首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium vivax is a very common but non-cultivable malaria parasite affecting large human population in tropical world. To develop therapeutic reagents for this malaria, the parasite molecules involved in host-parasite interaction need to be investigated as they form effective vaccine or drug targets. We have investigated here the erythrocyte binding activity of a group of 15 different Plasmodium vivax tryptophan rich antigens (PvTRAgs). Only six of them, named PvTRAg, PvTRAg38, PvTRAg33.5, PvTRAg35.2 PvTRAg69.4 and PvATRAg74, showed binding to host erythrocytes. That the PvTRAgs binding to host erythrocytes was specific was evident from the competitive inhibition and saturation kinetics results. The erythrocyte receptors for these six PvTRAgs were resistant to trypsin and neuraminidase. These receptors were also chymotrypsin resistant except the receptors for PvTRAg38 and PvATRAg74 which were partially sensitive to this enzyme. The cross-competition studies showed that the chymotrypsin resistant RBC receptor for each of these two proteins was different. Altogether, there seems to be three RBC receptors for these six PvTRAgs and each PvTRAg has two RBC receptors. Both RBC receptors for PvTRAg, PvTRAg69.4, PvTRAg33.5, and PvTRAg35.2 were common to all these four proteins. These four PvTRAgs also shared one of their RBC receptors with PvTRAg38 as well as with PvATRAg74. The erythrocyte binding activity of these six PvTRAgs was inhibited by the respective rabbit polyclonal antibodies as well as by the natural antibodies produced by the P. vivax exposed individuals. It is concluded that only selective few PvTRAgs show erythrocyte binding activity involving different receptor molecules which can be blocked by the natural antibodies. Further studies on these receptor and ligands may lead to the development of therapeutic reagents for P. vivax malaria.  相似文献   

2.
Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle.  相似文献   

3.
Need for malaria vaccine necessitates the characterization of potential antigens of the Plasmodium parasite. Recently, we have identified several Plasmodium vivax tryptophan-rich antigens (PvTRAgs). Here, we describe the immunological characterization of hitherto undescribed two such antigens PvTRAg 35.2 and PvTRAg 80.6 which are respective homologue of Plasmodium falciparum merozoite associated tryptophan-rich antigen (PfMaTrA) and P. falciparum tryptophan and threonine rich antigen (PfTryThrA) involved in erythrocyte invasion. Each of the pvtrag genes is comprised of two exons where exon 2 encodes for major part of the protein. PvTRAg 35.2 and PvTRAg 80.6 showed 97.06% and 94.12% (n = 34) seropositivity rates, and 92.3% (n = 13) and 100% (n = 29) lymphoproliferative responses, respectively, among P. vivax exposed individuals. Geometric mean values of IL-12, IFN-γ, TNF-α, IL-4 and IL-10 in PBMC culture supernatants of P. vivax exposed individuals were 182.02, 60.3, 62.84, 196.01 and 177.17 pg/ml against PvTRAg 35.2 and 185.27, 58.15, 64.56, 142.01 and 157.2 pg/ml against PvTRAg 80.6 showing mixed immune response with distinct biased towards anti-inflammatory Th2 phenotype. The pvtrag 35.2 gene was highly conserved in the parasite population whereas pvtrag 80.6 showed minor variations in the N-terminal region but highly conserved in the C-terminal region containing tryptophan-rich domain.  相似文献   

4.
Bora H  Garg S  Sen P  Kumar D  Kaur P  Khan RH  Sharma YD 《PloS one》2011,6(1):e16294
Tryptophan-rich proteins from several malarial parasites have been identified where they play an important role in host-parasite interaction. Structural characterization of these proteins is needed to develop them as therapeutic targets. Here, we describe a novel Plasmodium vivax tryptophan-rich protein named PvTRAg33.5. It is expressed by blood stage(s) of the parasite and its gene contains two exons. The exon 1 encodes for a 23 amino acids long putative signal peptide which is likely to be cleaved off whereas the exon 2 encodes for the mature protein of 252 amino acids. The mature protein contains B-cell epitopes which were recognized by the human immune system during P.vivax infection. The PvTRAg33.5 contains 24 (9.5%) tryptophan residues and six motifs whose patterns were similar among tryptophan-rich proteins. The modeled structure of the PvTRAg33.5 consists of a multidomain architecture which is stabilized by the presence of large number of tryptophan residues. The recombinant PvTRAg33.5 showed predominantly α helical structure and alpha helix to beta sheet transition at pH below 4.5. Protein acquires an irreversible non-native state at temperature more than 50°C at neutral pH. Its secondary and tertiary structures remain stable in the presence of 35% alcohol but these structures are destabilized at higher alcohol concentrations due to the disturbance of hydrophobic interactions between tryptophanyl residues. These structural changes in the protein might occur during its translocation to interact with other proteins at its final destination for biological function such as erythrocyte invasion.  相似文献   

5.
Many important protein–protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled) but where no structure of the protein–peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein–peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.  相似文献   

6.
Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.  相似文献   

7.
Mnt is a repressor from phage P22 that belongs to the ribbon–helix–helix family of DNA binding factors. Four amino acids from the N-terminus of the protein, Arg2, His6, Asn8 and Arg10, interact with the base pairs of the DNA to provide the sequence specificity. Raumann et al. (Nature Struct. Biol., 2, 1115–1122) identified position 6 as a ‘master residue’ that controls the specificity of the protein. Models for the interaction have residue 6 of Mnt interacting directly with position 5 of the operator. In vivo selections demonstrated that protein variants at residue 6 bound specifically to operator mutations at that position. Operators in which the wild-type G at position 5 was replaced by T specifically bound to several different protein variants, primarily hydrophobic residues. The obtained protein variants, plus some others, were used in in vitro selections to determine their preferred binding sites. The results showed that the residue at position 6 influenced the preference for binding site bases predominantly at position 5, but that the effects of altering it can extend over longer distances, consistent with its designation as a ‘master residue’. The similarities of binding sites for different residues do not correlate strongly with common measures of amino acid similarities.  相似文献   

8.
The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein (PrPC) into its disease-causing isoform, PrPSc. This conversion is associated with a marked change in secondary structure from predominantly α-helical to a high β-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP(23–230), we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP(107–143), mPrP(107–126), and mPrP(127–143). Our results showed that the amyloid fibrils formed from mPrP(107–143) and mPrP(127–143), but not those formed from mPrP(107–126), were able to seed the amyloidogenesis of mPrP(23–230), showing that the segment residing in sequence 127–143 was used to form the amyloid core in the fibrillization of mPrP(23–230).  相似文献   

9.
The Plasmodium vivax Duffy binding protein (PvDBP) and its erythrocytic receptor, the Duffy antigen receptor for chemokines (DARC), are involved in the major P. vivax erythrocyte invasion pathway. An open cohort study to analyze DARC genotypes and their relationship to PvDBP immune responses was carried out in 620 volunteers in an agricultural settlement of the Brazilian Amazon. Three cross-sectional surveys were conducted at 6-month intervals, comprising 395, 410, and 407 subjects, respectively. The incidence rates of P. vivax infection was 2.32 malaria episodes per 100 person-months under survey (95% confidence interval [CI] of 1.92-2.80/100 person-month) and, of P. falciparum, 0.04 per 100 person-months (95% CI of 0.007–0.14/100 person-month). The distribution of DARC genotypes was consistent with the heterogeneous ethnic origins of the Amazon population, with a predominance of non-silent DARC alleles: FY*A > FY*B. The 12-month follow-up study demonstrated no association between DARC genotypes and total IgG antibodies as measured by ELISA targeting PvDBP (region II, DBPII or regions II–IV, DBPII-IV). The naturally acquired DBPII specific binding inhibitory antibodies (BIAbs) tended to be more frequent in heterozygous individuals carrying a DARC-silent allele (FY*BES). These results provide evidence that DARC polymorphisms may influence the naturally acquired inhibitory anti-Duffy binding protein II immunity.  相似文献   

10.
Template-based studies on antimicrobial peptide (AMP) derivatives obtained through manipulation of the amino acid sequence are helpful to identify properties or residues that are important for biological activity. The present study sheds light on the importance of specific amino acids of the milk-derived αs2-casein f(183–207) peptide to its antibacterial activity against the food-borne pathogens Listeria monocytogenes and Cronobacter sakazakii. Trimming of the peptide revealed that residues at the C-terminal end of the peptide are important for activity. Removal of the last 5 amino acids at the C-terminal end and replacement of the Arg at position 23 of the peptide sequence by an Ala residue significantly decreased activity. These findings suggest that Arg23 is very important for optimal activity of the peptide. Substitution of the also positively charged Lys residues at positions 15 and 17 of the αs2-casein f(183–207) peptide also caused a significant reduction of the effectiveness against C. sakazakii, which points toward the importance of the positive charge of the peptide for its biological activity. Indeed, simultaneous replacement of various positively charged amino acids was linked to a loss of bactericidal activity. On the other hand, replacement of Pro residues at positions 14 and 20 resulted in a significantly increased antibacterial potency, and hydrophobic end tagging of αs2-casein f(193–203) and αs2-casein f(197–207) peptides with multiple Trp or Phe residues significantly increased their potency against L. monocytogenes. Finally, the effect of pH (4.5 to 7.4), temperature (4°C to 37°C), and addition of sodium and calcium salts (1% to 3%) on the activity of the 15-amino-acid αs2-casein f(193–207) peptide was also determined, and its biological activity was shown to be completely abolished in high-saline environments.  相似文献   

11.
Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) is an erythrocyte binding protein known to be involved in malarial parasite invasion. Although anti-GAMA antibodies have been shown to block GAMA attachment to the erythrocyte surface and subsequently inhibit parasite invasion, little is known about the molecular mechanisms by which GAMA promotes the invasion process. In this study, LC-MS analysis was performed on the erythrocyte membrane to identify the specific receptor that interacts with GAMA. We found that ankyrin 1 and the band 3 membrane protein showed affinity for GAMA, and characterization of their binding specificity indicated that both Plasmodium falciparum and Plasmodium vivax GAMA bound to the same extracellular loop of band 3 (loop 5). In addition, we show the interaction between GAMA and band 3 was sensitive to chymotrypsin. Furthermore, antibodies against band 3 loop 5 were able to reduce the binding activity of GAMA to erythrocytes and inhibit the invasion of P. falciparum merozoites into human erythrocytes, whereas antibodies against P. falciparum GAMA (PfGAMA)-Tr3 only slightly reduced P. falciparum invasion. The identification and characterization of the erythrocyte GAMA receptor is a novel finding that identifies an essential mechanism of parasite invasion of host erythrocytes.  相似文献   

12.
Neprilysin is a transmembrane zinc metallopeptidase that degrades a wide range of peptide substrates. It has received attention as a potential therapy for Alzheimer’s disease due to its ability to degrade the peptide amyloid beta. However, its broad range of peptide substrates has the potential to limit its therapeutic use due to degradation of additional peptides substrates that tightly regulate many physiological processes. We sought to generate a soluble version of the ectodomain of neprilysin with improved activity and specificity towards amyloid beta as a potential therapeutic for Alzheimer’s disease. Extensive amino acid substitutions were performed at positions surrounding the active site and inner surface of the enzyme and variants screened for activity on amyloid beta 1–40, 1–42 and a variety of other physiologically relevant peptides. We identified several mutations that modulated and improved both enzyme selectivity and intrinsic activity. Neprilysin variant G399V/G714K displayed an approximately 20-fold improved activity on amyloid beta 1–40 and up to a 3,200-fold reduction in activity on other peptides. Along with the altered peptide substrate specificity, the mutant enzyme produced a markedly altered series of amyloid beta cleavage products compared to the wild-type enzyme. Crystallisation of the mutant enzyme revealed that the amino acid substitutions result in alteration of the shape and size of the pocket containing the active site compared to the wild-type enzyme. The mutant enzyme offers the potential for the more efficient degradation of amyloid beta in vivo as a therapeutic for the treatment of Alzheimer’s disease.  相似文献   

13.
Vaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries. VHR exhibits more stringent substrate specificity than classical protein-tyrosine phosphatases and recognizes two distinct classes of Tyr(P) peptides. The class I substrates are similar to the Tyr(P) motifs derived from the VHR protein substrates, having sequences of (D/E/φ)(D/S/N/T/E)(P/I/M/S/A/V)pY(G/A/S/Q) or (D/E/φ)(T/S)(D/E)pY(G/A/S/Q) (where φ is a hydrophobic amino acid and pY is phosphotyrosine). The class II substrates have the consensus sequence of (V/A)P(I/L/M/V/F)X1–6pY (where X is any amino acid) with V/A preferably at the N terminus of the peptide. Site-directed mutagenesis and molecular modeling studies suggest that the class II peptides bind to VHR in an opposite orientation relative to the canonical binding mode of the class I substrates. In this alternative binding mode, the Tyr(P) side chain binds to the active site pocket, but the N terminus of the peptide interacts with the carboxylate side chain of Asp164, which normally interacts with the Tyr(P) + 3 residue of a class I substrate. Proteins containing the class II motifs are efficient VHR substrates in vitro, suggesting that VHR may act on a novel class of yet unidentified Tyr(P) proteins in vivo.  相似文献   

14.
An unusual and distinguishing feature of alfalfa mosaic virus (AMV) and ilarviruses such as tobacco streak virus (TSV) is that the viral coat protein is required to activate the early stages of viral RNA replication, a phenomenon known as genome activation. AMV-TSV coat protein homology is limited; however, they are functionally interchangeable in activating virus replication. For example, TSV coat protein will activate AMV RNA replication and vice versa. Although AMV and TSV coat proteins have little obvious amino acid homology, we recently reported that they share an N-terminal RNA binding consensus sequence (Ansel-McKinney et al., EMBO J. 15:5077–5084, 1996). Here, we biochemically compare the binding of chemically synthesized peptides that include the consensus RNA binding sequence and lysine-rich (AMV) or arginine-rich (TSV) environment to 3′-terminal TSV and AMV RNA fragments. The arginine-rich TSV coat protein peptide binds viral RNA with lower affinity than the lysine-rich AMV coat protein peptides; however, the ribose moieties protected from hydroxyl radical attack by the two different peptides are localized in the same area of the predicted RNA structures. When included in an infectious inoculum, both AMV and TSV 3′-terminal RNA fragments inhibited AMV RNA replication, while variant RNAs unable to bind coat protein did not affect replication significantly. The data suggest that RNA binding and genome activation functions may reside in the consensus RNA binding sequence that is apparently unique to AMV and ilarvirus coat proteins.  相似文献   

15.
The heavy chain of rabbit immunoglobulin G exists in three major allotypic patterns, Aa1–Aa3. A comparison of the amino acid compositions of the heavy chains isolated from immunoglobulin IgG homozygous for each allotypic determinant revealed the presence of an additional methionine residue per chain in the Aa3 allotype relative to the Aa1 and Aa2 allotypes. The position of the additional methionine residue was determined by cyanogen bromide cleavage and by tryptic digestion of the γ-chains; it coincided with the inter-Fd–Fc area of the chain. Isolation and characterization of the corresponding tryptic peptides of 31 amino acid residues from each of the allotypes showed the presence of a methionine-for-threonine replacement in the Aa3 allotype, but only in about 70–80% of the molecules. No other allotypic variations were seen in this tryptic peptide. Allotypically related variations in composition were also detected in the N-terminal cyanogen bromide-cleavage peptide.  相似文献   

16.
Exported proteins require an N-terminal signal peptide to direct them from the cytoplasm to the periplasm. Once the protein has been translocated across the cytoplasmic membrane, the signal peptide is cleaved by a signal peptidase, allowing the remainder of the protein to fold into its mature state in the periplasm. Signal peptidase I (LepB) cleaves non-lipoproteins and recognises the sequence Ala-X-Ala. Amino acids present at the N-terminus of mature, exported proteins have been shown to affect the efficiency at which the protein is exported. Here we investigated a bias against aromatic amino acids at the second position in the mature protein (P2′). Maltose binding protein (MBP) was mutated to introduce aromatic amino acids (tryptophan, tyrosine and phenylalanine) at P2′. All mutants with aromatic amino acids at P2′ were exported less efficiently as indicated by a slight increase in precursor protein in vivo. Binding of LepB to peptides that encompass the MBP cleavage site were analysed using surface plasmon resonance. These studies showed peptides with an aromatic amino acid at P2′ had a slower off rate, due to a significantly higher binding affinity for LepB. These data are consistent with the accumulation of small amounts of preMBP in purified protein samples. Hence, the reason for the lack of aromatic amino acids at P2′ in E. coli is likely due to interference with efficient LepB activity. These data and previous bioinformatics strongly suggest that aromatic amino acids are not preferred at P2′ and this should be incorporated into signal peptide prediction algorithms.  相似文献   

17.
BackgroundThe VP1 protein of duck hepatitis A virus (DHAV) is a major structural protein that induces neutralizing antibodies in ducks; however, B-cell epitopes on the VP1 protein of duck hepatitis A genotype 1 virus (DHAV-1) have not been characterized.

Methods and Results

To characterize B-cell epitopes on VP1, we used the monoclonal antibody (mAb) 2D10 against Escherichia coli-expressed VP1 of DHAV-1. In vitro, mAb 2D10 neutralized DHAV-1 virus. By using an array of overlapping 12-mer peptides, we found that mAb 2D10 recognized phages displaying peptides with the consensus motif LPAPTS. Sequence alignment showed that the epitope 173LPAPTS178 is highly conserved among the DHAV-1 genotypes. Moreover, the six amino acid peptide LPAPTS was proven to be the minimal unit of the epitope with maximal binding activity to mAb 2D10. DHAV-1–positive duck serum reacted with the epitope in dot blotting assay, revealing the importance of the six amino acids of the epitope for antibody-epitope binding. Competitive inhibition assays of mAb 2D10 binding to synthetic LPAPTS peptides and truncated VP1 protein fragments, detected by Western blotting, also verify that LPAPTS was the VP1 epitope.

Conclusions and Significance

We identified LPAPTS as a VP1-specific linear B-cell epitope recognized by the neutralizing mAb 2D10. Our findings have potential applications in the development of diagnostic techniques and epitope-based marker vaccines against DHAV-1.  相似文献   

18.
The cytoprotective effects of pigment epithelium-derived factor (PEDF) require interactions between an as of a yet undefined region with a distinct ectodomain on the PEDF receptor (PEDF-R). Here we characterized the area in PEDF that interacts with PEDF-R to promote photoreceptor survival. Molecular docking studies suggested that the ligand binding site of PEDF-R interacts with the neurotrophic region of PEDF (44-mer, positions 78–121). Binding assays demonstrated that PEDF-R bound the 44-mer peptide. Moreover, peptide P1 from the PEDF-R ectodomain had affinity for the 44-mer and a shorter fragment within it, 17-mer (positions 98–114). Single residue substitutions to alanine along the 17-mer sequence were designed and tested for binding and biological activity. Altered 17-mer[R99A] did not bind to the P1 peptide, whereas 17-mer[H105A] had higher affinity than the unmodified 17-mer. Peptides 17-mer, 17-mer[H105A], and 44-mer exhibited cytoprotective effects in cultured retina R28 cells. Intravitreal injections of these peptides and PEDF in the rd1 mouse model of retinal degeneration decreased the numbers of dying photoreceptors, 17-mer[H105A] being most effective. The blocking peptide P1 hindered their protective effects both in retina cells and in vivo. Thus, in addition to demonstrating that the region composed of positions 98–114 of PEDF contains critical residues for PEDF-R interaction that mediates survival effects, the findings reveal distinct small PEDF fragments with neurotrophic effects on photoreceptors.  相似文献   

19.
The binding of the cdk inhibitor p21cip1 to Akt2 in the nucleus is an essential component in determining the specific role of Akt2 in the cell cycle arrest that precedes myogenic differentiation. Here, through a combination of biochemical and cell biology approaches, we have addressed the molecular basis of this binding. Using amino-terminal truncation of Akt2, we show that p21cip1 binds at the carboxy terminal of Akt2 since deletion of the first 400 amino acids did not affect the interaction between Akt2 and p21cip1. Pull down using carboxy terminal-truncated Akt2 protein revealed the importance of the region between amino acids 400 and 445 for the binding to p21cip1. Since Akt2_400–445 and Akt2_420–445 peptides could both bind p21cip1, this refines the binding domain on Akt2 between amino acids 420 and 445. In order to confirm these data in living cells, we developed a protocol to synchronize myoblasts at the cell cycle exit point when p21cip1 expression is induced by MyoD before myogenic differentiation. When a synthetic Akt2 peptide spanning the region (410–437) was microinjected in p21-expressing myoblasts, p21cip1 no longer localized exclusively in the nucleus, instead being redistributed throughout the cell, thus showing that injected peptide 410–437 acts to compete with the binding of endogenous Akt2 to p21cip1. Taken together, our data suggest that this 27 amino acid sequence on Akt2 is necessary and sufficient to bind p21cip1 both in vitro and in living cells.  相似文献   

20.
Erythrocyte binding antigen-160 (EBA-160) protein is a Plasmodium falciparum antigen homologue from the erythrocyte binding protein family (EBP). It has been shown that the EBP family plays a role in parasite binding to the erythrocyte surface. The EBA-160 sequence has been chemically synthesised in seventy 20-mer sequential peptides covering the entire 3D7 protein strain, each of which was tested in erythrocyte binding assays to identify possible EBA-160 functional regions. Five EBA-160 high activity binding peptides (HABPs) specifically binding to erythrocytes with high affinity were identified. Dissociation constants lay between 200 and 460 nM and Hill coefficients between 1.5 and 2.3. Erythrocyte membrane protein binding peptide cross-linking assays using SDS-PAGE showed that these peptides bound specifically to 12, 28, and 44 kDa erythrocyte membrane proteins. The nature of these receptor sites was studied in peptide binding assays using enzyme-treated erythrocytes. HABPs were able to block merozoite in vitro invasion of erythrocytes. HABPs’ potential as anti-malarial vaccine candidates is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号