首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵1-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation.  相似文献   

2.
In order to evaluate differential growth, photosynthesis and H+-ATPase activity responses to salt-induced stress, two Jerusalem artichoke (Helianthus tuberosus L.) genotypes (Nanyu No. 1 and Qingyu No. 2) were used in sand-culture experiment with different concentrations of NaCl (0, 30, 60, 90, 120 and 150 mM). After 20 days of growth, the NaCl stress resulted in a decrease of biomass accumulation, relative leaf expansion rate and photosynthetic rate, but an increase of proline content in both genotypes. Compared with Qingyu No. 2, Nanyu No. 1 had lower biomass, photosynthetic rate, gas exchange and transpiration rate, but higher proline content, activities of plasma membrane H+-ATPase (PM H+-ATPase) and vacuolar membrane H+-ATPase (VM H+-ATPase). Hence, the NaCl adaptation strategy in Nanyu No. 1 was by lowering photosynthetic rate, stomatal conductance and transpiration rate while maintaining high H+-ATPase activities, whereas the adjustment of Qingyu No. 2 was by keeping much higher rate of proline accumulation and concentration of chlorophyll. The differences in salt tolerance showed that different adaptation mechanisms existed between cultivars of Jerusalem artichoke. The findings offered the possibility of selecting salt-tolerant genotypes of Jerusalem artichoke.  相似文献   

3.
4.
Proline accumulations in abiotically stressed plants is generally considered to benefit their stress tolerance. The Δ1-Pyrroline-5-carboxylate synthetase (P5CS) gene family, which encodes the rate-limiting enzyme in proline biosynthesis pathway, usually contains two duplicated genes in most plants. However, three P5CS genes including LrP5CS1, LrP5CS2 as well as a third one, LrP5CS3, were isolated from Lilium regale. LrP5CS3 is highly identical to LrP5CS1 in amino acid sequences, indicating they could come from a paralogous duplication. The phylogenetic tree suggested that the duplication of LrP5CS occurred independently after the divergence of Liliales and commelinoids. The expression of LrP5CS1 was strongly induced in leaves and roots both under drought and salinity, while that of LrP5CS3 was upregulated more moderately. LrP5CS2 stayed almost constitutive under stress. LrP5CS1 exhibited the highest activity after expressed in E. coli. Overexpression of LrP5CS genes conferred enhanced osmotic, drought and salt tolerance on transgenic Arabidopsis without negative effects in unstressed condition. Under salt stress, lines LrP5CS2 accumulated fewer proline than others, and lines LrP5CS1 grew better in root elongation. The roots of lines LrP5CS3 grew better than all others under unstressed condition and osmotic stress. Our study suggests that the three LrP5CS genes play distinct roles respectively in proline accumulation and abiotic stress tolerance.  相似文献   

5.
采用溶液培养的方法,研究了过量Cd对不结球白菜(Brassica chinensis)幼苗内源脯氨酸含量的影响及外源脯氨酸在不结球白菜Cd积累中的作用。100μmol?L-1 Cd处理明显增加不结球白菜叶片脯氨酸(Pro)的含量,并且随着Cd胁迫时间的延长,其含量也显著上升。100μmol?L-1 Cd处理明显降低脯氨酸脱氢酶(PDH)活性,而增加δ1-吡咯啉-5-羧酸合成酶(P5CS)的活性。1~5 mmol?L-1外源Pro处理显著降低不结球白菜幼苗地上部Cd含量,对根系Cd含量无显著影响,但外源Pro处理并不能缓解过量Cd对不结球白菜幼苗生物量的抑制作用。外源Pro处理下,不结球白菜叶片中Pro含量与其地上部干重呈显著的负相关关系。  相似文献   

6.
不同浓度(0.01~5.00mmol/L)的外源一氧化氮(NO)供体硝普钠(SNP)以浓度依赖性的性式诱导150mmol/LNaCl胁迫下小麦(Triticum aestivum L.cv.Yangmai 158)幼苗叶片脯氨酸的累积.其中0.1 mmol/L的SNP效果最明显,而结合采用NO清除剂c-PTIO和血红蛋白的处理均分别逆转了该效应.研究结果还发现:0.1 mmol/L SNP诱导的脯氨酸累积还可能有利于盐胁迫下小麦幼苗的保水性;0.1 mmol/L的SNP显著激活了内源ABA的合成,而结合血红蛋白的处理则证实,在外源ABA诱导脯氨酸累积的过程中NO可能作用于ABA信号分子的下游,但NO和ABA信号分子在此诱导反应中不存在累积效应.进一步研究脯氨酸合成和降解的酶促反应途径,发现外源NO处理前4天内可能主要是通过提高△'-吡咯啉-5-羧酸合成酶(P5CS)的活性来促进脯氨酸的合成,以后直至第8天主要是通过抑制脯氨酸脱氢酶(ProDH)的活性来抑制脯氨酸的降解;ABA对于P5CS和ProDH活性的调节能力弱于NO.此外,Ca2 在NO诱导的盐胁迫下小麦叶片脯氨酸累积的信号分子途径中起重要的介导作用.  相似文献   

7.
Proline accumulation in two different bean (Phaseolus vulgaris L.) cultivars, one drought-sensitive (Canario 60) and one drought-resistant (Pinto Villa) was investigated. Both tolerated salt concentrations up to 150 mM NaCl, but the sensitive Canario 60 did not survive at 400 mM NaCl. In response to salt stress, both cvs. accumulated proline in all the analyzed tissues, the lowest contents were detected in roots. Pinto Villa accumulated higher proline concentrations than Canario 60 only at 400 mM NaCl. The addition of polyamines or ornithine increased proline content in plant tissues without stress, while they decreased it under salt stress.  相似文献   

8.
Differential expression of the proline metabolism genes in Thellungiella salsuginea (Pall) E. Schulz was investigated under salinity (100 and 300 mM NaCl), upon the effect of paraquat (0.1 μM), and at their joint action. It was shown that, depending on the intensity of stress factor, expression of the P5CS1 gene was induced in the leaves (at 100 mM NaCl) or roots (at 300 mM NaCl). When the plants on control medium were treated with paraquat, the proline content changed only in the leaves. Time course of proline content in the leaves complied with the dynamic of P5CS1 gene expression, while expression of PDH gene essentially did not change. When the plants, which experienced salt stress, were treated with paraquat, the content of proline and the P5CS1 mRNA level increased even more. The obtained results suggest a complicated nature of signaling between the organs of the halophyte Th. salsuginea causing expression of the proline biosynthesis genes in the leaves and roots under the effect of salinity, paraquat, or upon their joint action. The proline catabolism in these plants was maintained essentially unchanged, which is probably related to the participation of proline and/or the products of its degradation in the pathways of other metabolite biosynthesis. We suggested that proline took part in ROS scavenging process and proline level was under strong control in Th. salsuginea.  相似文献   

9.
The effects of salt stress were studied on the accumulation and metabolism of proline and its correlation with Na+ and K+ content in shoots and callus tissue of four potato cultivars, viz., Agria, Kennebec (relatively salt tolerant), Diamant and Ajax (relatively salt sensitive). Na+ and proline contents increased in all cultivars under salt stress. However, K+ and protein contents decreased in response to NaCl treatments. The activities of enzymes involved in proline metabolism, Δ1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) increased and decreased, respectively, in response to elevated NaCl concentrations. The changes of P5CS and ProDH activities in more salt sensitive cultivars (Diamant, Ajax) were more than those in the tolerant ones. Then the stimulation of synthesis in combination with a partially increase of protein proteolysis, a decrease in proline utilization and inhibition of oxidation resulted in high proline contents in seedlings and calli under salt stress. In callus tissue, reduced growth and cell size may be partially responsible for high proline accumulation in response to high NaCl levels. However, although the basic proline contents in the seedlings of more salt tolerant cultivars were higher than the sensitive ones, a clear relationship was not generally observed between accumulation of proline and salt tolerance in potato.  相似文献   

10.
Light-Dark Changes in Proline Content of Barley Leaves under Salt Stress   总被引:3,自引:0,他引:3  
Proline accumulation in leaves of barley (Hordeum vulgare L. cv. Alfa) seedlings treated with 150 mM NaCl was promoted in the light and suppressed in the dark. The light/dark changes of proline content was enhanced with each 12 h light/12 h dark cycle and the proline content increased steadily. Root and shoot concentrations of Na+ and Cl in salt treated plants increased about 10 to 25 times as compared to the control. The content of these ions and the content of malondialdehyde were higher in the shoot of seedlings exposed to salt stress for 4 d in the light in comparison with the seedlings exposed to NaCl for 4 d in darkness. Light stimulated both ions and proline accumulation in the leaves and has no effect in the roots. Oxygen uptake was higher in the seedlings kept 4 d in the light which have higher endogenous free proline content. Chlorophyll fluorescence measurements showed that the photochemical activity of PS 2 slightly decreased as a result of salt stress and was not influenced by light regimes during plant growth.  相似文献   

11.
采用营养液水培方法,以"雪美"品种甜瓜(Cucumis melo L.)为材料,研究了外源脯氨酸(Proline)对盐胁迫下甜瓜幼苗叶片和根系硝酸还原的影响。结果表明:(1)盐胁迫提高了甜瓜幼苗叶片和根系内铵态氮(NH4+-N)和可溶性蛋白含量;降低了硝态氮(NO-3-N)含量和硝酸还原酶(nitrate reductase,NR)活性。(2)外源施用脯氨酸明显地提高了盐胁迫下甜瓜幼苗叶片和根系内NO-3-N和可溶性蛋白含量;降低了盐胁迫下甜瓜幼苗叶片和根系内NH+4-N含量;增强了盐胁迫下甜瓜幼苗体内NR活性。研究结果表明,外源脯氨酸可以通过调节甜瓜幼苗体内硝酸还原酶活性和氮化合物含量来缓解盐胁迫对甜瓜幼苗植株的伤害。  相似文献   

12.
采用温室盆栽试验研究不同NaCl浓度(0、50 和85 mmol/L)持续胁迫接种摩西球囊霉和地表球囊霉 2种AM真菌对加工番茄耐盐性的影响。结果显示:(1)在0 mmol/L NaCl处理条件下,2种菌的番茄菌根化苗的根系活力、叶片中可溶性糖、可溶性蛋白、根系脯氨酸含量以及超氧化物歧化酶和过氧化物酶活性均高于非菌根植株,且丙二醛含量低于非菌根植株,但差异不显著。(2)在50、85 mmol/L NaCl浓度胁迫下,接种2种菌根真菌可显著提高番茄植株根系活力,促进叶片中可溶性糖、可溶性蛋白及根系脯氨酸含量的积累,显著提高叶片中与抗逆相关的超氧化物歧化酶和过氧化物酶的活性,减少丙二醛在根系中的积累;随着NaCl浓度的增加,效果更为明显。(3)RT-PCR分析显示,AM真菌和盐胁迫共同调控H+转运无机焦磷酸酶H+- PPase的表达,随NaCl浓度的增加,AVP1基因表达量下降,但菌根化番茄植株的AVP1基因表达量显著高于非菌根植株。研究表明,接种AM真菌后,菌根化植株可通过显著促进幼苗体内渗透调节物质积累和抗氧化酶活性的提高,有效降低体内膜脂过氧化水平,同时过量表达AVP1基因增加了番茄植株中离子向液泡膜的转运,从而缓解盐胁迫对植株的伤害,增强番茄幼苗对盐胁迫的耐性。  相似文献   

13.
Proline is an important osmolyte appearing as the result of salt stress response of plants. In the present study, we measured the proline concentration, activities of pyrroline-5-carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR), and proline dehydrogenase (PDH) key regulatory enzymes in the biosynthesis and degradation of proline in the acclimated (AC20) and the non-acclimated (NAC) cucumber cell suspension cultures subjected to moderate (150 mM NaCl; AC20–150, NAC-150, respectively) and severe (200 mM NaCl; AC20–200, NAC-200, respectively) salt stress. The data showed that salt stress brought about a linear increase in proline content in both types of cultures. However, in the acclimated culture proline accumulation was observed earlier, in third hour after stress. Only in the acclimated culture moderate and severe stresses up-regulated P5CS activity throughout the experiment, whereas the activity of P5CR grew in response to both NaCl concentrations only in 24th and 48th hour. The severe salt stress resulted in decrease in P5CR in NAC-200 cultures. In response to salt stress, both types of cell suspension cultures reacted with decline in PDH activity below the spectrophotometrically detected level. Cell cultures vigor correlated with salt concentration and time of exposure to the stress factor. Both NaCl concentrations caused linear decline in vigor of the non-acclimated culture up to 80–90 % at the end of the experiment, whereas in the acclimated culture significant decrease by about 30–40 % was reached in 24th hour after stress. The presented data suggest that acclimation to salt stress up-regulated proline synthesis enzyme activity and caused intensive accumulations of proline by inhibiting its oxidation.  相似文献   

14.
15.
The influence of water stress on proline metabolism was studiedin 3-month-old mulberry plants at four levels of water stress.Leaf water potential was drastically decreased in all treatments.Though leaf area and relative water content were decreased,drastic decrease was observed only in very severe stress treatments.Proline accumulation was observed both in roots and leaves instress treatments; but accumulation was greater in roots thanin leaves. The enzymes, proline dehydrogenase and proline oxidase,were inhibited under stress conditions. Proline oxidase wasmore inhibited in roots than in leaves. The significance ofthe relative activities of these two enzymes is discussed. Key words: Water stress, proline dehydrogenase, proline oxidase  相似文献   

16.
17.
Nitraria tangutorum Bobr. is a typical halophyte with superior tolerance to salinity. However, little is known about its physiological adaptation mechanisms to the salt environment. In the present study, N. tangutorum seedlings were treated with different concentrations of NaCl (100, 200, 300 and 400 mmol L?1) combined with five levels of Ca2+ (0, 5, 10, 15 and 20 mmol L?1) to investigate the effects of salt stress and exogenous Ca2+ on Na+ compartmentalization and ion pump activities of tonoplast and plasma membrane (PM) in leaves. Na+ and Ca2+ treatments increased the fresh weight and dry weight of N. tangutorum seedlings. The absorption of Na+ in roots, stems and leaves was substantially increased with the increases of NaCl concentration, and Na+ was mainly accumulated in leaves. Exogenous Ca2+ reduced Na+ accumulation in roots but promoted Na+ accumulation in leaves. The absorption and transportation of Ca2+ in N. tangutorum seedlings were inhibited under NaCl treatments. Exogenous Ca2+ promoted Ca2+ accumulation in the plant. Na+ contents in apoplast and symplast of leaves were also significantly increased, and symplast was the main part of Na+ intracellular compartmentalization. The tonoplast H+-ATPase and H+-PPase activities were significantly promoted under salt stress (NaCl concentrations ≤300 mmol L?1). PM H+-ATPase activities gradually increased under salt stress (NaCl concentrations ≤200 mmol L?1) followed by decreases with NaCl concentration increasing. The tonoplast H+-ATPase, H+-PPase and PM H+-ATPase activities increased first with the increasing exogenous Ca2+ concentration, reached the maximums at 15 mmol L?1 Ca2+, and then decreased. The tonoplast and PM Ca2+-ATPase activities showed increasing trends with the increases of NaCl and Ca2+ concentration. These results suggested that certain concentrations of exogenous Ca2+ effectively enhanced ion pump activities of tonoplast and PM as well as promoted the intracellular Na+ compartmentalization to improve the salt tolerance of N. tangutorum.  相似文献   

18.
Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study.  相似文献   

19.
Potato (Solanum tuberosum) is a major crop world-wide and the productivity of currently used cultivars is strongly reduced at high soil salt levels. We compared the response of six potato cultivars to increased root NaCl concentrations. Cuttings were grown hydroponically and treated with 0 mM, 60 mM and 180 mM NaCl for one week. Growth reduction on salt was strongest for the cultivars Mozart and Mona Lisa with a severe senescence response at 180 mM NaCl and Mozart barely survived the treatment. The cultivars Desiree and Russett Burbank were more tolerant showing no senescence after salt treatment. A clear difference in Na+ homeostasis was observed between sensitive and tolerant cultivars. The salt sensitive cultivar Mozart combined low Na+ levels in root and stem with the highest leaf Na+ concentration of all cultivars, resulting in a high Na+ shoot distribution index (SDI) for Mozart as compared to Desiree. Overall, a positive correlation between salt tolerance and stem Na+ accumulation was found and the SDI for Na+ points to a role of stem Na+ accumulation in tolerance. In stem tissue, Mozart accumulated more H2O2 and less proline compared to the tolerant cultivars. Analysis of the expression of proline biosynthesis genes in Mozart and Desiree showed a clear reduction in proline dehydrogenase (PDH) expression in both cultivars and an increase in pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Desiree, but not in Mozart. Taken together, current day commercial cultivars show promising differences in salt tolerance and the results suggest that mechanisms of tolerance reside in the capacity of Na+ accumulation in stem tissue, resulting in reduced Na+ transport to the leaves.  相似文献   

20.
Germination/growth of wheat (Triticum aestivum L., cv. Zimai 1) seeds and changes in the levels of proline and protein as well as in activities of key enzymes involved in proline metabolism in response to salinity-, heat-stresses and their cross-stress were studied. With decreasing water potential caused by increasing concentrations of NaCl, germination percentage, fresh weight of seedlings and protein amount markedly decreased, whereas proline amount slightly increased. The activities of pyrroline-5-carboxylate synthetase (P5CS), ornithine aminotransferase (OAT), and proline dehydrogenase (PDH) peaked at ?0.2 MPa water potential. Germination percentage and amounts of proline and protein increased as germination temperature elevated to 25°C from 15°C, and decreased above 25°C; fresh weight of seedlings increased to 30°C from 15°C, and decreased above 30°C. However, the activities of P5CS, OAT and PDH gradually decreased with elevaing temperature. Seeds pretreated at 33°C or in ?0.8 MPa NaCl solution for various time length increased tolerance to subsequent salt + water stress or heat stress, as measured by germination percentage and fresh weight of seedlings 5 days after beginning of experiment. The acquisition of cross-tolerance resulting in limitation of negative stress effects does not relate directly to proline level and activities of P5CS, OAT and PDH involved in proline metabolism. Proline amount as measured four days or later after stress imposition cannot be considered a symptom of salt-, water- and heat-stress injury or an indicator of the resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号