首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. The partition of the ecological niche can enhance the coexistence of predators due to differences in how they exploit three main resources: food, space, and time, the latter being an axis that often remains unexplored.
  2. We studied niche segregation in a Mediterranean mesocarnivore community composed by Vulpes vulpes, Genetta genetta, Meles meles, and Herpestes ichneumon, addressing simultaneously different niche axes: the temporal, trophic, and spatial axes.
  3. We assessed temporal segregation between mesopredators and prey and between potential competitors, using camera trap data between 2018 and 2020 in a Mediterranean landscape in Southern Spain. We deployed camera traps in 35 stations in three sites with varying vegetation cover within Doñana National Park. We further examined the spatial overlap in activity centers and trophic preferences between potential competitors using diet information from studies performed in the study area.
  4. We found an overall temporal segregation between trophic generalist species, with species showing higher temporal overlap differing in their trophic preferences and/or showing limited spatial overlap. Furthermore, we observed an overall high overlap between the activity patterns of predators and their major prey in the area (the common genet vs. small mammals and the red fox vs. European rabbit).
  5. Our study suggests that coexistence of the different species that compose the mesocarnivore assemblage in Mediterranean landscapes can be facilitated by subtle differences along the three main niche axes, with temporal segregation being a most pronounced mechanism. Our findings reinforce the idea that the coexistence mechanisms underlying community structure are multidimensional.
  相似文献   

2.
Ecological niche theory predicts that coexistence is facilitated by resource partitioning mechanisms that are influenced by abiotic and biotic interactions. Alternative hypotheses suggest that under certain conditions, species may become phenotypically similar and functionally equivalent, which invokes the possibility of other mechanisms, such as habitat filtering processes. To test these hypotheses, we examined the coexistence of the giant redfin Pseudobarbus skeltoni, a newly described freshwater fish, together with its congener Pseudobabus burchelli and an anabantid Sandelia capensis by assessing their scenopoetic and bionomic patterns. We found high habitat and isotope niche overlaps between the two redfins, rendering niche partitioning a less plausible sole mechanism that drives their coexistence. By comparison, environment–trait relationships revealed differences in species–environment relationships, making habitat filtering and functional equivalence less likely alternatives. Based on P. skeltoni's high habitat niche overlap with other species, and its large isotope niche width, we inferred the likelihood of differential resource utilization at trophic level as an alternative mechanism that distinguished it from its congener. In comparison, its congener P. burchelli appeared to have a relatively small trophic niche, suggesting that its trophic niche was more conserved despite being the most abundant species. By contrast, S. capensis was distinguished by occupying a higher trophic position and by having a trophic niche that had a low probability of overlapping onto those of redfins. Therefore, trophic niche partitioning appeared to influence the coexistence between S. capensis and redfins. This study suggests that coexistence of these fishes appears to be promoted by their differences in niche adaptation mechanisms that are probably shaped by historic evolutionary and ecological processes.  相似文献   

3.
According to classic niche theory, species can coexist in heterogeneous environments by reducing interspecific competition via niche partitioning, e.g. trophic or spatial partitioning. However, support for the role of competition on niche partitioning remains controversial. Here, we tested for spatial and trophic partitioning in feather mites, a diverse and abundant group of arthropods. We focused on the two dominant mite species, Microspalax brevipes and Zachvatkinia ovata, inhabiting flight feathers of the Cory’s shearwater, Calonectris borealis. We performed mite counts across and within primary and tail feathers on free-living shearwaters breeding on an oceanic island (Gran Canaria, Canary Islands). We then investigated trophic relationships between the two mite species and the host using stable isotope analyses of carbon and nitrogen on mite tissues and potential host food sources. The distribution of the two mite species showed clear spatial segregation among feathers; M. brevipes showed high preference for the central wing primary feathers, whereas Z. ovata was restricted to the two outermost primaries. Morphological differences between M. brevipes and Z. ovata support an adaptive basis for the spatial segregation of the two mite species. However, the two mites overlap in some central primaries and statistical modeling showed that Z. ovata tends to outcompete M. brevipes. Isotopic analyses indicated similar isotopic values for the two mite species and a strong correlation in carbon signatures between mites inhabiting the same individual host suggesting that diet is mainly based on shared host-associated resources. Among the four candidate tissues examined (blood, feather remains, skin remains and preen gland oil), we conclude that the diet is most likely dominated by preen gland oil, while the contribution of exogenous material to mite diets is less marked. Our results indicate that ongoing competition for space and resources plays a central role in structuring feather mite communities. They also illustrate that symbiotic infracommunities are excellent model systems to study trophic ecology, and can improve our understanding of mechanisms of niche differentiation and species coexistence.  相似文献   

4.
Tropical dry forests are characterized by punctuated seasonal precipitation patterns that drive primary production and the availability of fruits, seeds, flowers, and insects throughout the year. In environments in which the quantity and quality of food resources varies seasonally, consumers should adjust their foraging behavior to maximize energy intake while minimizing overlap with competitors during periods of low food availability. Here, we investigated how the diets of frugivorous bats in tropical dry forests of NW Mexico varied in response to seasonal availability and how this affected dietary overlap of morphologically similar species. We performed stable isotope analyses to understand temporal and interspecific patterns of overall isotopic niche breadth, trophic position, and niche overlap in the diet of six frugivorous species of closely related New World leaf-nosed bats (family Phyllostomidae, subfamily Stenodermatinae). We estimated seasonal changes in resource abundance in two complementary ways: (a) vegetative phenology based on long-term remote sensing data and (b) observational data on food availability from previously published insect and plant fruiting surveys. In all species, there was a consistent pattern of reduced isotopic niche breadth during periods of low food availability. However, patterns of niche overlap varied between morphologically similar species. Overall, results from our study and others suggest that seasonal food availability likely determines overall dietary niche breadth in Phyllostomidae and that despite morphological specialization, it is likely that other mechanisms, such as opportunistic foraging and spatiotemporal niche segregation, may play a role in maintaining coexistence rather than simply dietary displacement.  相似文献   

5.
Documenting trophic niche partitioning and resource use within a community is critical to evaluate underlying mechanisms of coexistence, competition, or predation. Detailed knowledge about foraging is essential as it may influence the vital rates, which, in turn, can affect trophic relationships between species, and population dynamics. The aims of this study were to evaluate resource and trophic niche partitioning in summer/autumn between the endangered Atlantic‐Gaspésie caribou (Rangifer tarandus caribou) population, moose (Alces americanus) and their incidental predators, the black bear (Ursus americanus) and coyote (Canis latrans), and to quantify the extent to which these predators consumed caribou. Bayesian isotopic analysis showed a small overlap in trophic niche for the two sympatric ungulates suggesting a low potential for resource competition. Our results also revealed that caribou occupied a larger isotopic niche area than moose, suggesting a greater diversity of resources used by caribou. Not surprisingly, coyotes consumed mainly deer (Odocoileus virginianus), moose, snowshoe hare (Lepus americanus), and occasionally caribou, while bears consumed mainly vegetation and, to a lesser extent, moose and caribou. As coyotes and bears also feed on plant species, we documented trophic niche overlap between caribou and their predators, as searching for similar resources can force them to use the same habitats and thus increase the encounter rate and, ultimately, mortality risk for caribou. Although the decline in the Gaspésie caribou population is mostly driven by habitat‐mediated predation, we found evidence that the low level of resource competition with moose, added to the shared resources with incidental predators, mainly bears, may contribute to jeopardize the recovery of this endangered caribou population. Highlighting the trophic interaction between species is needed to establish efficient conservation and management strategies to insure the persistence of endangered populations. The comparison of trophic niches of species sharing the same habitat or resources is fundamental to evaluate the mechanisms of coexistence or competition and eventually predict the consequences of ecosystem changes in the community.  相似文献   

6.
Unraveling the mechanisms facilitating species coexistence in communities is a central theme in ecology. Species‐rich tropical mammal communities provide excellent settings to explore such mechanisms as they often harbor numerous congeneric species with close phylogenetic relationships. Explicit tests for the mechanisms that allow syntopic occurrence in these assemblages, however, is often hampered because of the difficulty in obtaining detailed ecological data on the organisms making up the community. Using stable nitrogen and carbon ratios of hair samples, we examine whether trophic niche differentiation and microhabitat segregation explain the coexistence of 21 small mammal species at a montane humid forest site in eastern Madagascar. Overall, the community was trophically diverse and covered wide isotopic space. This diversity was based on: (1) a multi‐layered trophic community structure with mainly frugivorous‐granivorous rodents (subfamily Nesomyinae) as primary consumers and insectivorous tenrecs (family Tenrecidae) as secondary and tertiary consumers; (2) trophic segregation of rodents and tenrecs with the latter occupying different microhabitats; and (3) a dense and regular packing of species in the community. The 12 locally occurring Microgale shrew tenrecs (subfamily Oryzorictinae) showed high trophic redundancy, but were maximally spaced from each other within the trophic space covered by the genus. Results of stable isotope analysis suggest that in combination the differentiation of microhabitats and trophic niches explain the coexistence of small mammals in this community. Congeneric species appeared to be under more intense competition compared with non‐congeneric species and their coexistence can only partly be explained by trophic and microhabitat niche segregation.  相似文献   

7.
Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night (63%), between 0–40 m, within fur seals'' diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging “hot spot” for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during warmer periods when prey availability is reduced.  相似文献   

8.
When present in sympatry, invasive species have the potential to amplify or mitigate their ecological impacts through their trophic interactions. Their trophic niches may overlap, limiting impacts to specific trophic levels or functional groups; alternatively, they may diverge, with this niche differentiation resulting in contrasting impacts between species on the ecosystem. Here, we tested the trophic consequences for the global freshwater invaders common carp Cyprinus carpio, signal crayfish Pacifastacus leniusculus and topmouth gudgeon Pseudorasbora parva when their populations were in sympatry and under varying population biomass across six adjacent and identical ponds. Through using corrected values of δ13C and δ15N, stable isotope niche metrics revealed that when the species were analysed together across all of the ponds, the output indicated their potential to share trophic resources. This was because niche overlap was evident at the species level: P. parva shared 19.6 and 30.4 % of their isotopic niche with C. carpio and P. leniusculus respectively. At the population level, however, the invaders had no niche overlap when present in sympatry and, instead, diverged in their trophic niche space, with C. carpio occupying the highest trophic levels, followed by P. parva and then P. leniusculus. We suggest that at the population level within in each pond, niche differentiation was facilitated by each species being plastic in their resource use, allowing their co-existence in ponds that may otherwise have limited their ability to co-exist through resource limitation.  相似文献   

9.
Niche differentiation through resource partitioning is seen as one of the most important mechanisms of diversity maintenance contributing to stable coexistence of different species within communities. In this study, I examined whether four species of migrating shorebirds, dunlins (Calidris alpina), semipalmated sandpipers (Calidris pusilla), least sandpipers (Calidris minutilla) and short-billed dowitchers (Limnodromus griseus), segregate by time of passage, habitat use and foraging behavior at their major stopover in Delaware Bay during spring migration. I tested the prediction that most of the separation between morphologically similar species will be achieved by differential migration timing. Despite the high level of overlap along observed niche dimensions, this study demonstrates a certain level of ecological separation between migrating shorebirds. The results of analyses suggest that differential timing of spring migration might be the most important dimension along which shorebird species segregate while at stopover in Delaware Bay. Besides differences in time of passage, species exhibited differences in habitat use, particularly least sandpipers that foraged in vegetated areas of tidal marshes more frequently than other species, as well as short-billed dowitchers that foraged in deeper water more often than small sandpipers did. Partitioning along foraging techniques was less prominent than segregation along temporal or microhabitat dimensions. Such ranking of niche dimensions emphasizes significance of temporal segregation of migratory species – separation of species by time of passage may reduce the opportunity for interspecific aggressive encounters, which in turn can have positive effects on birds' time and energy budget during stopover period.  相似文献   

10.
Competition for food resources can result in spatial and dietary segregation among individuals from the same species. Few studies have looked at such segregations with the combined effect of sex and age in species with short foraging ranges. In this study we examined the 3D spatial use of the environment in a species with a limited foraging area. We equipped 26 little penguins (Eudyptula minor) of known age, sex, and breeding output with GPS (location) and accelerometer (body acceleration and dive depth) loggers. We obtained dietary niche information from the isotopic analysis of blood tissue. We controlled for confounding factors of foraging trip length and food availability by sampling adults at guard stage when parents usually make one-day trips. We observed a spatial segregation between old (>11 years old) and middle-aged penguins (between 5 and 11 years old) in the foraging area. Old penguins foraged closer to the shore, in shallower water. Despite observing age-specific spatial segregation, we found no differences in the diving effort and foraging efficiency between age classes and sexes. Birds appeared to target similar prey types, but showed age-specific variation in their isotopic niche width. We hypothesize that this age-specific segregation was primarily determined by a “cohort effect” that would lead individuals sharing a common life history (i.e. having fledged and dispersed around the same age) to forage preferentially together or to share similar foraging limitations.  相似文献   

11.
The classical niche theory supports the idea that stable coexistence requires ecological differences between closely related species. However, information on waterbirds coexistence in the entirely landlocked freshwater system of Poyang Lake is not well understood, especially when the available biomass of their food in the area decreases. In this study, we tested the ecological segregation mechanisms in the 2015/2016 and 2016/2017 wintering periods among eight herbivorous waterbirds (including the Siberian crane Grus leucogeranus, hooded crane Grus monacha, white‐naped crane Grus vipio, common crane Grus grus, greater white‐fronted goose Anser albifrons, bean goose Anser fabalis, swan goose Anser cygnoides, and tundra swan Cygnus columbianus) at Poyang Lake. Using field observations and species niche and foraging habitat selection models, we investigated the abundance, distribution, and food sources of these eight waterbird species to quantify and compare their habitat use and ecological niches. Our results showed that niche segregation among the waterbirds, with respect to food types, time, and spatial location, allow them to coexist and use similar resources. The water level gradually receded in the sub‐lakes of the Poyang Lake, which could provide food sources and various habitats for wintering herbivorous waterbirds to coexist. We demonstrated that the differences in habitat use could mitigate interspecific competition, which may explain the mechanism whereby waterbirds of Poyang Lake coexist during the wintering period, despite considerable overlap in the dietary niches of herbivorous waterbirds.  相似文献   

12.
Niche segregation between similar species will result from an avoidance of competition but also from environmental variability, including nowadays anthropogenic activities. Gulls are among the seabirds with greater behavioural plasticity, being highly opportunistic and feeding on a wide range of prey, mostly from anthropogenic origin. Here, we analysed blood and feather stable isotopes combined with pellet analysis to investigate niche partitioning between Audouin's gull Larus audouinii and yellow‐legged gull Larus michahellis breeding in sympatry at Deserta Island, southern Portugal, during 2014 and 2015. During the breeding season there was considerable overlap in the adults’ diet, as their stable isotope values of blood and primary feather (P1) did not differ, and their pellets were comprised mainly by marine fish species. However, Audouin's gulls presented higher occurrences of pelagic fish, while yellow‐legged gulls fed more on demersal fish, insects, and refuse. SIAR mixing models also estimated a higher proportion of demersal fish in the diet of yellow‐legged gulls. We also found differences between the two gull species in chicks’ feathers, suggesting that Audouin's gull adults selected prey with lower carbon isotope values to feed their young. Secondary feather (S8) of Audouin's gull presented higher isotope values compared to yellow‐legged gulls, indicating different foraging areas (δ13C) and/ or trophic levels (δ15N) between the two species in the non‐breeding season. During both the all‐year and non‐breeding periods the yellow‐legged gull showed a broader isotopic niche width than Audouin's gull in 2013, and in 2014 the two gull species exhibited different isotopic niche spaces. Our study suggests that both gull species foraged in association with fisheries during the breeding season. In this sense, a discard ban implemented under the new European Union Common Fisheries Policy may lead to a food shortage, therefore future research should closely monitor the population dynamics of Audouin's and yellow‐legged gulls.  相似文献   

13.
Annual killifish of the genus Nothobranchius often co-occur in temporary savannah pools. Their space- and time-limited environment does not allow for any substantial habitat or temporal segregation. Coexisting species are therefore predicted to have well separated trophic niches to avoid intense food competition. Although in a previous “snapshot” study using stomach content analysis (SCA), the trophic niches of three sympatric species (N. furzeri, N. orthonotus, and N. pienaari) were found to vary among species, the difference was relatively weak and inconsistent across different sites. Here, we used the time-integrative capacity of stable isotope analysis to test whether the trophic niches of sympatric Mozambican Nothobranchius are more distinct over a long-term period. Analysis of carbon and nitrogen stable isotopes separated the trophic niche and trophic position of N. pienaari but failed to find any difference between N. furzeri/N. kadleci and N. orthonotus. No segregation was found at the sites with low prey diversity. In contrast, SCA identified N. orthonotus as the species with the most distinct trophic niche. We discuss the effect of prey diversity and different sensitivities of stomach content and stable isotope analysis in general and conclude that the trophic niches of the three sympatric Nothobranchius species are well separated.  相似文献   

14.
Understanding distributional patterns and mechanisms used by species for habitat selection is crucial to adopt effective land management policies in terms of biodiversity conservation. A heterogeneous landscape may allow coexistence of species. That coexistence will be dependent on the availability of the resources in the habitat that has to be sufficient to fulfil their basic needs. The present study aimed to investigate habitat selection, niche breadth and niche overlap of three sympatric carnivore species (Vulpes vulpes, Genetta genetta and Martes foina) in a typically fragmented landscape from Central Portugal, using camera-trapping techniques. The results obtained revealed that the investigated species use the available habitats differently and in a non-random way. The red fox showed the most specialized behaviour, positively selecting coniferous forests. The common genet preferred eucalyptus, avoiding old-growth mixed woodland, in contrast with stone marten that exhibited a strong preference for this late habitat, avoiding eucalyptus. Concerning the niche breadth, the genet had the highest value while the red fox had the lowest one. The results obtained at the camera-trap level showed that the highest niche overlap occurred between the genet and the stone marten which suggests that these species can coexist and share the available resources. Regarding the habitat level, the greatest niche overlap was found for the stone marten and the red fox, indicating the exploration of the same general habitat conditions by both species. The results obtained in the present study support the concept that landscape complexity allows coexistence between species within the same trophic level.  相似文献   

15.
It is broadly accepted that the brown skua (Stercorarius antarcticus lonnbergi) competitively excludes the south polar skua (S. maccormicki) from penguin colonies when breeding sympatrically, forcing the latter to feed on marine resources. The purpose of this work was to examine the diets and trophic niche breadths of each species where they co-occur and to determine the degree of overlap. To this end, we analyzed 169 pellets of brown skuas, collected in two different areas (20 individuals), and 152 of south polar skuas, collected in three different areas (18 individuals), on Deception Island, South Shetland Islands, Antarctica, during the austral summer 2000. Pellet analysis often underestimates the amount of easily digestible prey, but allows for comparisons of the relative contributions of different items in the diet. South polar skuas at our study locations consumed seven different food items and had a trophic niche breadth of 0.133 compared to brown skuas that fed on 10 different items and had a trophic niche breadth of 0.078. The niche overlap between the species was 82.1%. Penguins were the principal food source of both species, however, brown skuas fed mostly on chicks, while south polar skuas fed on adults (carcasses). The use of different age classes of penguins as a food source offers an alternative to competitive exclusion, allowing the coexistence of these species on Deception Island.  相似文献   

16.
17.
Trophic segregation has been proposed as a major mechanism explaining the coexistence of closely related animal taxa. However, how such segregation varies throughout the annual cycle is poorly understood. Here, we examined the feeding ecology of the two subspecies of Cory''s shearwater, Calonectris diomedea diomedea and Calonectris diomedea borealis, breeding in sympatry in a Mediterranean colony. To study trophic segregation at different stages, we combined the analysis of isotope values (δ 15N, δ 13C) in blood obtained during incubation and in feathers moulted during chick-rearing and wintering periods with satellite-tracking data during the chick-rearing period. Satellite-tracking and stable isotope data of the first primary feather revealed that C. d. borealis foraged mainly in the Atlantic whereas C. d. diomedea foraged exclusively in the Mediterranean. This spatial segregation could reflect the foraging behaviour of the C. d. borealis individuals before they arrived at the Mediterranean colony. Alternatively, greater wing loading of C. d. borealis individuals may confer the ability to fly across the strong winds occurring at the at the Gibraltar strait. Isotope values of the eighth secondary feather also support segregation in wintering areas between the two forms: C. d. diomedea wintered mainly in association with the Canary current, whereas C. d. borealis wintered in the South African coast. Overall, our results show that spatial segregation in foraging areas can display substantial variation throughout the annual cycle and is probably a major mechanism facilitating coexistence between closely related taxa.  相似文献   

18.
李云凯  徐敏  贡艺 《生态学报》2022,42(13):5295-5302
物种对食物资源利用方式的差异,即营养生态位分化是物种共存的先决条件之一,对种间营养生态位的比较研究有助于了解同域分布物种的共存机制。脂肪酸组成可反映生物较长时间尺度的摄食信息,对探讨物种间营养生态位分化具有重要指示作用。热带东太平洋主要栖息有8种大型中上层鲨鱼,大青鲨(Prionace glauca)、大眼长尾鲨(Alopias superciliosus)、镰状真鲨(Carcharhinus falciformis)、长鳍真鲨(Carcharhinus longimanus)、浅海长尾鲨(Alopias pelagicus)、尖吻鲭鲨(Isurus oxyrinchus)、路氏双髻鲨(Sphyrna lewini)和锤头双髻鲨(Sphyrna zygaena),通过比较其肌肉脂肪酸组成,分析种间食性差异,营养关系及营养生态位分化。结果表明,尖吻鲭鲨营养级相对较高,大青鲨相对较低。3种鼠鲨与5种真鲨存在食性差异或栖息地隔离。浅海长尾鲨与大眼长尾鲨营养生态位重叠程度较高,存在激烈的资源竞争。大青鲨与镰状真鲨生态位宽度较大,表征其对环境的可塑性较强;尖吻鲭鲨和路氏双髻鲨生态位宽度较小,表现为其食性的特化。本研究解释了脂肪酸组成分析在鲨鱼摄食研究中的潜在应用,对分析大洋性鲨鱼的营养生态位分化,资源分配方式及同域共存机制有一定的应用价值。  相似文献   

19.
Niche theory predicts that coexisting species minimise competition by evolving morphological or behavioural specialisations that allow them to spread out along resource axes such as space, diet and temporal activity. These specialisations define how a species interacts with its environment and, by extension, determine its functional role. Here, we examine the feeding niche of three species of coral reef-dwelling rabbitfishes (Siganidae, Siganus). By comparing aspects of their feeding behaviour (bite location, bite rate, foraging distance) with that of representative species from two other abundant herbivorous fish families, the parrotfishes (Labridae, Scarus) and surgeonfishes (Acanthuridae, Acanthurus), we examine whether rabbitfishes have a feeding niche distinct from other members of the herbivore guild. Measurements of the penetration of the fishes’ snouts and bodies into reef concavities when feeding revealed that rabbitfish fed to a greater degree from reef crevices and interstices than other herbivores. There was just a 40 % overlap in the penetration-depth niche between rabbitfish and surgeonfish and a 45 % overlap between rabbitfish and parrotfish, compared with the almost complete niche overlap (95 %) recorded for parrotfish and surgeonfish along this spatial niche axis. Aspects of the morphology of rabbitfish which may contribute to this niche segregation include a comparatively longer, narrower snout and narrower head. Our results suggest that sympatric coexistence of rabbitfish and other reef herbivores is facilitated by segregation along a spatial (and potentially dietary) axis. This segregation results in a unique functional role for rabbitfishes among roving herbivores that of “crevice-browser”: a group that specifically feeds on crevice-dwelling algal or benthic organisms. This functional trait may have implications for reef ecosystem processes in terms of controlling the successional development of crevice-based algal communities, reducing their potential to trigger macroalgal outbreaks.  相似文献   

20.
While sexual segregation is expected in highly dimorphic species, the local environment is a major factor driving the degree of resource partitioning within a population. Sexual and individual niche segregation was investigated in the Australian fur seal (Arctocephalus pusillus doriferus), which is a benthic foraging species restricted to the shallow continental shelf region of south-eastern Australia. Tracking data and the isotopic values of plasma, red blood cells and whiskers were combined to document spatial and dietary niche segregation throughout the year. Tracking data indicated that, in winter, males and females overlapped in their foraging habitat. All individuals stayed within central Bass Strait, relatively close (< 220 km) to the breeding colony. Accordingly, both genders exhibited similar plasma and red cell δ13C values. However, males exhibited greater δ13C intra-individual variation along the length of their whisker than females. This suggests that males exploited a greater diversity of foraging habitats throughout the year than their female counterparts, which are restricted in their foraging grounds by the need to regularly return to the breeding colony to suckle their pup. The degree of dietary sexual segregation was also surprisingly low, both sexes exhibiting a great overlap in their δ15N values. Yet, males displayed higher δ15N values than females, suggesting they fed upon a higher proportion of higher trophic level prey. Given that males and females exploit different resources (mainly foraging habitats), the degree of individual specialisation might differ between the sexes. Higher degrees of individual specialisation would be expected in males which exploit a greater range of resources. However, comparable levels of inter-individual variation in δ15N whisker values were found in the sampled males and females, and, surprisingly, all males exhibited similar seasonal and inter-annual variation in their δ13C whisker values, suggesting they all followed the same general dispersion pattern throughout the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号