首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To investigate rate-limiting factors for glutathione and phytochelatin (PC) production and the importance of these compounds for heavy metal tolerance, Indian mustard (Brassica juncea) was genetically engineered to overexpress the Escherichia coli gshI gene encoding γ-glutamylcysteine synthetase (γ-ECS), targeted to the plastids. The γ-ECS transgenic seedlings showed increased tolerance to Cd and had higher concentrations of PCs, γ-GluCys, glutathione, and total non-protein thiols compared with wild-type (WT) seedlings. When tested in a hydroponic system, γ-ECS mature plants accumulated more Cd than WT plants: shoot Cd concentrations were 40% to 90% higher. In spite of their higher tissue Cd concentration, the γ-ECS plants grew better in the presence of Cd than WT. We conclude that overexpression of γ-ECS increases biosynthesis of glutathione and PCs, which in turn enhances Cd tolerance and accumulation. Thus, overexpression of γ-ECS appears to be a promising strategy for the production of plants with superior heavy metal phytoremediation capacity.  相似文献   

3.
Glucagon plays an important role in glucose homeostasis and amino acid metabolism. It regulates plasma amino acid levels which in turn modulate glucagon secretion from the pancreatic α-cell, thereby establishing a liver–α-cell axis described recently. We reported previously that the knock-in mice bearing homozygous V369M substitution (equivalent to a naturally occurring mutation V368M in the human glucagon receptor, GCGR) led to hypoglycemia with improved glucose tolerance. They also exhibited hyperglucagonemia, pancreas enlargement and α-cell hyperplasia. Here, we investigated the effect of V369M/V368M mutation on glucagon-mediated amino acid metabolism. It was found that GcgrV369M+/+ mice displayed increased plasma amino acid levels in general, but significant accumulation of the ketogenic/glucogenic amino acids was observed in animals fed with a high-fat diet (HFD), resulting in deleterious metabolic consequence characteristic of α-cell proliferation and hyperglucagonemia.  相似文献   

4.

Background

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown etiology with few current treatment options. Recently, we determined an important role of prostaglandin F (PGF) in pulmonary fibrosis by using a bleomycin-induced pulmonary fibrosis model and found an abundance of PGF in bronchoalveolar lavage fluid of IPF patients. We investigated the role of PGF in human IPF by assessing plasma concentrations of 15-keto-dihydro PGF, a stable metabolite of PGF.

Methods

We measured plasma concentrations of 15-keto-dihydro PGF in 91 IPF patients and compared these values with those of controls (n = 25). We further investigated the relationships of plasma 15-keto-dihydro PGF concentrations with disease severity and mortality.

Results

Plasma concentrations of 15-keto-dihydro PGF were significantly higher in IPF patients than controls (p<0.001). Plasma concentrations of this metabolite were significantly correlated with forced expiratory volume in 1 second (Rs [correlation coefficient] = −0.34, p = 0.004), forced vital capacity (Rs = −0.33, p = 0.005), diffusing capacity for carbon monoxide (Rs = −0.36, p = 0.003), the composite physiologic index (Rs = 0.40, p = 0.001), 6-minute walk distance (Rs = −0.24, p = 0.04) and end-exercise oxygen saturation (Rs = −0.25, p = 0.04) when patients with emphysema were excluded. Multivariate analysis using stepwise Cox proportional hazards model showed that a higher composite physiologic index (relative risk = 1.049, p = 0.002) and plasma 15-keto-dihydro PGF concentrations (relative risk = 1.005, p = 0.002) were independently associated with an increased risk of mortality.

Conclusions

We demonstrated significant associations of plasma concentrations of PGF metabolites with disease severity and prognosis, which support a potential pathogenic role for PGF in human IPF.  相似文献   

5.
Phospholipase Cβ (PLCβ) enzymes are activated by G protein-coupled receptors through receptor-catalyzed guanine nucleotide exchange on Gαβγ heterotrimers containing Gq family G proteins. Here we report evidence for a direct interaction between M3 muscarinic receptor (M3R) and PLCβ3. Both expressed and endogenous M3R interacted with PLCβ in coimmunoprecipitation experiments. Stimulation of M3R with carbachol significantly increased this association. Expression of M3R in CHO cells promoted plasma membrane localization of YFP-PLCβ3. Deletion of the PLCβ3 C terminus or deletion of the PLCβ3 PDZ ligand inhibited coimmunoprecipitation with M3R and M3R-dependent PLCβ3 plasma membrane localization. Purified PLCβ3 bound directly to glutathione S-transferase (GST)-fused M3R intracellular loops 2 and 3 (M3Ri2 and M3Ri3) as well as M3R C terminus (M3R/H8-CT). PLCβ3 binding to M3Ri3 was inhibited when the PDZ ligand was removed. In assays using reconstituted purified components in vitro, M3Ri2, M3Ri3, and M3R/H8-CT potentiated Gαq-dependent but not Gβγ-dependent PLCβ3 activation. Disruption of key residues in M3Ri3N and of the PDZ ligand in PLCβ3 inhibited M3Ri3-mediated potentiation. We propose that the M3 muscarinic receptor maximizes the efficiency of PLCβ3 signaling beyond its canonical role as a guanine nucleotide exchange factor for Gα.  相似文献   

6.
Alcoholic beverage consumption is associated with an increased risk of upper gastrointestinal cancer. Acetaldehyde (AA), the first metabolite of ethanol, is a suspected human carcinogen, but the molecular mechanisms underlying AA carcinogenicity are unclear. In this work, we tested the hypothesis that polyamines could facilitate the formation of mutagenic α-methyl-γ-hydroxy-1,N2-propano-2′-deoxyguanosine (Cr-PdG) adducts from biologically relevant AA concentrations. We found that Cr-PdG adducts could be formed by reacting deoxyguanosine with μM concentrations of AA in the presence of spermidine, but not with either AA or spermidine alone. The identities of the Cr-PdG adducts were confirmed by both liquid and gas chromatography-mass spectrometry. Using a novel isotope-dilution liquid chromatography-mass spectrometry assay, we found that in the presence of 5 mM spermidine, AA concentrations of 100 μM and above resulted in the formation of Cr-PdG in genomic DNA. These AA levels are within the range that occurs in human saliva after alcoholic beverage consumption. We also showed that spermidine directly reacts with AA to generate crotonaldehyde (CrA), most likely via an enamine aldol condensation mechanism. We propose that AA derived from ethanol metabolism is converted to CrA by polyamines in dividing cells, forming Cr-PdG adducts, which may be responsible for the carcinogenicity of alcoholic beverage consumption.  相似文献   

7.
Ferroptosis is an iron‐dependent form of non‐apoptotic cell death implicated in liver, brain, kidney, and heart pathology. How ferroptosis is regulated remains poorly understood. Here, we show that PPARα suppresses ferroptosis by promoting the expression of glutathione peroxidase 4 (Gpx4) and by inhibiting the expression of the plasma iron carrier TRF. PPARα directly induces Gpx4 expression by binding to a PPRE element within intron 3. PPARα knockout mice develop more severe iron accumulation and ferroptosis in the liver when fed a high‐iron diet than wild‐type mice. Ferrous iron (Fe2+) triggers ferroptosis via Fenton reactions and ROS accumulation. We further find that a rhodamine‐based "turn‐on" fluorescent probe(probe1) is suitable for the in vivo detection of Fe2+. Probe1 displays high selectivity towards Fe2+, and exhibits a stable response for Fe2+ with a concentration of 20 μM in tissue. Our data thus show that PPARα activation alleviates iron overload‐induced ferroptosis in mouse livers through Gpx4 and TRF, suggesting that PPARα may be a promising therapeutic target for drug discovery in ferroptosis‐related tissue injuries. Moreover, we identified a fluorescent probe that specifically labels ferrous ions and can be used to monitor Fe2+ in vivo.  相似文献   

8.
The metabolic signaling pathways that drive pathologic tissue inflammation and damage in humans with pulmonary tuberculosis (TB) are not well understood. Using combined methods in plasma high-resolution metabolomics, lipidomics and cytokine profiling from a multicohort study of humans with pulmonary TB disease, we discovered that IL-1β-mediated inflammatory signaling was closely associated with TCA cycle remodeling, characterized by accumulation of the proinflammatory metabolite succinate and decreased concentrations of the anti-inflammatory metabolite itaconate. This inflammatory metabolic response was particularly active in persons with multidrug-resistant (MDR)-TB that received at least 2 months of ineffective treatment and was only reversed after 1 year of appropriate anti-TB chemotherapy. Both succinate and IL-1β were significantly associated with proinflammatory lipid signaling, including increases in the products of phospholipase A2, increased arachidonic acid formation, and metabolism of arachidonic acid to proinflammatory eicosanoids. Together, these results indicate that decreased itaconate and accumulation of succinate and other TCA cycle intermediates is associated with IL-1β-mediated proinflammatory eicosanoid signaling in pulmonary TB disease. These findings support host metabolic remodeling as a key driver of pathologic inflammation in human TB disease.  相似文献   

9.
Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M—(and IgM-) binding domains of PfEMP1, which would be independent of the host receptor specificity of clinically important PfEMP1 antigens.  相似文献   

10.
Guo D  Xie Z  Shen H  Zhao B  Wang Z 《Nucleic acids research》2004,32(3):1122-1130
Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase ζ (Polζ) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polζ and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is not well understood about the non-catalytic function of Rev1 in translesion synthesis. We have analyzed the role of Rev1 in translesion synthesis of an acetylaminofluorene (AAF)-dG DNA adduct. Purified yeast Rev1 was essentially unresponsive to a template AAF-dG DNA adduct, in contrast to its efficient C insertion opposite a template 1,N6-ethenoadenine adduct. Purified yeast Polζ was very inefficient in the bypass of the AAF-dG adduct. Combining Rev1 and Polζ, however, led to a synergistic effect on translesion synthesis. Rev1 protein enhanced Polζ-catalyzed nucleotide insertion opposite the AAF-dG adduct and strongly stimulated Polζ-catalyzed extension from opposite the lesion. Rev1 also stimulated the deficient synthesis by Polζ at the very end of undamaged DNA templates. Deleting the C-terminal 205 aa of Rev1 did not affect its dCMP transferase activity, but abolished its stimulatory activity on Polζ-catalyzed extension from opposite the AAF-dG adduct. These results suggest that translesion synthesis of AAF-dG adducts by Polζ is stimulated by Rev1 protein in yeast. Consistent with the in vitro results, both Polζ and Rev1 were found to be equally important for error-prone translesion synthesis across from AAF-dG DNA adducts in yeast cells.  相似文献   

11.
1. Rat-liver supernatant catalyses the reaction of diethyl maleate with glutathione. 2. Evidence is presented that the enzyme involved is different from the known glutathione-conjugating enzymes, glutathione S-alkyltransferase, S-aryltransferase and S-epoxidetransferase. 3. Rat-liver supernatant catalyses the reaction of a number of other αβ-unsaturated compounds, including aldehydes, ketones, lactones, nitriles and nitro compounds, with glutathione: separate enzymes may be responsible for these reactions.  相似文献   

12.
F1 antigen (Caf1) of Yersinia pestis is assembled via the Caf1M chaperone/Caf1A usher pathway. We investigated the ability of this assembly system to facilitate secretion of full-length heterologous proteins fused to the Caf1 subunit in Escherichia coli. Despite correct processing of a chimeric protein composed of a modified Caf1 signal peptide, mature human interleukin-1β (hIL-1β), and mature Caf1, the processed product (hIL-1β:Caf1) remained insoluble. Coexpression of this chimera with a functional Caf1M chaperone led to the accumulation of soluble hIL-1β:Caf1 in the periplasm. Soluble hIL-1β:Caf1 reacted with monoclonal antibodies directed against structural epitopes of hIL-1β. The results indicate that Caf1M-induced release of hIL-1β:Caf1 from the inner membrane promotes folding of the hIL-1β domain. Similar results were obtained with the fusion of Caf1 to hIL-1β receptor antagonist or to human granulocyte-macrophage colony-stimulating factor. Following coexpression of the hIL-1β:Caf1 precursor with both the Caf1M chaperone and Caf1A outer membrane protein, hIL-1β:Caf1 could be detected on the cell surface of E. coli. These results demonstrate for the first time the potential application of the chaperone/usher secretion pathway in the transport of subunits with large heterogeneous N-terminal fusions. This represents a novel means for the delivery of correctly folded heterologous proteins to the periplasm and cell surface as either polymers or cleavable monomeric domains.  相似文献   

13.
BYZX, [(E)-2-(4-((diethylamino)methyl)benzylidene)-5,6-dimethoxy-2,3-dihydroinden-one], belongs to a series of novel acetylcholinesterase inhibitors and has been synthesized as a new chemical entity for the treatment of Alzheimer’s disease symptoms. When incubated with human liver microsomes (HLMs), BYZX was rapidly transformed into its metabolites M1, M2, and M3. The chemical structures of these metabolites were identified using liquid chromatography tandem mass spectrometry and nuclear magnetic resonance, which indicated that M1 was an N-desethylated and C = C hydrogenation metabolite of BYZX. M2 and M3 were 2 precursor metabolites, which resulted from the hydrogenation and desethylation of BYZX, respectively. Further studies with chemical inhibitors and human recombinant cytochrome P450s (CYPs), and correlation studies were performed. The results indicated that the N-desethylation of BYZX and M2 was mediated by CYP3A4 and CYP2C8. The reduced form of β-nicotinamide adenine dinucleotide 2′-phosphate was involved in the hydrogenation of BYZX and M3, and this reaction occurred in the HLMs and in the human liver cytosol. The hydrogenation reaction was not inhibited by any chemical inhibitors of CYPs, but it was significantly inhibited by some substrates of α,β-ketoalkene C = C reductases and their inhibitors such as benzylideneacetone, dicoumarol, and indomethacin. Our results suggest that α,β-ketoalkene C = C reductases may play a role in the hydrogenation reaction, but this issue requires further clarification.  相似文献   

14.
Inhibition of α-amylase is an important strategy to control post-prandial hyperglycemia. The present study on Ruellia tuberosa, known as traditional anti-diabetic agent, is being provided in silico study to identify compounds inhibiting α-amylase in rat and human. Compounds were explored from PubChem database. Molecular docking was studied using the autodock4. The interactions were further visualized and analyzed using the Accelrys Discovery Studio version 3.5. Binding energy of compounds to α-amylase was varying between -1.92 to -6.66 kcal/mol in rat pancreatic alpha amylase and -3.06 to -8.42kcal/mol in human pancreatic alpha amylase, and inhibition konstanta (ki) was varying between 13.12- 39460µM in rat and 0.67-5600µM in human. The docking results verify that betulin is the most potential inhibitor of all towards rat model alpha amylase and human alpha amylase. Further analysis reveals that betulin could be a potential inhibitor with non-competitive pattern like betulinic acid. In comparison, betulin has smaller Ki (0.67µM) than acarbose (2.6 µM), which suggesting that betulin is more potential as inhibitor than acarbose, but this assumption must be verified in vitro.  相似文献   

15.
Myricetin (MYR) is a bioactive secondary metabolite found in plants that is recognized for its nutraceutical value and is an essential constituent of various foods and beverages. It is reported to exhibit a plethora of activities, including antioxidant, antimicrobial, antidiabetic, anticancer, and anti-inflammatory. Alpha-2-macroglobulin (α2M) is a major plasma anti-proteinase that can inhibit proteinases of both human and non-human origin, regardless of their specificity and catalytic mechanism. Here, we explored the interaction of MYR-α2M using various biochemical and biophysical techniques. It was found that the interaction of MYR brings subtle change in its anti-proteolytic potential and thereby alters its structure and function, as can be seen from absorbance and fluorescence spectroscopy. UV spectroscopy of α2M in presence of MYR indicated the occurrence of hyperchromism, suggesting complex formation. Fluorescence spectroscopy reveals that MYR reduces the fluorescence intensity of native α2M with a shift in the wavelength maxima. At 318.15 K, MYR binds to α2M with a binding constant of 2.4 × 103 M−1, which indicates significant binding. The ΔG value was found to be − 7.56 kcal mol−1 at 298.15 K, suggesting the interaction to be spontaneous and thermodynamically favorable. The secondary structure of α2M does not involve any major change as was confirmed by CD analysis. The molecular docking indicates that Asp-146, Ser-172, Glu-174, and Tyr-180 were the key residues involved in α2M-MYR complex formation. This study contributes to our understanding of the function and mechanism of protein and flavonoid binding by providing a molecular basis of the interaction between MYR and α2M.  相似文献   

16.
Cysteine, γ-glutamylcysteine, and glutathione and the extractable activity of the enzymes of glutathione biosynthesis, γ-glutamylcysteine synthetase (EC 6.3.2.2) and glutathione synthetase (EC 6.3.2.3), were measured in roots and leaves of maize seedlings (Zea mays L. cv LG 9) exposed to CdCl2 concentrations up to 200 micromolar. At 50 micromolar Cd2+, γ-glutamylcysteine contents increased continuously during 4 days up to 21-fold and eightfold of the control in roots and leaves, respectively. Even at 0.5 micromolar Cd2+, the concentration of γ-glutamylcysteine in the roots was significantly higher than in the control. At 5 micromolar and higher Cd2+ concentrations, a significant increase in γ-glutamylcysteine synthetase activity was measured in the roots, whereas in the leaves this enzyme activity was enhanced only at 200 micromolar Cd2+. Labeling of isolated roots with [35S]sulfate showed that both sulfate assimilation and glutathione synthesis were increased by Cd. The accumulation of γ-glutamylcysteine in the roots did not affect the root exudation rate of this compound. Our results indicate that maize roots are at least in part autonomous in providing the additional thiols required for phytochelatin synthesis induced by Cd.  相似文献   

17.
This study with poplar (Populus tremula × Populus alba) cuttings was aimed to test the hypothesis that sulfate uptake is regulated by demand-driven control and that this regulation is mediated by phloem-transported glutathione as a shoot-to-root signal. Therefore, sulfur nutrition was investigated at (a) enhanced sulfate demand in transgenic poplar over-expressing γ-glutamylcysteine (γ-EC) synthetase in the cytosol and (b) reduced sulfate demand during short-term exposure to H2S. H2S taken up by the leaves increased cysteine, γ-EC, and glutathione concentrations in leaves, xylem sap, phloem exudate, and roots, both in wild-type and transgenic poplar. The observed reduced xylem loading of sulfate after H2S exposure of wild-type poplar could well be explained by a higher glutathione concentration in the phloem. In transgenic poplar increased concentrations of glutathione and γ-EC were found not only in leaves, xylem sap, and roots but also in phloem exudate irrespective of H2S exposure. Despite enhanced phloem allocation of glutathione and its accumulation in the roots, sulfate uptake was strongly enhanced. This finding is contradictory to the hypothesis that glutathione allocated in the phloem reduces sulfate uptake and its transport to the shoot. Correlation analysis provided circumstantial evidence that the sulfate to glutathione ratio in the phloem may control sulfate uptake and loading into the xylem, both when the sulfate demand of the shoot is increased and when it is reduced.  相似文献   

18.
Obesity is an underlying risk factor in the development of cardiovascular disease, dyslipidemia and non-alcoholic fatty liver disease (NAFLD). Increased hepatic lipid accumulation is a hallmark in the progression of NAFLD and impairments in liver phosphatidylcholine (PC) metabolism may be central to the pathogenesis. Hepatic PC biosynthesis, which is linked to the one-carbon (C1) metabolism by phosphatidylethanolamine N-methyltransferase, is known to be important for hepatic lipid export by VLDL particles. Here, we assessed the influence of a high-fat (HF) diet and NAFLD status in mice on hepatic methyl-group expenditure and C1-metabolism by analyzing changes in gene expression, protein levels, metabolite concentrations, and nuclear epigenetic processes. In livers from HF diet induced obese mice a significant downregulation of cystathionine β-synthase (CBS) and an increased betaine-homocysteine methyltransferase (BHMT) expression were observed. Experiments in vitro, using hepatoma cells stimulated with peroxisome proliferator activated receptor alpha (PPARα) agonist WY14,643, revealed a significantly reduced Cbs mRNA expression. Moreover, metabolite measurements identified decreased hepatic cystathionine and L-α-amino-n-butyrate concentrations as part of the transsulfuration pathway and reduced hepatic betaine concentrations, but no metabolite changes in the methionine cycle in HF diet fed mice compared to controls. Furthermore, we detected diminished hepatic gene expression of de novo DNA methyltransferase 3b but no effects on hepatic global genomic DNA methylation or hepatic DNA methylation in the Cbs promoter region upon HF diet. Our data suggest that HF diet induces a PPARα-mediated downregulation of key enzymes in the hepatic transsulfuration pathway and upregulates BHMT expression in mice to accommodate to enhanced dietary fat processing while preserving the essential amino acid methionine.  相似文献   

19.
Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P<0.10) by rbTNFα administration, but no dose effect (P>0.10) was detected; rbTNFα treatments increased (P<0.01) concentrations of plasma haptoglobin. Most plasma eicosanoids were not affected (P>0.10) by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P<0.05) over the first week of lactation, reflecting elevated inflammatory mediators in the days immediately following parturition. Dry matter and water intake, milk yield, and milk fat and protein yields were all decreased (P<0.05) by rbTNFα treatments by 15 to 18%. Concentrations of plasma glucose, insulin, β-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNFα treatment. Glucose turnover rate was unaffected (P = 0.18) by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P = 0.08). Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows.  相似文献   

20.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein (αSyn) aggregation and associated with abnormalities in lipid metabolism. The accumulation of lipids in cytoplasmic organelles called lipid droplets (LDs) was observed in cellular models of PD. To investigate the pathophysiological consequences of interactions between αSyn and proteins that regulate the homeostasis of LDs, we used a transgenic Drosophila model of PD, in which human αSyn is specifically expressed in photoreceptor neurons. We first found that overexpression of the LD-coating proteins Perilipin 1 or 2 (dPlin1/2), which limit the access of lipases to LDs, markedly increased triacylglyclerol (TG) loaded LDs in neurons. However, dPlin-induced-LDs in neurons are independent of lipid anabolic (diacylglycerol acyltransferase 1/midway, fatty acid transport protein/dFatp) and catabolic (brummer TG lipase) enzymes, indicating that alternative mechanisms regulate neuronal LD homeostasis. Interestingly, the accumulation of LDs induced by various LD proteins (dPlin1, dPlin2, CG7900 or KlarsichtLD-BD) was synergistically amplified by the co-expression of αSyn, which localized to LDs in both Drosophila photoreceptor neurons and in human neuroblastoma cells. Finally, the accumulation of LDs increased the resistance of αSyn to proteolytic digestion, a characteristic of αSyn aggregation in human neurons. We propose that αSyn cooperates with LD proteins to inhibit lipolysis and that binding of αSyn to LDs contributes to the pathogenic misfolding and aggregation of αSyn in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号