-independent (TI) Ag. Initial surveys of PN mice inoculated with the TD Ag SRBC showed adequate production of IgM PFC, but small numbers of IgG PFC were developed with polyspecific antiserum. In contrast, H-2-compatible DBA/1 control mice gave the expected responses to SRBC (IgG plaques elevated twofold compared with IgM plaques). PN mice had the usual responses to Ag that are largely TI; both PN and DBA/1 mice had active IgM and modest IgG responses to TNP-LPS and TNP-Ficoll. Additional experiments determined that PN mice had similar patterns of defective IgG responses to several different TD Ag (SRBC, horse RBC, and DNP-keyhole limpet hemocyanin). In each instance, the usual predominance of IgG1 plaques was absent, and total numbers of plaques developed with antisera specific for IgG isotypes were suppressed. Defective PN IgG production was evident as early as 3 wk of age, was not influenced by aging to 43 wk, and was not corrected by increasing the antigenic challenge 10-fold. PN spleen cells treated with monoclonal anti-Thy-1.2 and C were injected with pools of DBA/1 T cells into 850-rad irradiated (DBA/1 x PN)F1 hybrids. These recipients expressed low IgG1 responses to SRBC, suggesting that the B cell-containing fraction that was not lysed by anti-Thy-1.2 transferred the PN defect. PN mice, which do not respond to TD Ag with active IgG production, contradict the proposal that autoimmunity is associated with hyper-responsiveness to TD and TI Ag.  相似文献   

12.
The graft-versus-host (GVH) reaction, induced in adult F1 mice by the injection of parental strain lymphoid cells (GVH mice), suppressed the in vitro plaque-forming cell (PFC) response to sheep erythrocytes (SRBC) of spleen cells obtained from the GVH mice (GVH-SC). In vitro restoration of the PFC response of GVH-SC was carried out employing a modified Marbrook culture chamber consisting of an inner culture compartment (IC) separated from an outer culture compartment (OC) by a cell-impermeable membrane. Thymus cells (TC) and lymph node cells (LNC) but not bone marrow cells (BMC) from normal mice placed in the IC restored the PFC response of GVH-SC cultured with SRBC in the OC. The restoring ability of TC and LNC was markedly reduced following treatment with anti-theta serum plus complement. BMC taken from GVH mice 3 or more days post-GVH induction (GVHBMC) and placed in the IC restored the PFC response of GVH-SC as well as TC and LNC. Treatment of GVH-BMC with anti-theta serum plus complement did not affect their restoring ability; furthermore, the number of theta-bearing cells in the bone marrow did not increase as a consequence of the GVH reaction. Two possible explanations are proposed for the T-like function of GVH-BMC.  相似文献   

13.
Mechanisms of nonspecific elicitation of anti-sheep erythrocyte (SRBC) hemolytic antibody plaque-forming cells (PFC) in mouse spleens with an injection of bacterial endotoxin (lipopolysaccharide (LPS)) were studied in comparison with the genesis of naturally occurring ‘background’ PFC in normal mouse spleens and of rapidly arising PFC in mouse spleens after immunization with SRBC. The cytokinetic pattern of anti-SRBC PFC response after an injection of LPS was quite different from that of the response elicited after immunization with SRBC. In addition, even though LPS nonspecifically elicited anti-SRBC PFC response in mice, LPS could not confer any immunological memory on mouse immunocytes for a ‘secondary-type’ anti-SRBC PFC response to restimulation with LPS or SRBC. The administration of rabbit anti-mouse thymocyte immunoglobulin or anti-SRBC antiserum in mice markedly suppressed the PFC response after immunization with SRBC, but did not do so after stimulation with LPS. Neonatally thymectomized mice could still respond to stimulation with LPS, producing anti-SRBC PFC in their spleens. Injections of actinomycin D or cyclophosphamide into mice resulted in obvious reductions of the PFC responses elicited by either LPS or SRBC. However, injections of these immunosuppressive antisera or drugs did not affect the number of anti-SRBC PFC in normal mouse spleens. These results suggest that the geneses of anti-SRBC PFC developed under different conditions, i.e., background PFC, LPS-stimulated PFC, and antigen-stimulated PFC, are quite different from each other, and that the nonspecific elicitation of anti-SRBC PFC by LPS does not require the helper function of T lymphocytes. No obvious difference, however, was observed in the time of ontogenic maturation among these three different anti-SRBC PFC in the mouse spleens judging from when they were first manifested after birth.  相似文献   

14.
The ability of early post-natal mice to respond to sheep erythrocytes (SRBC) by formation of plaque-forming cells (PFC) was studied. When 1–2 day old BDF, mice were injected with SRBC, no PFC could be detected in their spleens five days after immunization. However, if animals were given a second injection of antigen two days after the initial immunization, PFC could be detected within five days of the initial injection. Experiments with other heterologous erythrocytes attest to the specificity of the two-injection schedule, and examination of a variety of strains of mice indicate that our findings may be generally applicable to the emerging immune system of the mouse.  相似文献   

15.
Because the gut-associated lymphoreticular tissue (GALT), e.g., Peyer's patches (PP), of X-linked immunodeficient (xid) mice possesses a subpopulation of mature B cells, we have characterized the ability of xid mice to respond to the thymic-dependent antigen sheep erythrocytes (SRBC) given by the oral route. Gastric intubation of SRBC to xid (CBA/N X DBA/2) F1 male or CBA/N mice, followed by the in vitro culture of dissociated PP cells with SRBC, resulted in IgM, IgG1, IgG2, and high IgA anti-SRBC plaque-forming cell (PFC) responses. The addition of unprimed PP but not splenic T cells to splenic xid B cell cultures resulted in IgM anti-SRBC PFC responses, suggesting the importance of GALT T cells for support of the immune responses to SRBC by splenic B cells from xid mice. Furthermore, purified PP T cells from SRBC orally primed xid mice supported in vitro IgA anti-SRBC PFC responses in B cell cultures from either the PP or the spleens of nonprimed xid mice. Higher IgA responses, however, occurred in PP, when compared with splenic B cell cultures. Additional evidence that the GALT of xid mice contains functional IgA precursor cells was provided by the finding that cloned H-2k PP T helper cells (PP Th A) supported IgA responses in PP B cell cultures derived from (CBA/N X C3H/HeN) F1 male (xid) mice. On the other hand, splenic B cells from these xid mice, in the presence of PP Th A cells, did not support in vitro responses. These results suggest that unique subpopulations of T cells occur in the GALT of xid and normal mice; one T cell subpopulation may induce immature B cells to become precursor IgA cells in the PP. A separate GALT T cell subpopulation, e.g., isotype-specific helper T cells, effectively collaborates with mature IgA B cells for the induction of IgA responses to orally administered antigen. When xid mice were gastric intubated with SRBC, followed by i.p. injection of SRBC, good splenic IgA anti-SRBC PFC responses were seen. Salivary and serum IgA antibodies were also detected in these xid mice. Nevertheless, the magnitude of the anti-SRBC response in xid mice was lower than that seen in similarly treated normal mice. These studies indicate that the GALT of both xid and normal mice possess unique populations of T cells that support in vitro responses in xid B cell cultures from either the spleen or the PP, which direct the mature B cell populations present toward IgA isotype-specific responses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
An attempt was made to determine if there is any common mechanism in the enhanced antibody response caused either by injection of adjuvant, such as bacterial endotoxin (LPS) and complexed polynucleotides, or by secondary antigenic stimulation. LPS inoculated in mice 4 days before injection of sheep red blood cells (SRBC) and polyA:U invalidated the adjuvant effect of polyA:U injected together with SRBC, and the hemolysin plaque-forming cell (PFC) response of such mice was similar to that of the mice which received SRBC alone. When mice primed with SRBC 24 days in advance were injected with LPS and 4 days later re-stimulated with SRBC, their PFC response to the secondary stimulation was suppressed to less than one tenth of the normal secondary PFC response. The suppressive effect of LPS on the secondary antibody response was abolished if the serum collected from mice injected with LPS was given to the primed and LPS-injected mice at the time of the secondary antigenic stimulation. From these results we discussed the possibility that some common mediator might play a role in the enhanced antibody response elicited by either adjuvant injection or secondary injection of antigen.  相似文献   

17.
Mouse bone marrow is barely capable of plaque-forming cell (PFC) activity during the primary response to sheep red blood cells (SRBC). However, during secondary-type responses, it becomes the major organ, containing IgM, IgG, and IgA PFC. In the present paper, the influence of splenectomy (Sx) upon the secondary bone marrow PFC response to SRBC was investigated. When previously primed mice were splenectomized just before the second intravenous (iv) injection of SRBC, the effect of Sx upon the height of the bone marrow PFC response was dependent on the booster dose. Sx just before a booster of 106 SRBC iv almost completely prevented bone marrow PFC activity, whereas an iv booster dose of 4 × 108 SRBC evoked a normal IgM, IgG, and IgA PFC response in Sx mice. Apparently low doses of iv administered antigen require the spleen in order to evoke antibody formation in the bone marrow. Experiments with parabiotic mice, consisting of Sx and sham-Sx mice, showed that this facilitating influence of the spleen upon bone marrow antibody formation occurs via the blood stream. In a subsequent study, it was investigated whether the spleen is required throughout the bone marrow PFC response or only during the few days of the initiation phase. Therefore, mice were splenectomized at different intervals after a booster injection of 106 SRBC iv. It appeared that Sx 2 days after the booster injection could still prevent the normal bone marrow PFC activity, whereas Sx at Day 4 could no longer do so. Apparently, after an iv booster injection, the spleen is only required for initiation of the bone marrow PFC response and not for the maintenance of this PFC activity thereafter.  相似文献   

18.
In the present series of experiments we have studied the effects of anti-lymphocyte serum (ALS) and concanavlin A (Con A) on the immune response to technetium-99m-labeled sheep erythrocytes (SRBC) and have related this to the localization and persistence of antigen at the site of induction and antibody synthesis. The number of 99mTc-labeled SRBC in the spleen and liver was quantified by gamma scintillation counting and the cellular kinetics of the splenic antibody response was determined by means of the hemolytic plaque technique. After injection of normal rabbit serum (NRS)-treated control mice with 4 × 10899mTc-labeled SRBC, the number of cells localizing in the spleen ranged from a high of 4.2 × 106 on Day 1 to a low of 1.7 × 106 on Day 4, while the number in the liver ranged from a high of 68.8 × 108 on Day 1 to 18.6 × 106 on Day 4. The number of splenic plaque-forming cells (PFC) increased from 321–429 on Day 1 to 93,000–101,000 PFC on Day 4 and this was paralled by a rise in serum hemagglutinin and hemolysin titers. In mice treated with ALS on the other hand, splenic localization initially was increased 10-fold, hepatic localization was unchanged, and the antibody response was markedly suppressed. Splenic PFC ranged from approximately 100 between days 1 and 3 and increased to only 500 on Day 4. Mice which received Con A on Day — 1 had a reduction in splenic PFC which ranged from 150 on Day 1 to 1900 on Day 4. Splenic localization of 99mTc-labeled RBC initially was three- to fourfold greater than that in NRS-treated mice and then decreased to control levels. The increased numbers of SRBC detected in the spleens of immunosuppressed mice at the time of peak response can be attributed to decreased in vivo lysis by reduced numbers of splenic antibody-producing cells.  相似文献   

19.
We have previously shown that suppressor-T-cell (TS) activity in the spleens of autoimmune MRL/Mp-lpr/lpr (MRL/l) mice is increased after 2 months of age. The TS suppress the in vitro primary IgM response to the thymus-dependent (TD) antigen sheep erythrocytes (SRBC) of B and T cells from young congenic MRL/Mp-+/+ (MRL/n) mice which lack the lymphoproliferation (lpr) gene. The TS are nylon wool nonadherent, Thy 1.2 positive, and radiation sensitive. The studies presented here were done to further characterize the TS and to attempt to determine the mechanism of action of these cells. We found that increased TS activity was also present in the proliferating lymph nodes of old MRL/l mice but not in lymph nodes of young MRL/l or MRL/n mice. The splenic TS equally suppressed the primary IgM SRBC response of both young MRL/l and MRL/n B and T cells, indicating that MRL/l SRBC-specific B and T cells are not resistant to suppression. The IgM response of MRL/n B and T cells to the T-independent (TI) antigen trinitrophenyl conjugated to Brucella abortus (TNP-BA) was not suppressed by the TS, although the IgM response to TNP was suppressed when TNP was coupled to the TD carrier SRBC. The results of kinetics studies of TS expression showed that when the TS were added on Day 0 of culture the SRBC response was suppressed as early as Day 2 of culture; however, when the TS were added on Days 1, 2, or 3 of culture, the suppression was reduced. The TS suppressed the in vitro memory IgG response of spleen cells from MRL/n mice which had been primed with SRBC; the memory IgG responses of spleen cells from MRL/l mice were variably suppressed. Taken together, these results suggest that the TS suppress TH function in early events of antibody production and that some activated B or T cells may be resistant to the effects of the TS. Increased TS activity was not present in the spleens of aged New Zealand Black X NZ White (NZB/W) F1 mice. Possible reasons for the presence of increased TS activity in MRL/l mice and its relation to autoimmune disease is discussed.  相似文献   

20.
We previously demonstrated that injection of a high dose (4 X 10(9] of sheep erythrocytes (SRBC) into C57BL/6 mice results in the generation of splenic B cells (plastic nonadherent, Thy-1- and Ig+) which, when transferred to normal syngeneic recipients, subsequently induce antigen-specific suppressor T cells to suppress the recipient's plaque-forming cell (PFC) responses to SRBC. In the present study we characterized the suppressor-inducer B cells phenotypically. Cytotoxic treatment of the donor's immune spleen cells with anti-Lyt-1 antibody plus complement (C'), but not with anti-Lyt-2 antibody plus C', relieved the suppression of PFC responses in recipients. The FcRr+ population separated by EA-rosette formation showed enriched suppressor-inducing activity, whereas the FcRr- population showed no activity. Our findings, taken together with the previous ones, suggest that suppressor-inducer cells are Thy-1-, Lyt-1+, Lyt-2-, FcRr+, and Ig+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号