首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity is a risk factor for insulin resistance, type 2 diabetes, and cardiovascular diseases. Reticulon-4 (Nogo) is an endoplasmic reticulum–resident protein with unclear functions in obesity. Herein, we investigated the effect of Nogo on obesity and associated metabolic disorders. Human serum samples were collected to explore the relationship between circulating Nogo-B and body mass index value. Nogo-deficient and WT littermate control mice were fed normal chow or high-fat diet (HFD) for 14 weeks, and HFD-induced obese C57BL/6J mice were injected scrambled or Nogo siRNA for 2 weeks. We found that in human and mouse serum, Nogo-B was positively correlated to body mass index/bodyweight and lipid profiles. Reduced Nogo (by genetic deletion or siRNA transfection) protected mice against HFD-induced obesity and related metabolic disorders. We demonstrate that Nogo deficiency reversed HFD-induced whitening of brown adipose tissue, thereby increasing thermogenesis. It also ameliorated lipid accumulation in tissues by activating the adiponectin–adiponectin receptor 1–AMP-activated kinase α signaling axis. Finally, Nogo deficiency potently reduced HFD-induced serum proinflammatory cytokines and infiltration of macrophages into metabolic organs, which is related to enhanced NF-κB p65 degradation via the lysosome pathway. Collectively, our study suggests that reduced levels of Nogo protect mice against HFD-induced obesity by increasing thermogenesis and energy metabolism while inhibiting NF-κB-mediated inflammation. Our results indicate that inhibition of Nogo may be a potential strategy for obesity treatment.  相似文献   

2.
Nonalcoholic fatty liver disease (NAFLD) is a chronic disease affecting the health of many people worldwide. Previous studies have shown that dietary calcium supplementation may alleviate NAFLD, but the underlying mechanism is not clear. In this study investigating the effect of calcium on hepatic lipid metabolism, 8-week-old male C57BL/6J mice were divided into four groups (n = 6): (1) mice given a normal chow containing 0.5% calcium (CN0.5), (2) mice given a normal chow containing 1.2% calcium (CN1.2), (3) mice given a high-fat diet (HFD) containing 0.5% calcium (HFD0.5), and (4) mice fed a HFD containing 1.2% calcium (HFD1.2). To understand the underlying mechanism, cells were treated with oleic acid and palmitic acid to mimic the HFD conditions in vitro. The results showed that calcium alleviated the increase in triglyceride accumulation induced by oleic acid and/or palmitic acid in HepG2, AML12, and primary hepatocyte cells. Our data demonstrated that calcium supplementation alleviated HFD-induced hepatic steatosis through increased liver lipase activity, proving calcium is involved in the regulation of hepatic lipid metabolism. Moreover, calcium also increased the level of glycogen in the liver, and at the same time had the effect of reducing glycolysis and promoting glucose absorption. Calcium addition increased calcium levels in the mitochondria and cytoplasm. Taken together, we concluded that calcium supplementation could relieve HFD-induced hepatic steatosis by changing energy metabolism and lipase activity.  相似文献   

3.
Faecal Microbiota Transplantation (FMT) is considered as a promising technology to fight against obesity. Wild boar has leanermuscle and less fat in comparison to the domestic pig, which were thought to be related with microbiota. To investigate the function and mechanism of the wild boar microbiota on obesity, we first analysed the wild boar microbiota composition via 16S rDNA sequencing, which showed that Firmicutes and Proteobacteria were the dominant bacteria. Then, we established a high-fat diet (HFD)-induced obesity model, and transfer low and high concentrations of wild boar faecal suspension in mice for 9 weeks. The results showed that FMT prevented HFD-induced obesity and lipid metabolism disorders, and altered the jejunal microbiota composition especially increasing the abundance of the Lactobacillus and Romboutsia, which were negatively correlated with obesity-related indicators. Moreover, we found that the anti-obesity effect of wild boar faecal suspension was associated with jejunal N6-methyladenosine (m6A) levels. Overall, these results suggest that FMT has a mitigating effect on HFD-induced obesity, which may be due to the impressive effects of FMT on the microbial composition and structure of the jejunum. These changes further alter intestinal lipid metabolism and m6A levels to achieve resistance to obesity.  相似文献   

4.
The rising prevalence of obesity has become a worldwide health concern. Obesity usually occurs when there is an imbalance between energy intake and energy expenditure. However, energy expenditure consists of several components, including metabolism, physical activity, and thermogenesis. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor, and it is abundantly expressed in the brain. Here, we showed that pro-opiomelanocortin (POMC)-specific deficiency of TLR4 directly modulates brown adipose tissue thermogenesis and lipid homeostasis in a sex-dependent manner. Deleting TLR4 in POMC neurons is sufficient to increase energy expenditure and thermogenesis resulting in reduced body weight in male mice. POMC neuron is a subpopulation of tyrosine hydroxylase neurons and projects into brown adipose tissue, which regulates the activity of sympathetic nervous system and contributes to thermogenesis in POMC-TLR4-KO male mice. By contrast, deleting TLR4 in POMC neurons decreases energy expenditure and increases body weight in female mice, which affects lipolysis of white adipose tissue (WAT). Mechanistically, TLR4 KO decreases the expression of the adipose triglyceride lipase and lipolytic enzyme hormone-sensitive lipase in WAT in female mice. Furthermore, the function of immune-related signaling pathway in WAT is inhibited because of obesity, which exacerbates the development of obesity reversely. Together, these results demonstrate that TLR4 in POMC neurons regulates thermogenesis and lipid balance in a sex-dependent manner.  相似文献   

5.
Obesity is associated with biological dysfunction in skeletal muscle. As a condition of obesity accompanied by muscle mass loss and physical dysfunction, sarcopenic obesity (SO) has become a novel public health problem. Human fibroblast growth factor 19 (FGF19) plays a therapeutic role in metabolic diseases. However, the protective effects of FGF19 on skeletal muscle in obesity and SO are still not completely understood. Our results showed that FGF19 administration improved muscle loss and grip strength in young and aged mice fed a high-fat diet (HFD). Increases in muscle atrophy markers (FOXO-3, Atrogin-1, MuRF-1) were abrogated by FGF19 in palmitic acid (PA)-treated C2C12 myotubes and in the skeletal muscle of HFD-fed mice. FGF19 not only reduced HFD-induced body weight gain, excessive lipid accumulation and hyperlipidaemia but also promoted energy expenditure (PGC-1α, UCP-1, PPAR-γ) in brown adipose tissue (BAT). FGF19 treatment restored PA- and HFD-induced hyperglycaemia, impaired glucose tolerance and insulin resistance (IRS-1, GLUT-4) and mitigated the PA- and HFD-induced decrease in FNDC-5/irisin expression. However, these beneficial effects of FGF19 on skeletal muscle were abolished by inhibiting AMPK, SIRT-1 and PGC-1α expression. Taken together, this study suggests that FGF19 protects skeletal muscle against obesity-induced muscle atrophy, metabolic derangement and abnormal irisin secretion partially through the AMPK/SIRT-1/PGC-α signalling pathway, which might be a potential therapeutic target for obesity and SO.  相似文献   

6.

Background

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model.

Methodology/Principal Findings

Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress.

Conclusions/Significance

These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.  相似文献   

7.
8.
High-fat-diet (HFD)-induced obesity is a major contributor to diabetes and cardiovascular disease, but the underlying genetic mechanisms are poorly understood. Here, we use Drosophila to test the hypothesis that HFD-induced obesity and associated cardiac complications have early evolutionary origins involving nutrient-sensing signal transduction pathways. We find that HFD-fed flies exhibit increased triglyceride (TG) fat and alterations in insulin/glucose homeostasis, similar to mammalian responses. A HFD also causes cardiac lipid accumulation, reduced cardiac contractility, conduction blocks, and severe structural pathologies, reminiscent of diabetic cardiomyopathies. Remarkably, these metabolic and cardiotoxic phenotypes elicited by HFD are blocked by inhibiting insulin-TOR signaling. Moreover, reducing insulin-TOR activity (by expressing TSC1-2, 4EBP or FOXO), or increasing lipase expression-only within the myocardium-suffices to efficiently alleviate cardiac fat accumulation and dysfunction induced by HFD. We conclude that deregulation of insulin-TOR signaling due to a HFD is responsible for mediating the detrimental effects on metabolism and heart function.  相似文献   

9.
Overweight and obesity are usually related with high fat and calorie intake, and seriously causative of lifestyle-related diseases such as cardiovascular disorders, arteriosclerosis, and colon cancer. In this study, we propose a novel dietary therapy against overweight and obesity using mixtures of protamine and chitooligosaccharide (COS), which are known to interrupt the lipid metabolism in the body. Protamine is a dietary protein originated from salmon reproductive organ, and COS is an oligosaccharide made from chitin or chitosan by chemical or enzymatic hydrolysis. In the enzyme activity analysis in vitro, protamine and COS strongly suppressed the activity of pancreatic lipase, which is the primary enzyme for the digestion and absorption of lipids in the intestine. In in vivo animal test, the mixtures of protamine and COS significantly reduced the serum levels of triglyceride (TG), total cholesterol (T-CHO), and low density lipoprotein-cholesterol (LDLC) and inhibited the accumulation of lipids in liver tissue of Sprague Dawley (SD) rats fed high fat diets. On the other hand, they increased fecal TG and T-CHO contents. From these alterations in lipid metabolism, we verified that protamine and COS mixtures could effectively interrupt the digestion and absorption of dietary lipids in the body by inhibiting pancreatic lipase activity. In addition, protamine and COS mixtures increased the serum level of high density lipoprotein-cholesterol (HDLC), responsible for removing cholesterol from cells and protecting atherosclerosis, and therefore decreased the potential risks of cardiovascular diseases by lowering values of the atherogenic index (AI) and cardiac risk factor (CRF). Taken together, we suggest protamine and COS mixtures as a prominent dietary therapy for the prevention of overweight, obesity, and further cardiovascular diseases related with hyperlipidemia.  相似文献   

10.
In this study, we investigated the activity levels of two major digestive enzymes (pepsin and lipase) in the commercially important Japanese grenadier anchovy Coilia nasus during its upstream migration to analyse the digestive physiological responses to starvation and to analyse the influence of the water temperature on enzyme activity. Water temperature had a significant effect on pepsin activity, while long-term starvation resulted in a significant decrease in pepsin activity. As starvation continued, however, a slight increase in pepsin activity between the Wuhu (440 river km) and Anqing (620 river km) regions may indicate that C. nasus had refeeding behaviour due to its large expenditure of energy reserves. In contrast, lipase activity was not significantly affected by the water temperature but the effect of fasting increased as much as 13% of lipase activity from the Chongming region (20 river km) to Anqing region, suggesting that the stored lipids of grenadier anchovy were mobilised to meet energy requirements of upstream migration activity and gonad development. Lipid mobilisation activated lipoprotein lipase (LPL; proteins with lipase activity) to hydrolyse triacylglycerides (TAG), which is the first step of lipid assimilation and obtained energy from fatty acids under fasting conditions. Therefore, the increased lipase activity is attributed mainly to the lipase that is involved in endogenous lipid hydrolysis. Grenadier anchovy appears to adapt to long-term starvation during migration and the increased lipase activity may indicate a crucial effect on lipid metabolism. This study demonstrated that distinct alterations occur in pepsin and lipase activities during the spawning migration of grenadier anchovy due to exogenous nutrition and endogenous metabolism. Furthermore, it provides a basis for further research on the digestive physiology and energy metabolism in this species.  相似文献   

11.
近年来,肥胖患病率不断上升,肥胖已成为全球性公共卫生问题.肥胖能够增加高血压、冠心病等心血管疾病的发病风险,防治肥胖已经成为亟待解决的社会问题.米色脂肪是一种产热型脂肪细胞,可在受到寒冷、药物、运动等外界刺激下由白色脂肪细胞转化而来,但其形态和功能却与白色脂肪细胞不同,而与棕色脂肪细胞类似,即米色脂肪同样含有丰富的线粒...  相似文献   

12.
An excess of fat mass excess predisposes to multiple complications such as type 2 diabetes, cardiovascular diseases or cancer. A dysregulation of lipid metabolism contributes to the development of obesity and the metabolic syndrome. Recent data on lipid mobilization in adipose tissue have revealed a complex pathway involving a human specific hormonal control of lipolysis via the natriuretic peptides and a new triglyceride lipase, ATGL. Activation of fatty acid reesterification and oxidation can lead to an increase in fatty acid utilization. Targeting these key steps of lipid metabolism (adipose tissue lipolysis and fatty acid oxidation) constitutes a potential strategy for the treatment of obesity and associated metabolic disorders.  相似文献   

13.
Adipose tissue is a critical exchange center for complex energy transactions involving triacylglycerol storage and release. It also has an active endocrine role, releasing various adipose-derived cytokines (adipokines) that participate in complex pathways to maintain metabolic and vascular health. Here, we found D-dopachrome tautomerase (DDT) as an adipokine secreted from human adipocytes by a proteomic approach. DDT mRNA levels in human adipocytes were negatively correlated with obesity-related clinical parameters such as BMI, and visceral and subcutaneous fat areas. Experiments using SGBS cells, a human preadipocyte cell line, revealed that DDT mRNA levels were increased in an adipocyte differentiation-dependent manner and DDT was secreted from adipocytes. In DDT knockdown adipocytes differentiated from SGBS cells that were infected with the adenovirus expressing shRNA against the DDT gene, mRNA levels of genes involved in both lipolysis and lipogenesis were slightly but significantly increased. Furthermore, we investigated AMP-activated protein kinase (AMPK) signaling, which phosphorylates and inactivates enzymes involved in lipid metabolism, including hormone-sensitive lipase (HSL) and acetyl-CoA carboxylase (ACC), in DDT knockdown adipocytes. The AMPK phosphorylation of HSL Ser-565 and ACC Ser-79 was inhibited in DDT knockdown cells and recovered in the cells treated with recombinant DDT (rDDT), suggesting that down-regulated DDT in adipocytes brings about a state of active lipid metabolism. Furthermore, administration of rDDT in db/db mice improved glucose intolerance and decreased serum free fatty acids levels. In the adipose tissue from rDDT-treated db/db mice, not only increased levels of HSL phosphorylated by AMPK, but also decreased levels of HSL phosphorylated by protein kinase A (PKA), which phosphorylates HSL to promote its activity, were observed. These results suggested that DDT acts on adipocytes to regulate lipid metabolism through AMPK and/or PKA pathway(s) and improves glucose intolerance caused by obesity.  相似文献   

14.
15.
Obesity is a metabolic disorder that results from an imbalance of energy intake and consumption. As low-grade chronic inflammation caused by obesity can lead to various complications, it is important to develop effective treatments against obesity. In this study, we investigate the effects of WKYMVm, a strong anti-inflammatory agent, against obesity. Administration of WKYMVm into high fat diet (HFD)-induced obese mice significantly attenuated body weight gain, food intake and increased insulin sensitivity. HFD-induced hepatic steatosis and adipose tissue hypertrophy were also markedly ameliorated by WKYMVm. During the maturation of adipocytes, WKYMVm improves lipid metabolism by increasing lipolysis, adipogenesis, mitochondrial biogenesis and fat browning. WKYMVm administration also elicited a decrease in leptin levels, but an increase in leptin sensitivity via regulation of hypothalamic endoplasmic reticulum stress and the leptin receptor cascade. Taken together, our results show that WKYMVm ameliorates obesity by improving lipid metabolism and leptin signalling, suggesting that WKYMVm can be a useful molecule for the development of anti-obesity agents.  相似文献   

16.
The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor δ (PPARδ) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPARδ protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also protected against the development of nonalcoholic fatty liver by decreasing hepatic triglyceride accumulation. Consistent with the in vitro results, PRPA activated AMPK signaling and altered the expression of lipid metabolism-related proteins in liver and skeletal muscle. Taken together, these findings demonstrate that PRPAs attenuate HFD-induced obesity by activating AMPK and PPARδ, and regulate lipid metabolism, suggesting their potential anti-obesity effects.  相似文献   

17.
Tian J  Dang HN  Yong J  Chui WS  Dizon MP  Yaw CK  Kaufman DL 《PloS one》2011,6(9):e25338
Adipocyte and β-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM), which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of γ-aminobutyric acid (GABA) receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD)-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4(+)Foxp3(+) Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic.  相似文献   

18.
Wang YX  Lee CH  Tiep S  Yu RT  Ham J  Kang H  Evans RM 《Cell》2003,113(2):159-170
In contrast to the well-established roles of PPARgamma and PPARalpha in lipid metabolism, little is known for PPARdelta in this process. We show here that targeted activation of PPARdelta in adipose tissue specifically induces expression of genes required for fatty acid oxidation and energy dissipation, which in turn leads to improved lipid profiles and reduced adiposity. Importantly, these animals are completely resistant to both high-fat diet-induced and genetically predisposed (Lepr(db/db)) obesity. As predicted, acute treatment of Lepr(db/db) mice with a PPARdelta agonist depletes lipid accumulation. In parallel, PPARdelta-deficient mice challenged with high-fat diet show reduced energy uncoupling and are prone to obesity. In vitro, activation of PPARdelta in adipocytes and skeletal muscle cells promotes fatty acid oxidation and utilization. Our findings suggest that PPARdelta serves as a widespread regulator of fat burning and identify PPARdelta as a potential target in treatment of obesity and its associated disorders.  相似文献   

19.
由于世界范围内营养条件和生活方式的变化,肥胖及其相关的代谢性疾病已成为当前威胁人类健康的重要因素之一.在能量摄取和消耗以及体内脂肪储存、分解和脂肪组织重塑的研究中,人们逐渐认识到脂质过量及异位堆积将导致代谢组织处于慢性炎症状态,这开启了肥胖相关组织炎症研究的新方向.固有淋巴细胞(innate lymphoid cell...  相似文献   

20.
Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and adipocyte gene expression in adipocytes. In this study, we have shown for the first time the gene expression profile in isolated rat adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The rat adipocytes were treated with 100 muM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. A total of 633 or 427 genes was up-regulated (>1.5-fold) by the treatment of adipocytes with C3G or Cy, respectively. The up-regulated genes include lipid metabolism and signal transduction-related genes, however, the altered genes were partly different between the C3G- and Cy-treated groups. Based on the gene expression profile, we demonstrated the up-regulation of hormone sensitive lipase and enhancement of the lipolytic activity by the treatment of adipocytes with C3G or Cy. These data have provided an overview of the gene expression profiles in adipocytes treated with anthocyanins and identified new responsive genes with potentially important functions in adipocytes related with obesity and diabetes that merit further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号