首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
According to the conflict monitoring model of cognitive control, reaction time (RT) in distracter interference tasks (e.g., the Stroop task) is a more precise index of response conflict than stimulus congruency (incongruent vs. congruent). The model therefore predicts that RT should be a reliable predictor of activity in regions of the posterior medial frontal cortex (pMFC) that are posited to detect response conflict. In particular, pMFC activity should be (a) greater in slow-RT than in fast-RT trials within a given task condition (e.g., congruent) and (b) equivalent in RT-matched trials from different conditions (i.e., congruent and incongruent trials). Both of these effects have been observed in functional magnetic resonance imaging (MRI) studies of adults. However, neither effect was observed in a recent study of healthy youth, suggesting that (a) the model does not accurately describe the relationship between RT and pMFC activity in this population or (b) the recent study was characterized by high variability due to a relatively small sample size. To distinguish between these possibilities, we asked a relatively large group of healthy youth (n = 28) to perform a distracter interference task - the multi-source interference task (MSIT) - while we recorded their brain activity with functional MRI. In this relatively large sample, both of the model’s predictions were confirmed. We conclude that the model accurately describes the relationship between pMFC activity and RT in healthy youth, but that additional research is needed to determine whether processes unrelated to response conflict contribute to this relationship.  相似文献   

2.
Over the last two decades, the congruency sequence effect (CSE) –the finding of a reduced congruency effect following incongruent trials in conflict tasks– has played a central role in advancing research on cognitive control. According to the influential conflict-monitoring account, the CSE reflects adjustments in selective attention that enhance task focus when needed, often termed conflict adaptation. However, this dominant interpretation of the CSE has been called into question by several alternative accounts that stress the role of episodic memory processes: feature binding and (stimulus-response) contingency learning. To evaluate the notion of conflict adaptation in accounting for the CSE, we construed versions of three widely used experimental paradigms (the colour-word Stroop, picture-word Stroop and flanker task) that effectively control for feature binding and contingency learning. Results revealed that a CSE can emerge in all three tasks. This strongly suggests a contribution of attentional control to the CSE and highlights the potential of these unprecedentedly clean paradigms for further examining cognitive control.  相似文献   

3.
The congruency effect in distracter interference (e.g., Stroop) tasks is often reduced after incongruent trials, relative to congruent trials. It has been proposed that this congruency sequence effect (CSE) results from trial-by-trial adjustments of attention, which are triggered by changes in response conflict, expectancy, or negative affect. Hence, a large literature has developed to investigate the source(s) of attention adaptation in distracter interference tasks. Recent work, however, suggests that CSEs may stem from feature integration and/or contingency learning processes that are confounded with congruency sequence in the vast majority of distracter interference tasks. By combining an established method for measuring CSEs in the absence of these learning and memory confounds with a prime-probe task, we observed robust CSEs in two experiments. These findings provide strong evidence of CSEs independent of learning and memory confounds, which might be explainable by trial-by-trial adjustments of attention. They also reveal a highly effective approach for observing CSEs independent of the typical confounds, which will facilitate future studies of how people adapt to distraction.  相似文献   

4.
This report presents data from two versions of the task switching procedure in which the separate influence of stimulus repetitions, response key repetitions, conceptual response repetitions, cue repetitions, task repetitions, and congruency are considered. Experiment 1 used a simple alternating runs procedure with parity judgments of digits and consonant/vowel decisions of letters as the two tasks. Results revealed sizable effects of stimulus and response repetitions, and controlling for these effects reduced the switch cost. Experiment 2 was a cued version of the task switch paradigm with parity and magnitude judgments of digits as the two tasks. Results again revealed large effects of stimulus and response repetitions, in addition to cue repetition effects. Controlling for these effects again reduced the switch cost. Congruency did not interact with our novel “unbiased” measure of switch costs. We discuss how the task switch paradigm might be thought of as a more complex version of the feature integration paradigm and propose an episodic learning account of the effect. We further consider to what extent appeals to higher-order control processes might be unnecessary and propose that controls for feature integration biases should be standard practice in task switching experiments.  相似文献   

5.
Recently, several studies have considered factors affecting the occurrence of congruency sequence effect (CSE) in the arrow flanker task. In the present study, the influence of the following factors was examined: the presentation of a fixation and the intertrial interval (ITI) were considered. Results of the study showed that the CSE was significant when there was no fixation and when the ITI was long for response repetitions and response changes, but disappeared for response change trials in other conditions. These results showed that, even in the arrow flanker task, the conflict adaptation effect did contribute to the CSE. The current results suggested that the conflict adaptation effect in the arrow flanker task was based on the appropriate application of attention strategies.  相似文献   

6.
Reaction time (RT) and error rate that depend on stimulus duration were measured in a luminance-discrimination reaction time task. Two patches of light with different luminance were presented to participants for ‘short’ (150 ms) or ‘long’ (1 s) period on each trial. When the stimulus duration was ‘short’, the participants responded more rapidly with poorer discrimination performance than they did in the longer duration. The results suggested that different sensory responses in the visual cortices were responsible for the dependence of response speed and accuracy on the stimulus duration during the luminance-discrimination reaction time task. It was shown that the simple winner-take-all-type neural network model receiving transient and sustained stimulus information from the primary visual cortex successfully reproduced RT distributions for correct responses and error rates. Moreover, temporal spike sequences obtained from the model network closely resembled to the neural activity in the monkey prefrontal or parietal area during other visual decision tasks such as motion discrimination and oddball detection tasks.  相似文献   

7.
This study examined dual task performance in 28 younger (18–30 years) and 28 older (>60 years) adults using two sets of choice reaction time (RT) tasks paired with digit tasks. Set one paired simple choice RT with digit forward; set two paired complex choice RT with digit backward. Each task within each set had easy and hard conditions. For the simple choice RT, participants viewed single letters and pressed a specified keyboard key if the letter was X or Z or a different key for other letters (easy). For the hard condition, there were 4 target letters (X, Z, O, Y). Digit forward consisted of 4 (easy) or 5 (hard) digits. For the complex choice RT, participants viewed 4×4 matrices of Xs and Os, and indicated whether four Xs (easy) or four Xs or four Os (hard) appeared in a row. Digit backward consisted of 3 (easy) or 4 (hard) digits. Within each set, participants performed every possible combination of tasks. We found that in the simple choice RT tasks older adults were significantly slower than, but as accurate as younger adults. In the complex choice RT tasks, older adults were significantly less accurate, but as fast as younger adults. For both age groups and both dual task sets, RT decreased and error rates increased with greater task difficulty. Older adults had greater dual task costs for error rates in the simple choice RT, whereas in the complex choice RT, it was the younger group that had greater dual task costs. Findings suggest that younger and older adults may adopt differential behavioral strategies depending on complexity and difficulty of dual tasks.  相似文献   

8.
The posterior medial frontal cortex (pMFC) is known to be involved in adaptive goal-directed behavior, but its specific function is not yet clear. Most theories have proposed that the pMFC monitors performance in a reactive manner only, but it is possible that the pMFC also contributes to performance monitoring in a proactive manner. To date, the evidence for proactive pMFC activity is equivocal. Here, we investigated pMFC activity before, during and after the performance of a challenging motor task. Participants navigated a cursor through narrow and wide mazes in randomly intermixed trials. On each trial, participants saw previews of the actual maze display prior to gaining control of the cursor. Event-related potentials (ERPs) to the preview displays were compared to ERPs elicited by no-go signals and errors. Compared to the wider maze, the preview display for the more challenging narrow maze elicited a medial-frontal negativity (MFN) similar to the ERP components elicited by no-go signals and errors. Like these known ERP components, the preview-elicited MFN appeared to be generated from a source in pMFC. This is consistent with the hypothesis that the pMFC participates in adaptive behavior whenever there is a need for increased effort to maintain successful task performance.  相似文献   

9.
The mechanisms of perceptual decision-making are frequently studied through measurements of reaction time (RT). Classical sequential-sampling models (SSMs) of decision-making posit RT as the sum of non-overlapping sensory, evidence accumulation, and motor delays. In contrast, recent empirical evidence hints at a continuous-flow paradigm in which multiple motor plans evolve concurrently with the accumulation of sensory evidence. Here we employ a trial-to-trial reliability-based component analysis of encephalographic data acquired during a random-dot motion task to directly image continuous flow in the human brain. We identify three topographically distinct neural sources whose dynamics exhibit contemporaneous ramping to time-of-response, with the rate and duration of ramping discriminating fast and slow responses. Only one of these sources, a parietal component, exhibits dependence on strength-of-evidence. The remaining two components possess topographies consistent with origins in the motor system, and their covariation with RT overlaps in time with the evidence accumulation process. After fitting the behavioral data to a popular SSM, we find that the model decision variable is more closely matched to the combined activity of the three components than to their individual activity. Our results emphasize the role of motor variability in shaping RT distributions on perceptual decision tasks, suggesting that physiologically plausible computational accounts of perceptual decision-making must model the concurrent nature of evidence accumulation and motor planning.  相似文献   

10.
The present study investigated the neural processes underlying “same” and -“different” judgments for two simultaneously presented objects, that varied on one or both, of two dimensions: color and shape. Participants judged whether or not the two objects were “same” or “different” on either the color dimension (color task) or the shape dimension (shape task). The unattended irrelevant dimension of the objects was either congruent (same-same; different-different) or incongruent (same-different). ERP data showed a main effect of color congruency in the time window 190–260 ms post-stimulus presentation and a main effect of shape congruency in the time window 220–280 ms post-stimulus presentation in both color and shape tasks. The interaction between color and shape congruency in the ERP data occurred in a later time window than the two main effects, indicating that mismatches in task-relevant and task-irrelevant dimensions were processed automatically and independently before a response was selected. The fact that the interference of the task-irrelevant dimension occurred after mismatch detection, supports a confluence model of processing.  相似文献   

11.
This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC) account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI), mostly congruent (MC), and mostly neutral (MN) contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context). fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus.  相似文献   

12.
Our previous research showed that short term meditation training reduces the time to resolve conflict in the flanker task. Studies also show that resting alpha increases with long term meditation practice. The aim of this study is to determine whether short term meditation training both increases resting alpha activity and reduces the time to resolve conflict in the Stroop task and whether these two effects are related. Forty-three Chinese undergraduates were randomly assigned an experiment group given 5 days meditation training using integrative body-mind training (IBMT) and a relaxation training control. After training, only the IBMT group showed decreased conflict reaction time (RT), and increased resting mean alpha power. Moreover, the higher the enhancement of resting alpha power, the stronger the improvement of conflict RT. The results indicate that short term meditation diffusely enhances alpha and improves the ability to deal with conflict and moreover these two effects are positively related.  相似文献   

13.
Reaction time (RT) is commonly observed to slow down after an error. This post-error slowing (PES) has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES.  相似文献   

14.
This study investigated the effects of an acute dose of DDAVP on speed and consistency of planning and execution of simple and complex movements in healthy young adults. A simple reaction time task (SRT), a simple movement task (SMT), and a complex movement task (CMT) were performed with and without a 0.6 ml intranasal dose (60 micrograms) of DDAVP. Results indicated DDAVP-treated individuals planned and executed CMT and SRT tasks faster and more consistently than did placebo-treated subjects. There were nonsignificant DDAVP effects on speed and variability of both RT and MT processes involved in the SMT.  相似文献   

15.
The current report presents a temporal learning account as a potential alternative to the conflict adaptation account of list-level proportion congruent effects in the Stroop paradigm. Specifically, retrieval of information about response times on previous trials influences a participant''s preparedness to respond at a similar time on following trials. First, an adaptation of the Parallel Episodic Processing (PEP) model is presented, and a list-level effect is produced with a temporal learning mechanism. Next, linear mixed effect model analyses show that temporal learning biases are present in list-level proportion congruent data. A non-conflict experiment is then presented in which a list-level effect is observed with a contrast, rather than congruency, manipulation. Analyses of the experimental and simulated data could not, however, provide a clear picture of whether temporal learning was the sole contributor to the list-level proportion congruent effect. These results do, however, demonstrate that caution is warranted when interpreting list-level proportion congruent effects.  相似文献   

16.
Prolonged response times are observed with targets having been presented as distractors immediately before, called negative priming effect. Among others, inhibitory and retrieval processes have been suggested underlying this behavioral effect. As those processes would involve different neural activation patterns, a functional magnetic resonance imaging (fMRI) study including 28 subjects was conducted. Two tasks were used to investigate stimulus repetition effects. One task focused on target location, the other on target identity. Both tasks are known to elicit the expected response time effects. However, there is less agreement about the relationship of those tasks with the explanatory accounts under consideration. Based on within-subject comparisons we found clear differences between the experimental repetition conditions and the neutral control condition on neural level for both tasks. Hemodynamic fronto-striatal activation patterns occurred for the location-based task favoring the selective inhibition account. Hippocampal activation found for the identity-based task suggests an assignment to the retrieval account; however, this task lacked a behavioral effect.  相似文献   

17.
A large body of findings has tied midfrontal theta-band (4–8 Hz) oscillatory activity to adaptive control mechanisms during response conflict. Thus far, this evidence has been correlational. To evaluate whether theta oscillations are causally involved in conflict processing, we applied transcranial alternating current stimulation (tACS) in the theta band to a midfrontal scalp region, while human subjects performed a spatial response conflict task. Conflict was introduced by incongruency between the location of the target stimulus and the required response hand. As a control condition, we used alpha-band (8–12 Hz) tACS over the same location. The exact stimulation frequencies were determined empirically for each subject based on a pre-stimulation EEG session. Behavioral results showed general conflict effects of slower response times (RT) and lower accuracy for high conflict trials compared to low conflict trials. Importantly, this conflict effect was reduced specifically during theta tACS, which was driven by slower response times on low conflict trials. These results show how theta tACS can modulate adaptive cognitive control processes, which is in accordance with the view of midfrontal theta oscillations as an active mechanism for cognitive control.  相似文献   

18.
The purpose was to compare the time to failure and muscle activation patterns for a sustained isometric submaximal contraction with the dorsiflexor muscles when the foot was restrained to a force transducer (force task) compared with supporting an equivalent inertial load and unrestrained (position task). Fifteen men and women (mean+/-SD; 21.1+/-1.4 yr) performed the force and position tasks at 20% maximal voluntary contraction force until task failure. Maximal voluntary contraction force performed before the force and position tasks was similar (333+/-71 vs. 334+/-65 N), but the time to task failure was briefer for the position task (10.0+/-6.2 vs. 21.3+/-17.8 min, P<0.05). The rate of increase in agonist root-mean-square electromyogram (EMG), EMG bursting activity, rating of perceived exertion, fluctuations in motor output, mean arterial pressure, and heart rate during the fatiguing contraction was greater for the position task. EMG activity of the vastus lateralis (lower leg stabilizer) and medial gastrocnemius (antagonist) increased more rapidly during the position task, but coactivation ratios (agonist vs. antagonist) were similar during the two tasks. Thus the difference in time to failure for the two tasks with the dorsiflexor muscles involved a greater level of neural activity and rate of motor unit recruitment during the position task, but did not involve a difference in coactivation. These findings have implications for rehabilitation and ergonomics in minimizing fatigue during prolonged activation of the dorsiflexor muscles.  相似文献   

19.
We contrast two computational models of sequence learning. The associative learner posits that learning proceeds by strengthening existing association weights. Alternatively, recoding posits that learning creates new and more efficient representations of the learned sequences. Importantly, both models propose that humans act as optimal learners but capture different statistics of the stimuli in their internal model. Furthermore, these models make dissociable predictions as to how learning changes the neural representation of sequences. We tested these predictions by using fMRI to extract neural activity patterns from the dorsal visual processing stream during a sequence recall task. We observed that only the recoding account can explain the similarity of neural activity patterns, suggesting that participants recode the learned sequences using chunks. We show that associative learning can theoretically store only very limited number of overlapping sequences, such as common in ecological working memory tasks, and hence an efficient learner should recode initial sequence representations.  相似文献   

20.
Previous studies show that the congruency sequence effect can result from both the conflict adaptation effect (CAE) and feature integration effect which can be observed as the repetition priming effect (RPE) and feature overlap effect (FOE) depending on different experimental conditions. Evidence from neuroimaging studies suggests that a close correlation exists between the neural mechanisms of alertness-related modulations and the congruency sequence effect. However, little is known about whether and how alertness mediates the congruency sequence effect. In Experiment 1, the Attentional Networks Test (ANT) and a modified flanker task were used to evaluate whether the alertness of the attentional functions had a correlation with the CAE and RPE. In Experimental 2, the ANT and another modified flanker task were used to investigate whether alertness of the attentional functions correlate with the CAE and FOE. In Experiment 1, through the correlative analysis, we found a significant positive correlation between alertness and the CAE, and a negative correlation between the alertness and the RPE. Moreover, a significant negative correlation existed between CAE and RPE. In Experiment 2, we found a marginally significant negative correlation between the CAE and the RPE, but the correlation between alertness and FOE, CAE and FOE was not significant. These results suggest that alertness can modulate conflict adaptation and feature integration in an opposite way. Participants at the high alerting level group may tend to use the top-down cognitive processing strategy, whereas participants at the low alerting level group tend to use the bottom-up processing strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号