首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Spread of the bla NDM-1 gene that encodes the New Delhi metallo-β-lactamase (NDM-1) in Enterobacteriaceae is a major global health problem. Plasmids carrying bla NDM-1 from two different multi-drug resistant Klebsiella pneumonia isolates collected in Singapore were completely sequenced and compared to known plasmids carrying bla NDM-1.

Methodology/Principal Findings

The two plasmids, pTR3 and pTR4, were transferred to Escherichia coli recipient strain J53 and completely sequenced by a shotgun approach using 3-kb paired-end libraries on 454. Although the K. pneumoniae strains were unrelated by molecular typing using PFGE and MLST, complete sequencing revealed that pTR3 and pTR4 are identical. The plasmid sequence is similar to the E. coli NDM-1-encoding plasmid p271A, which was isolated in Australia from a patient returning from Bangladesh. The immediate regions of the bla NDM-1 gene in pTR3/4 are identical to that of p271A, but the backbone of our plasmid is much more similar to another IncN2 plasmid reported recently, pJIE137, which contained an additional 5.2-kb CUP (conserved upstream repeat) regulon region in comparison to p271A. A 257-bp element bounded by imperfect 39-bp inverted repeats (IR) and an incomplete version of this element flanking the 3.6-kb NDM-1-encoding region were identified in these plasmids and are likely to be the vestiges of an unknown IS.

Conclusions

Although the hosts are not epidemiologically linked, we found that the plasmids bearing the bla NDM-1 gene are identical. Comparative analyses of the conserved NDM-1-encoding region among different plasmids from K. pneumoniae and E. coli suggested that the transposable elements and the two unknown IR-associated elements flanking the NDM-1-encoding region might have aided the spreading of this worrisome resistance determinant.  相似文献   

2.
The emergence and spread of NDM-1-producing Enterobacteriaceae have resulted in a worldwide public health risk that has affected some provinces of China. China is an exceptionally large country, and there is a crucial need to investigate the epidemic of bla NDM-1-positive Enterobacteriaceae in our province. A total of 186 carbapenem-resistant Enterobacteriaceae isolates (CRE) were collected in a grade-3 hospital in Zhejiang province. Carbapenem-resistant genes, including bla KPC, bla IMP, bla VIM, bla OXA-48 and bla NDM-1 were screened and sequenced. Ninety isolates were identified as harboring the bla KPC-2 genes, and five bla NDM-1-positive isolates were uncovered. XbaI-PFGE revealed that three bla NDM-1-positive K. pneumoniae isolates belonged to two different clones. S1-PFGE and southern blot suggested that the bla NDM-1 genes were located on IncX3-type plasmids with two different sizes ranging from 33.3 to 54.7 kb (n=4) and 104.5 to 138.9 kb (n=1), respectively, all of which could easily transfer to Escherichia coli by conjugation and electrotransformation. The high-throughput sequencing of two plasmids was performed leading to the identification of a smaller 54-kb plasmid, which had high sequence similarity with a previously reported pCFNDM-CN, and a larger plasmid in which only a 7.8-kb sequence of a common gene environment around bla NDM-1 (bla NDM-1-trpF- dsbC-cutA1-groELInsE,) was detected. PCR mapping and sequencing demonstrated that four smaller bla NDM-1 plasmids contained a common gene environment around bla NDM-1 (IS5-bla NDM-1-trpF- dsbC-cutA1-groEL). We monitored the CRE epidemic in our hospital and determined that KPC-2 carbapenemase was a major risk to patient health and the IncX3-type plasmid played a vital role in the spread of the bla NDM-1 gene among the CRE.  相似文献   

3.

Background

The current spread of the gene encoding the metallo-ß-lactamase NDM-1 in Enterobacteriaceae is linked to a variety of surrounding genetic structures and plasmid scaffolds.

Methodology

The whole sequence of plasmid pGUE-NDM carrying the bla NDM-1 gene was determined by high-density pyrosequencing and a genomic comparative analysis with other bla NDM-1-negative IncFII was performed.

Principal Findings

Plasmid pGUE-NDM replicating in Escherichia coli confers resistance to many antibiotic molecules including β-lactams, aminoglycosides, trimethoprim, and sulfonamides. It is 87,022 bp in-size and carries the two β-lactamase genes bla NDM-1 and bla OXA-1, together with three aminoglycoside resistance genes aacA4, aadA2, and aacC2. Comparative analysis of the multidrug resistance locus contained a module encompassing the bla NDM-1 gene that is actually conserved among different structures identified in other enterobacterial isolates. This module was constituted by the bla NDM-1 gene, a fragment of insertion sequence ISAba125 and a bleomycin resistance encoding gene.

Significance

This is the first characterized bla NDM-1-carrying IncFII-type plasmid. Such association between the bla NDM-1 gene and an IncFII-type plasmid backbone is extremely worrisome considering that this plasmid type is known to spread efficiently, as examplified with the worldwide dissemination of bla CTX-M-15-borne IncFII plasmids.  相似文献   

4.
New Delhi metallo-β-lactamase-1 (NDM-1), an acquired class B carbapenemase, is a significant clinical threat due to its extended hydrolysis of β-lactams including carbapenems. In this study, we identified the first confirmed clinical isolate of Escherichia coli BJ01 harboring bla NDM-1 in China. The isolate is highly resistant to all tested antimicrobials except polymyxin. bla NDM-1, bla CTX-M-57, and bla TEM-1 were identified in the isolate. bla NDM-1 was transferable to E. coli EC600 and DH5α in both plasmid conjugation experiments and plasmid transformation tests. BJ01 was identified as a new sequence type, ST224, by multilocus sequence typing. Analysis of genetic environment shows complex transposon-like structures surrounding the bla NDM-1 gene. Genetic analysis revealed that the region flanking bla NDM-1 was very similar to previously identified NDM-positive Acinetobacter spp. isolated in China. The findings of this study raise attention to the emergence and spread of NDM-1-carrying Enterobacteriaceae in China.  相似文献   

5.
The emergence of novel resistant markers hampers the efficacy of beta-lactam antibiotics to treat infections caused by micro-organisms carrying such resistances. This study investigated the antimicrobial susceptibility pattern, the carpapenem-associated determinants and the molecular epidemiology of Klebsiella pneumoniae showing a New Delhi (NDM) metallo-β-lactamase phenotype, isolated from a patient admitted to intensive care unit of the main hospital for acute care of Molise region, central Italy. Antimicrobial susceptibility was assessed for nineteen antibiotics by disc diffusion and agar dilution methods. Carbapenem-associated resistance determinants were detected through gene-specific amplifications, targeting blaNDM-1, blaSHV and blaTEM, blaCTX-M, blaKPC, blaVIM, blaIMP, blaGES and blaOXA-48-lixe. Molecular characterization was carried out through multilocus sequence typing. The strain showed a multidrug resistant profile, and PCR and sequencing confirmed the presence of blaNDM-1 gene. Among the multiple resistance-associated determinants tested, the isolate, which was assigned to the sequence type ST11, only harboured blaSHV and blaTEM genes. This is the first report of NDM-1 variant in the regional healthcare setting for acute patients, raising significant concerns about the increase in the antimicrobials resistance spread through a different mechanism from the endemic KPC carbapenemase, and underlining the circulation of a virulent clone never identified before in this area.  相似文献   

6.
The evolution of NDM genes (blaNDM) in E. coli is accounted for expansive multidrug resistance (MDR), causing severe infections and morbidities in the pediatric population. This study aimed to analyze the phylogeny and mutations in NDM variants of E. coli recovered from the pediatric population. Carbapenem-resistant clinical strains of E. coli were identified using microbiological phenotypic techniques. PCR technique used to amplify the blaNDM genes, identified on agarose gel, and analyzed by DNA sequencing. The amino acid substitutions were examined for mutations after aligning with wild types. Mutational and phylogenetic analysis was performed using Lasergene, NCBI blastn, Clustal Omega, and MEGA software, whereas PHYRE2 software was used for the protein structure predictions. PCR amplification of the blaNDM genes detected 113 clinical strains of E. coli with the contribution of blaNDM-1 (46%), blaNDM-4 (3.5%), and blaNDM-5 (50%) variants. DNA sequencing of blaNDM variants showed homology to the previously described blaNDM-1, blaNDM-4, and blaNDM-5 genes available at GenBank and NCBI database. In addition, the mutational analysis revealed in frame substitutions of Pro60Ala and Pro59Ala in blaNDM-4 and blaNDM-5, respectively. The blaNDM-1 was ortholog with related sequences of E. coli available at GenBank. The phylogenetic analysis indicated that the NDM gene variants resemble other microbes reported globally with some new mutational sites.  相似文献   

7.
The evolution of NDM genes (blaNDM) in E. coli is accounted for expansive multidrug resistance (MDR), causing severe infections and morbidities in the pediatric population. This study aimed to analyze the phylogeny and mutations in NDM variants of E. coli recovered from the pediatric population. Carbapenem-resistant clinical strains of E. coli were identified using microbiological phenotypic techniques. PCR technique used to amplify the blaNDM genes, identified on agarose gel, and analyzed by DNA sequencing. The amino acid substitutions were examined for mutations after aligning with wild types. Mutational and phylogenetic analysis was performed using Lasergene, NCBI blastn, Clustal Omega, and MEGA software, whereas PHYRE2 software was used for the protein structure predictions. PCR amplification of the blaNDM genes detected 113 clinical strains of E. coli with the contribution of blaNDM-1 (46%), blaNDM-4 (3.5%), and blaNDM-5 (50%) variants. DNA sequencing of blaNDM variants showed homology to the previously described blaNDM-1, blaNDM-4, and blaNDM-5 genes available at GenBank and NCBI database. In addition, the mutational analysis revealed in frame substitutions of Pro60Ala and Pro59Ala in blaNDM-4 and blaNDM-5, respectively. The blaNDM-1 was ortholog with related sequences of E. coli available at GenBank. The phylogenetic analysis indicated that the NDM gene variants resemble other microbes reported globally with some new mutational sites.  相似文献   

8.
New Delhi metallo-β-lactamase producing Pseudomonas aeruginosa isolates are of special interest since P. aeruginosa is a major cause of nosocomial infections, the treatment of which could now be jeopardized, especially in developing countries. Six additional NDM-1 positive P. aeruginosa clinical isolates belonging to two different genotypes were shown to be plasmid-free. PFGE-hybridization experiments revealed the chromosomal location of the bla NDM-1 gene. Restriction analysis and hybridization revealed that two copies of the bla NDM-1 gene are present in the genomes of all tested isolates, as in previously characterized P. aeruginosa MMA83. Moreover, it was shown that increasing imipenem concentration did not have the effect on copy number of the bla NDM-1 gene in the genome of P. aeruginosa MMA83.  相似文献   

9.
《Genomics》2020,112(2):1182-1191
Enterobacter bugandensis is a recently described species that has been largely associated with nosocomial infections. We report the genome of a non-clinical E. bugandensis strain, which was integrated with publicly available genomes to study the pangenome and general population structure of E. bugandensis. Core- and whole-genome multilocus sequence typing allowed the detection of five E. bugandensis phylogroups (PG-A to E), which contain important antimicrobial resistance and virulence determinants. We uncovered several extended-spectrum β-lactamases, including blaCTX-M-55 and blaNDM-5, present in an IncX replicon type plasmid, described here for the first time in E. bugandensis. Genetic context analysis of blaNDM-5 revealed the resemblance of this plasmid with other IncX plasmids from other bacteria from the same country. Three distinctive siderophore producing operons were found in E. bugandensis: enterobactin (ent), aerobactin (iuc/iut), and salmochelin (iro). Our findings provide novel insights on the lifestyle, physiology, antimicrobial, and virulence profiles of E. bugandensis.  相似文献   

10.
This study aimed to investigate the molecular mechanisms of carbapenem and colistin resistance in K. pneumoniae and E. coli isolates obtained from hospitalized patients in Carthagene International Hospital of Tunis. A total of 25 K. pneumoniae and 2 E. coli clinical isolates with reduced susceptibility to carbapenems were recovered. Susceptibility testing and phenotypic screening tests were carried out. ESBL, AmpC, carbapenemase and other antibiotic resistance genes were sought by PCR-sequencing. The presence of plasmid-mediated colistin resistance genes (mcr-1-8) was examined by PCR and the nucleotide sequence of the mgrB gene was determined. The analysis of plasmid content was performed by PCR-Based Replicon Typing (PBRT). The clonality of isolates was assessed by PFGE and multilocus sequence typing (MLST). All of the isolates produced carbapenemase activity. They showed a great variation in the distribution of ESBL, AmpC, carbapenemase and other plasmid-mediated resistance determinants. K. pneumoniae isolates carried blaNDM-1 (n = 11), blaOXA-48 (n = 11), blaNDM-1 + blaOXA-48 (n = 1), blaNDM-1 + blaVIM-1 (n = 1), blaOXA-204 (n = 1), along with blaCTX-M, blaOXA, blaTEM, blaCMY, blaDHA and blaSHV genes variants on conjugative plasmid of IncL/M, IncR, IncFIIK, IncFIB, and IncHI1 types. Three sequence types ST101, ST307 and ST15 were identified. The mgrB alteration g109a (G37S) was detected in a single colistin-resistant, NDM-1 and OXA-48-coproducing K. pneumoniae isolate. The two E. coli isolates belonged to ST95, co-produced NDM-1 and CTX-M-15, and harboured plasmid of IncFII and IncFIB types. To our knowledge, this is the first report in Tunisia of NDM-1, OXA-48, and CTX-M-15 coexistence in colistin-resistant K. pneumoniae ST15.  相似文献   

11.

Background

The NDM-1 carbapenemase has been identified in 2008 in Enterobacteriaceae. Since then, several reports have emphasized its rapid dissemination throughout the world. The spread of NDM carbapenemases involve several bla NDM gene variants associated with various plasmids among several Gram negative species.

Methodology

A multidrug-resistant E. coli isolate recovered from urine of a patient who had travelled to Burma has been characterized genetically and biochemically.

Principal Findings

E. coli COU was resistant to all antibiotics tested except amikacin, tigecycline, fosfomycin, and chloramphenicol. Analysis of the antibiotic resistance traits identified a metallo-ß-lactamase, a novel NDM variant, NDM-7. It differs from NDM-4 by a single amino acid substitution sharing an identical extended spectrum profile towards carbapenems. The bla NDM-7 gene was located on an untypeable conjugative plasmid and associated with a close genetic background similar to those described among the bla NDM-1 genes. The isolate also harbours bla CTXM-15 and bla OXA-1 genes and belonged to ST167.

Significance

This study highlights that spread of NDM producers correspond to spread of multiple bla NDM genes and clones and therefore will be difficult to control.  相似文献   

12.
The emergence of New Delhi metallo-β-lactamase 1 (NDM-1) has become established as a major public health threat and represents a new challenge in the treatment of infectious diseases. In this study, we report a high incidence and endemic spread of NDM-1-producing carbapenem-resistant Enterobacter cloacae isolates in Henan province, China. Eight (72.7%) out of eleven non-duplicated carbapenem-resistant E. cloacae isolates collected between June 2011 and May 2013 were identified as NDM-1 positive. The bla NDM-1 gene surrounded by an entire ISAba125 element and a bleomycin resistance gene ble MBL in these isolates were carried by diverse conjugatable plasmids (IncA/C, IncN, IncHI2 and untypeable) ranging from ~55 to ~360 kb. Molecular epidemiology analysis revealed that three NDM-1-producing E. cloacae belonged to the same multilocus sequence type (ST), ST120, two of which were classified as extensively drug-resistant (XDR) isolates susceptible only to tigecycline and colistin. The two XDR ST120 E. cloacae isolates co-harbored bla NDM-1, armA and fosA3 genes and could transfer resistance to carbapenems, fosfomycin and aminoglycosides simultaneously via a conjugation experiment. Our study demonstrated NDM-1 was the most prevalent metallo-β-lactamase (MBL) among carbapenem-resistant E.cloacae isolates and identified a potential endemic clone of ST120 in Henan province. These findings highlight the need for enhanced efforts to monitor the further spread of NDM-1 and XDR ST120 E. cloacae in this region.  相似文献   

13.

Objectives

The study aimed to investigate the prevalence and epidemiological characteristics of bla NDM-1 (encoding New Delhi metallo-β-lactamase 1) in Enterobacteriaceae and the Acinetobacter calcoaceticus-Acinetobacter baumannii complex (ABC) in China from July 2011 to June 2012.

Methods

PCR was used to screen for the presence of bla NDM-1 in all organisms studied. For bla NDM-1-positive strains, 16S rRNA analysis and Analytical Profile Index (API) strips were used to identify the bacterial genus and species. The ABCs were reconfirmed by PCR detection of bla OXA-51-like. Antibiotic susceptibilities of the bacteria were assessed by determining minimum inhibitory concentration (MIC) of them using two-fold agar dilution test, as recommended by the Clinical and Laboratory Standards Institute (CLSI). Molecular typing was performed using pulsed-field gel electrophoresis (PFGE). S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE) and Southern blot hybridization were conducted to ascertain the gene location of bla NDM-1. Conjugation experiments were conducted to determine the transmission of bla NDM-1-positive strains.

Results

Among 2,170 Enterobacteriaceae and 600 ABCs, seven Enterobacteriaceae strains and two A. calcoaceticus isolates from five different cities carried the bla NDM-1 gene. The seven Enterobacteriaceae strains comprised four Klebsiella pneumoniae, one Enterobacter cloacae, one Enterobacter aerogen and one Citrobacter freundii. All seven were non-susceptible to imipenem, meropenem or ertapenem. Two A. calcoaceticus species were resistant to imipenem and meropenem. Three K. pneumoniae showed the same PFGE profiles. The bla NDM-1 genes of eight strains were localized on plasmids, while one was chromosomal.

Conclusions

Compared with previous reports, the numbers and species containing the bla NDM-1 in Enterobacteriaceae have significantly increased in China. Most of them are able to disseminate the gene, which is cause for concern. Consecutive surveillance should be implemented and should also focus on the dissemination of bla NDM-1 among gram-negative clinical isolates.  相似文献   

14.
Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (bla NDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards bla NDM-1 Klebsiella pneumonia and bla NDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards bla NDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.  相似文献   

15.
New Delhi metallo-β-lactamase-1 gene (blaNDM-1) codes for New Delhi metallo-beta-lactamase-1 (NDM-1) enzyme that cleaves the amide bond of β-lactam ring, and provides resistance against major classes of β-lactam antibiotics. Dissemination of the plasmid borne blaNDM-1 through horizontal gene transfer is a potential threat to the society. In this study, a rapid non-culture method for detecting NDM-1 positive bacteria was developed by Loop Mediated Isothermal Amplification (LAMP) of blaNDM-1. Sensitivity of this method was found to be one femtogram of plasmid DNA, which translates into 2.6–25.8 copies depending on the size of the plasmid DNA. This method was applied to detect NDM-1 positive bacteria in 81 water samples that were collected from environmental and drinking water sources. NDM-1 positive bacteria were detected in three drinking water samples by LAMP but not by PCR. These three samples were collected from the water sources that were treated with chlorine for decontamination before public distribution. NDM-1 positive bacteria were not detected in lake water samples or in the samples that were collected from the water sources that were purified by reverse osmosis before public distribution. Detection of NDM-1 positive bacteria using LAMP was found to be safe, sensitive and rapid for screening large number of samples from diverse sources. This method could be developed as on-field detection kit by using fluorescent dyes to visualize the amplified blaNDM-1 gene.  相似文献   

16.
Escherichia coli resistant to extended-spectrum cephalosporins have been detected in the Norwegian broiler production, despite the fact that antimicrobial agents are rarely used. The genetic mechanism responsible for cephalosporin resistance is mainly attributed to the presence of the blaCMY-2 gene encoding a plasmid-mediated AmpC-beta-lactamase (pAmpC). The aim of this study was to characterize and compare blaCMY-2 containing Escherichia coli isolated from the intestinal flora of broilers and retail chicken meat (fillets) to identify possible successful clones and/or resistance plasmids widespread in the Norwegian broiler production. Methods used included PCR based phylotyping, conjugation experiments, plasmid replicon typing, pulsed-field gel electrophoresis, multiple locus variable-number tandem-repeats analysis and whole genome sequencing. The nucleotide sequence of an IncK plasmid carrying blaCMY-2 was determined. Intestinal isolates displayed a higher degree of genetic diversity than meat isolates. A cluster of genetically related isolates belonging to ST38, phylogroup D, carrying blaCMY-2 containing IncK plasmids was identified. Furthermore, genes encoding plasmid stability systems (relBE/stbDE and pndAC) were identified on the IncK plasmid. Single nucleotide polymorphism (SNP) analysis of a subset of isolates confirmed a close genetic relationship within the two most prevalent STs. The IncK plasmids within these two STs also shared a high degree of similarity. Cephalosporin-resistant E. coli with the same genetic characteristics have been identified in the broiler production in other European countries, and the IncK plasmid characterized in this study showed close homology to a plasmid isolated from retail chicken meat in the Netherlands. The results indicate that both clonal expansion and horizontal transfer of blaCMY-2 containing plasmids contribute to dissemination of cephalosporin resistant E. coli in the broiler production. The presence of plasmid stability systems may explain why the IncK plasmid containing blaCMY-2 is maintained and disseminated in the Norwegian broiler production in absence of selection pressure from the use of antimicrobial agents.  相似文献   

17.
The isolation of OXA-48-producing Enterobacteriaceae has increased dramatically in Mediterranean countries in the past 10 years, and has recently emerged in Asia. Between January 2012 and May 2014, a total of 760 carbapenem non-susceptible Klebsiella pneumoniae (CnSKP) isolates were collected during a Taiwan national surveillance. Carbapenemases were detected in 210 CnSKP isolates (27.6%), including 162 KPC-2 (n = 1), KPC-3, KPC-17, and NDM-1 (n = 1 each), OXA-48 (n = 4), IMP-8 (n = 18), and VIM-1 (n = 24). The four bla OXA-48 CnSKP isolates were detected in late 2013. Herein we report the emergence OXA-48-producing K. pneumoniae isolates in Taiwan. PFGE analysis revealed that the four isolates belonged to three different pulsotypes. Three isolates harboured bla CTX-M genes and belonged to MLST type ST11. In addition, the plasmids belonged to the incompatibility group, IncA/C. One isolate belonged to ST116 and the plasmid incompatibility group was non-typeable. The sequence upstream of the bla OXA-48 gene in all four isolates was identical to pKPOXA-48N1, a bla OXA-48-carrying plasmid. This is the first report of OXA-48-producing Enterobacteriaceae in Taiwan and the second report to identify bla OXA-48 on an IncA/C plasmid in K. pneumoniae. Given that three isolates belong to the same pandemic clone (ST11) and possess the IncA/C plasmid and similar plasmid digestion profile that indicated the role of clonal spread or plasmid for dissemination of bla OXA-48 gene, the emergence of OXA-48-producing K. pneumoniae in Taiwan is of great concern.  相似文献   

18.
Global spread of KPC poses to be a serious threat complicating treatment options in hospital settings. The present study investigates the genetic environment of bla KPC-2 among clinical isolates of Pseudomonas aeruginosa from a tertiary referral hospital of India. The study isolates were collected from different wards and clinics of Silchar Medical College and Hospital, India, from 2012–2013. The presence of bla KPC was confirmed by genotypic characterization followed by sequencing. Cloning of the bla KPC-2 gene was performed and the genetic environment of this gene was characterized as well. Transferability of the resistance gene was determined by transformation assay and Southern hybridization. Additionally, restriction mapping was also carried out. Two isolates of P. aeruginosa were found to harbor bla KPC-2, were resistant towards aminoglycosides, quinolone and β-lactam-β-lactamase inhibitor combination. In both the isolates, the resistance determinant was associated with class 1 integron and horizontally transferable. Both the isolates were co-harboring bla NDM-1. The first detection of this integron mediated bla KPC-2 coexisting with bla NDM-1 in P. aeruginosa from India is worrisome, and further investigation is required to track the gene cassette mediated bla KPC-2 in terms of infection control and to prevent the spread of this gene in hospitals as well as in the community.  相似文献   

19.
Multidrug resistant microbes present in the environment are a potential public health risk. In this study, we investigate the presence of New Delhi metallo-β-lactamase 1 (NDM-1) producing bacteria in the 99 water samples in Beijing City, including river water, treated drinking water, raw water samples from the pools and sewage from 4 comprehensive hospitals. For the bla NDM-1 positive isolate, antimicrobial susceptibility testing was further analyzed, and Pulsed Field Gel Electrophoresis (PFGE) was performed to determine the genetic relationship among the NDM-1 producing isolates from sewage and human, as well as the clinical strains without NDM-1. The results indicate that there was a higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals, while no NDM-1 producing isolates were recovered from samples obtained from the river, drinking, or fishpond water. Surprisingly, these isolates were markedly different from the clinical isolates in drug resistance and pulsed field gel electrophoresis profiles, suggesting different evolutionary relationships. Our results showed that the hospital sewage may be one of the diffusion reservoirs of NDM-1 producing bacteria.  相似文献   

20.

Background

In recent years, New Delhi metallo-beta-lactamases 1 (bla NDM-1) has been reported with increasing frequency and become prevalent. The present study was undertaken to investigate the epidemiological dissemination of the bla NDM-1 gene in Enterobacter cloacae isolates at a teaching hospital in Yunnan, China.

Methods

Antimicrobial susceptibility testing was performed using VITEK 2 system and E test gradient strips. The presence of integrons and insertion sequence common region 1 were examined by PCR and sequencing. Clonal relatedness was assessed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Conjugation experiments and Southern blot hybridization were performed to determine the transferability of plasmids.

Results

Ten E. cloacae isolates and their Escherichia coli transconjugants were exhibited similar resistant patterns to carbapenems, cephalosporins and penicillins. 8 (80%) of E. cloacae isolates carried class 1 integron and 1 (12.5%) carried class 2 integron. Integron variable regions harbored the genes which encoded resistance to aminoglycosides (aadA1, aadA2, aadA5, aadB, aac(6′)-Ib-cr), sulfamethoxazole/trimethoprim (dfrA17, dfrA12, dfrA15) and Streptozotocin (sat2). Six E. cloacae isolates belonged to ST74 and exhibited highly similar PFGE patterns. Each isolate shared an identical plasmid with ~33.3 kb size that carried the bla NDM-1 gene, except T3 strain, of which the bla NDM-1 gene was located on a ~50 kb plasmid.

Conclusions

Our findings suggested that plasmid was able to contribute to the dissemination of bla NDM-1. Hence, more attention should be devoted to monitor the dissemination of the bla NDM-1 gene due to its horizontal transfer via plasmid. In addition, nosocomial surveillance system should actively monitor the potential endemic clone of ST74 to prevent their further spread.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号