首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Akebia Saponin D (ASD), a triterpenoid saponin, was shown to have protective effects in certain neuronal cells. The purpose of the present study was to investigate the possibility of ASD to prevent tumor necrosis factor (TNF)-induced axonal loss and the ASD modulation of the biologic process of autophagy in optic nerves. Rats were given intravitreal administration of TNF, simultaneous administration of 2, 20, or 200 pmol ASD and TNF, or ASD alone. LC3-II and p62 expression, which is a marker of autophagic flux, and phosphorylated p38 (p-p38) expression in optic nerves were examined by immunoblot analysis. Morphometric analysis revealed a significant ameliorated effect of ASD against TNF-induced optic nerve damage. p62 was significantly increased in the optic nerve in TNF-treated eyes, but this increase was totally prevented by ASD. The ASD alone injection showed significant reduction of p62 levels compared with the PBS-treated control eyes. LC3-II was significantly increased by ASD treatment in the TNF-injected eyes. p-p38 was significantly increased in the optic nerve in TNF-treated eyes, but this increase was completely prevented by ASD. The protective effects of ASD may be associated with enhanced autophagy activation and inhibition of p-p38.

  相似文献   

2.
In order to assess potential associations between autism spectrum disorder (ASD) phenotype, functional GI disorders and fecal microbiota, we recruited simplex families, which had only a single ASD proband and neurotypical (NT) siblings, through the Simons Simplex Community at the Interactive Autism Network (SSC@IAN). Fecal samples and metadata related to functional GI disorders and diet were collected from ASD probands and NT siblings of ASD probands (age 7–14). Functional gastrointestinal disorders (FGID) were assessed using the parent-completed ROME III questionnaire for pediatric FGIDs, and problem behaviors were assessed using the Child Behavior Check List (CBCL). Targeted quantitative polymerase chain reaction (qPCR) assays were conducted on selected taxa implicated in ASD, including Sutterella spp., Bacteroidetes spp. and Prevotella spp. Illumina sequencing of the V1V2 and the V1V3 regions of the bacterial 16S rRNA genes from fecal DNA was performed to an average depth of 208,000 and 107,000 high-quality reads respectively. Twenty-five of 59 ASD children and 13 of 44 NT siblings met ROME III criteria for at least one FGID. Functional constipation was more prevalent in ASD (17 of 59) compared to NT siblings (6 of 44, P = 0.035). The mean CBCL scores in NT siblings with FGID, ASD children with FGID and ASD without FGID were comparably higher (58–62 vs. 44, P < 0.0001) when compared to NT children without FGID. There was no significant difference in macronutrient intake between ASD and NT siblings. There was no significant difference in ASD severity scores between ASD children with and without FGID. No significant difference in diversity or overall microbial composition was detected between ASD children with NT siblings. Exploratory analysis of the 16S rRNA sequencing data, however, identified several low abundance taxa binned at the genus level that were associated with ASD and/or first order ASD*FGID interactions (FDR <0.1).  相似文献   

3.
BackgroundThe existing data demonstrate that alteration of trace element and mineral status in children with neurodevelopmental disorders including ASD and ADHD. However, comparative analysis of the specific patterns of trace element and mineral metabolism in children with ASD and ADHD was not performed. Therefore, the primary objective of the present study was to assess hair trace element and mineral levels in boys with ADHD, ASD, as well as ADHD with ASD.MethodsBoys with ADHD (n = 52), ASD (n = 53), both ADHD and ASD (n = 52), as well as neurotypical controls (n = 52) were examined. Hair analysis was performed using inductively-coupled plasma mass-spectrometry.ResultsThe obtained data demonstrate that hair Co, Mg, Mn, and V levels were significantly reduced in children with ADHD and ASD, and especially in boys with ADHD + ASD. Hair Zn was found to be reduced by 20% (p = 0.009) only in children with ADHD + ASD as compared to healthy controls. Factor analysis demonstrated that ASD was associated with significant alteration of hair Co, Fe, Mg, Mn, and V levels, whereas impaired hair Mg, Mn, and Zn content was also significantly associated with ADHD. In regression models hair Zn and Mg were negatively associated with severity of neurodevelopmental disorders. The revealed similarity of trace element and mineral disturbances in ASD and ADHD may be indicative of certain similar pathogenetic features.ConclusionThe obtained data support the hypothesis that trace elements and minerals, namely Mg, Mn, and Zn, may play a significant role in development of both ADHD and ASD. Improvement of Mg, Mn, and Zn status in children with ASD and ADHD may be considered as a nutritional strategy for improvement of neurodevelopmental disturbances, although clinical trials and experimental studies are highly required to support this hypothesis.  相似文献   

4.
Autism spectrum disorder (ASD) is a perplexing and pervasive developmental disorder characterized by social difficulties, communicative deficits, and repetitive behavior. The increased rate of ASD diagnosis has raised questions concerning the genetic and environmental factors contributing to the development of this disorder; meanwhile, the cause of ASD remains unknown. This study surveyed mothers of ASD and non-ASD children to determine possible effects of labor and delivery (L&D) drugs on the development of ASD. The survey was administered to mothers; however, the results were analyzed by child, as the study focused on the development of autism. Furthermore, an independent ASD dataset from the Southwest Autism Research and Resource Center was analyzed and compared. Indeed, L&D drugs are associated with ASD (p = .039). Moreover, the Southwest Autism Research and Resource Center dataset shows that the labor induction drug, Pitocin, is significantly associated with ASD (p = .004). We also observed a synergistic effect between administrations of L&D drugs and experiencing a birth complication, in which both obstetrics factors occurring together increased the likelihood of the fetus developing ASD later in life (p = .0003). The present study shows the possible effects of L&D drugs, such as Pitocin labor-inducing and analgesic drugs, on children and ASD.  相似文献   

5.
Autism spectrum disorder (ASD) affects as many as 1 in 68 children and is said to be the fastest-growing serious developmental disability in the United States. There is currently no medical cure or diagnostic test for ASD. Furthermore, the U.S. Food and Drug Administration has yet to approve a single drug for the treatment of autism’s core symptoms. Despite numerous genome studies and the identification of hundreds of genes that may cause or predispose children to ASD, the pathways underlying the pathogenesis of idiopathic ASD still remain elusive. Post-mortem brain samples, apart from being difficult to obtain, offer little insight into a disorder that arises through the course of development. Furthermore, ASD is a disorder of highly complex, human-specific behaviors, making it difficult to model in animals. Stem cell models of ASD can be generated by performing skin biopsies of ASD patients and then dedifferentiating these fibroblasts into human-induced pluripotent stem cells (hiPSCs). iPSCs closely resemble embryonic stem cells and retain the unique genetic signature of the ASD patient from whom they were originally derived. Differentiation of these iPSCs into neurons essentially recapitulates the ASD patient’s neuronal development in a dish, allowing for a patient-specific model of ASD. Here we review our current understanding of the underlying neurobiology of ASD and how the use of stem cells can advance this understanding, possibly leading to new therapeutic avenues.  相似文献   

6.
BackgroundThe intelligence of individuals with Autism Spectrum Disorder (ASD) varies considerably. The pattern of cognitive deficits associated with ASD may differ depending on intelligence. We aimed to study the absolute and relative severity of cognitive deficits in participants with ASD in relation to IQ.MethodsA total of 274 children (M age = 12.1, 68.6% boys) participated: 30 ASD and 22 controls in the below average Intelligence Quotient (IQ) group (IQ<85), 57 ASD and 54 controls in the average IQ group (85<IQ<115) and 41 ASD and 70 controls in the above average IQ group (IQ>115). Matching for age, sex, Full Scale IQ (FSIQ), Verbal IQ (VIQ), Performance IQ (PIQ) and VIQ-PIQ difference was performed. Speed and accuracy of social cognition, executive functioning, visual pattern recognition and basic processing speed were examined per domain and as a composite score.ResultsThe composite score revealed a trend significant IQ by ASD interaction (significant when excluding the average IQ group). In absolute terms, participants with below average IQs performed poorest (regardless of diagnosis). However, in relative terms, above average intelligent participants with ASD showed the most substantial cognitive problems (particularly for social cognition, visual pattern recognition and verbal working memory) since this group differed significantly from the IQ-matched control group (p < .001), whereas this was not the case for below-average intelligence participants with ASD (p = .57).ConclusionsIn relative terms, cognitive deficits appear somewhat more severe in individuals with ASD and above average IQs compared to the below average IQ patients with ASD. Even though high IQ ASD individuals enjoy a certain protection from their higher IQ, they clearly demonstrate cognitive impairments that may be targeted in clinical assessment and treatment. Conversely, even though in absolute terms ASD patients with below average IQs were clearly more impaired than ASD patients with average to above average IQs, the differences in cognitive functioning between participants with and without ASD on the lower end of the IQ spectrum were less pronounced. Clinically this may imply that cognitive assessment and training of cognitive skills in below average intelligent children with ASD may be a less fruitful endeavour. These findings tentatively suggest that intelligence may act as a moderator in the cognitive presentation of ASD, with qualitatively different cognitive processes affected in patients at the high and low end of the IQ spectrum.  相似文献   

7.
In the last decades, prevalence of autism spectrum disorder (ASD) has been on the rise. However, clear aetiology is still elusive and improvements in early diagnosis are needed. To uncover possible biomarkers present in ASD, we used two‐dimensional polyacrylamide gel electrophoresis and nanoliquid chromatography‐tandem mass spectrometry (nanoLC‐MS/MS), to compare salivary proteome profiling of children with ASD and controls. A total of 889 spots were compared and only those spots with a fold change ≥1.7 and a P‐value <0.05 or a fold change of ≥3.0 between ASD cases and controls were analysed by nanoLC‐MS/MS. Alpha‐amylase, CREB‐binding protein, p532, Transferrin, Zn alpha2 glycoprotein, Zymogen granule protein 16, cystatin D and plasminogen were down‐regulated in ASD. Increased expression of proto‐oncogene Frequently rearranged in advanced T‐cell lymphomas 1 (FRAT1), Kinesin family member 14, Integrin alpha6 subunit, growth hormone regulated TBC protein 1, parotid secretory protein, Prolactin‐inducible protein precursor, Mucin‐16, Ca binding protein migration inhibitory factor‐related protein 14 (MRP14) was observed in individuals with ASD. Many of the identified proteins have previously been linked to ASD or were proposed as risk factors of ASD at the genetic level. Some others are involved in pathological pathways implicated in ASD causality such as oxidative stress, lipid and cholesterol metabolism, immune system disturbances and inflammation. These data could contribute to protein signatures for ASD presence, risk and subtypes, and advance understanding of ASD cause as well as provide novel treatment targets for ASD.  相似文献   

8.
To explore mechanisms underlying reduced fixation of eyes in autism, children with Autistic Spectrum Disorders (ASD) and typically developing children were tested in five visual search experiments: simple color feature; color-shape conjunction; face in non-face objects; mouth region; and eye region. No group differences were found for reaction time profile shapes in any of the five experiments, suggesting intact basic search mechanics in children with ASD. Contrary to early reports in the literature, but consistent with other more recent findings, we observed no superiority for conjunction search in children with ASD. Importantly, children with ASD did show reduced accuracy for eye region search (p = .005), suggesting that eyes contribute less to high-level face representations in ASD or that there is an eye region-specific disruption to attentional processes engaged by search in ASD.  相似文献   

9.
10.
One of the three most frequently documented copy number variations associated with autism spectrum disorder (ASD) is a 1q21.1 duplication that encompasses sequences encoding DUF1220 protein domains, the dosage of which we previously implicated in increased human brain size. Further, individuals with ASD frequently display accelerated brain growth and a larger brain size that is also associated with increased symptom severity. Given these findings, we investigated the relationship between DUF1220 copy number and ASD severity, and here show that in individuals with ASD (n = 170), the copy number (dosage) of DUF1220 subtype CON1 is highly variable, ranging from 56 to 88 copies following a Gaussian distribution. More remarkably, in individuals with ASD CON1 copy number is also linearly associated, in a dose-response manner, with increased severity of each of the three primary symptoms of ASD: social deficits (p = 0.021), communicative impairments (p = 0.030), and repetitive behaviors (p = 0.047). These data indicate that DUF1220 protein domain (CON1) dosage has an ASD-wide effect and, as such, is likely to be a key component of a major pathway underlying ASD severity. Finally, these findings, by implicating the dosage of a previously unexamined, copy number polymorphic and brain evolution-related gene coding sequence in ASD severity, provide an important new direction for further research into the genetic factors underlying ASD.  相似文献   

11.
Seizures are a common co-occurring condition in those with fragile X syndrome (FXS), and in those with idiopathic autism spectrum disorder (ASD). Seizures are also associated with ASD in those with FXS. However, little is known about the rate of seizures and how commonly these problems co-occur with ASD in boys with the FMR1 premutation. We, therefore, determined the prevalence of seizures and ASD in boys with the FMR1 premutation compared with their sibling counterparts and population prevalence estimates. Fifty premutation boys who presented as clinical probands (N = 25), or non-probands (identified by cascade testing after the proband was found) (N = 25), and 32 non-carrier controls were enrolled. History of seizures was documented and ASD was diagnosed by standardized measures followed by a team consensus of ASD diagnosis. Seizures (28%) and ASD (68%) were more prevalent in probands compared with non-probands (0 and 28%), controls (0 and 0%), and population estimates (1 and 1.7%). Seizures occurred more frequently in those with the premutation and co-morbid ASD particularly in probands compared with those with the premutation alone (25 vs. 3.85%, p = 0.045). Although cognitive and adaptive functioning in non-probands were similar to controls, non-probands were more likely to meet the diagnosis of ASD than controls (28 vs. 0%, p < 0.0001). In conclusion, seizures were relatively more common in premutation carriers who presented clinically as probands of the family and seizures were commonly associated with ASD in these boys. Therefore, boys with the premutation, particularly if they are probands should be assessed carefully for both ASD and seizures.  相似文献   

12.
Assessment of anxiety symptoms in autism spectrum disorders (ASD) is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS) activity for this purpose. Specially, the objectives of the study were to 1) examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2) characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature) during a baseline (movie watching) and anxiety condition (Stroop task) in a sample of typically developing children (n = 17) and children with ASD (n = 12). The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1) signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2) ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.  相似文献   

13.
One of the core features of autism spectrum disorder (ASD) is impaired reciprocal social interaction, especially in processing emotional information. Social robots are used to encourage children with ASD to take the initiative and to interact with the robotic tools to stimulate emotional responses. However, the existing evidence is limited by poor trial designs. The purpose of this study was to provide computational evidence in support of robot-assisted therapy for children with ASD. We thus propose an emotional model of ASD that adapts a Bayesian model of the uncanny valley effect, which holds that a human-looking robot can provoke repulsion and sensations of eeriness. Based on the unique emotional responses of children with ASD to the robots, we postulate that ASD induces a unique emotional response curve, more like a cliff than a valley. Thus, we performed numerical simulations of robot-assisted therapy to evaluate its effects. The results showed that, although a stimulus fell into the uncanny valley in the typical condition, it was effective at avoiding the uncanny cliff in the ASD condition. Consequently, individuals with ASD may find it more comfortable, and may modify their emotional response, if the robots look like deformed humans, even if they appear “creepy” to typical individuals. Therefore, we suggest that our model explains the effects of robot-assisted therapy in children with ASD and that human-looking robots may have potential advantages for improving social interactions in ASD.  相似文献   

14.
Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative “interactive social neuroscience” methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD.  相似文献   

15.
Variation in style length and anther–stigma distance (ASD) was investigated in 18 populations of Ixiolirion songaricum, an early-spring ephemeral perennial herb in northern Xinjiang. The effect of ASD on autonomous self-pollen deposition and seed set was assessed using bagging experiments. Seed production under autonomous self-pollination, cross-pollination and natural pollination was determined by manual pollination experiments. Stigmas of multiple flowers within an individual were sandwiched between two separate anther levels, and no individuals possessed approach or reverse herkogamy. Style length varied continuously among flowers, resulting in a wide range of variation in ASD. There were fewer flowers with a small ASD than with a large ASD in populations. ASD was negatively correlated with autonomous self-pollen deposition and seed set, but it was positively correlated with natural pollination seed set. Seed production under natural pollination was higher than that under autonomous self-pollination, but it was smaller than that under cross-pollination. Variation in style length and ASD among flowers was not caused by style or stamen elongation in I. songaricum, which differ from other species reported in literature that have continuous variation in style length and ASD.  相似文献   

16.
Environmental factors have been implicated in the etiology of autism spectrum disorder (ASD); however, the role of heavy metals has not been fully defined. This study investigated whether blood levels of mercury, arsenic, cadmium, and lead of children with ASD significantly differ from those of age- and sex-matched controls. One hundred eighty unrelated children with ASD and 184 healthy controls were recruited. Data showed that the children with ASD had significantly (p < 0.001) higher levels of mercury and arsenic and a lower level of cadmium. The levels of lead did not differ significantly between the groups. The results of this study are consistent with numerous previous studies, supporting an important role for heavy metal exposure, particularly mercury, in the etiology of ASD. It is desirable to continue future research into the relationship between ASD and heavy metal exposure.  相似文献   

17.
To determine the contribution of defective splicing in Autism Spectrum Disorders (ASD), the most common neurodevelopmental disorder, a high throughput Massively Parallel Splicing Assay (MaPSY) was employed and identified 42 exonic splicing mutants out of 725 coding de novo variants discovered in the sequencing of ASD families. A redesign of the minigene constructs in MaPSY revealed that upstream exons with strong 5’ splice sites increase the magnitude of skipping phenotypes observed in downstream exons. Select hits were validated by RT-PCR and amplicon sequencing in patient cell lines. Exonic splicing mutants were enriched in probands relative to unaffected siblings -especially synonymous variants (7.5% vs 3.5%, respectively). Of the 26 genes disrupted by exonic splicing mutations, 6 were in known ASD genes and 3 were in paralogs of known ASD genes. Of particular interest was a synonymous variant in TNRC6C - an ASD gene paralog with interactions with other ASD genes. Clinical records of 3 ASD patients with TNRC6C variant revealed respiratory issues consistent with phenotypes observed in TNRC6 depleted mice. Overall, this study highlights the need for splicing analysis in determining variant pathogenicity, especially as it relates to ASD.  相似文献   

18.
GATA4 is expressed early in the developing heart where it plays a key role in regulating the expression of genes encoding myocardial contractile proteins. Gene mutations in the human GATA4 have been implicated in various congenital heart defects (CHD), including atrial septal defect (ASD). Although ASD is the third most common CHD in humans, it is generally rare in dogs and cats. There is also no obvious predilection for ASD in dogs and cats, based on sex or breed. However, among dogs, the incidence rate of ASD is relatively high in Samoyeds and Doberman Pinschers, where its inheritance and genetic aetiology are not well understood. In this study, we identified and investigated the genetic aetiology of an ASD affected family in a pure breed dog population. Although the GATA4 gene was screened, we did not find any mutations that would result in the alteration of the coding sequence and hence, the predicted GATA4 structure and function. Although the aetiology of ASD is multifactorial, our findings indicate that GATA4 may not be responsible for the ASD in the dogs used in this study. However, this does not eliminate GATA4 as a candidate for ASD in other dog breeds.  相似文献   

19.
Fecal and blood samples of infants with autism spectrum disorders (ASD) and healthy infants were analyzed to investigate the association of altered gut microbiota and ASD development. 16S rRNA gene-based sequencing found that, unlike those of healthy infants, feces of ASD infants had significantly higher and lower abundance of genera Faecalibacterium and Blautia, respectively. Moreover, DNA microarray analysis of peripheral blood mononuclear cells (PBMC) detected more highly than low expressed genes in ASD infants than in healthy infants. Gene Ontology analysis revealed that differentially expressed genes between ASD and healthy infants were involved in interferon (IFN)-γ and type-I IFN signaling pathways. Finally, strong positive correlations between expression of IFN signaling-associated genes in PBMC and fecal abundance of Faecalibacterium were found. Our results strongly suggested that altered gut microbiota in infants resulted from ASD development and was associated with systemic immunity dysregulation, especially chronic inflammation.  相似文献   

20.
BackgroundAutism spectrum disorder (ASD) is a neurodevelopmental condition that causes disability in social interaction, communication, and restrictive and repetitive behaviors. Common environmental factors like prenatal, perinatal, and/or postnatal factors play a key role in ASD etiologies. Moreover, specific metabolic disorders can be associated with ASD.Subjects and methodsWe performed a retrospective case-control study in child psychiatry clinics, involving 51 children with ASD and 40 typical development controls (TDC).ResultsWe found a correlation between children being breastfed for less than 6 months, having fathers more than 40 years old at childbirth in ASD compared to TDC group. Our study also associated low blood cholesterol and low erythrocyte magnesium levels with increased risk for ASD.ConclusionFindings support the implication of total cholesterol (TC) and erythrocyte magnesium level in defining autism outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号