首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.  相似文献   

4.
5.
Chromosomal rearrangements and translocations play a major role in the pathogenesis of hematological malignancies. The trithorax-related mixed lineage leukemia (Mll) gene located on chromosome 11 is rearranged in a variety of aggressive human B and T lymphoid tumors as well as acute myeloid leukemia (AML) in both children and adults. It was first demonstrated for the yeast MLL homolog complex, Set1/COMPASS, and now for the MLL complex itself, that these complexes are histone methyltransferases capable of methylating the fourth lysine of histone H3. The post-translational modifications of histones by methylation have emerged as a key regulatory mechanism for both repression and activation of gene expression. Studies from several laboratories during the past few years have brought about a watershed of information defining the molecular machinery and factors involved in the recognition and modification of nucleosomal histones by methylation. In this review, we will discuss the recent findings regarding the molecular mechanism and consequences of histone modification by the MLL related protein containing complex COMPASS.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号