首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
Naturally occurring CD4+CD25+ regulatory T cells (Tregs) are required to limit immune‐induced pathology and to maintain homeostasis during the early‐phase of sepsis. This study aimed to investigate the role of interleukin (IL)‐38, a newly described member of the IL‐1 cytokine family, in mediated immune response of CD4+CD25+ Tregs in sepsis. Here, we provide evidence that expressions of IL‐38 and its receptor were detected in murine CD4+CD25+ Tregs. Stimulation of CD4+CD25+ Tregs with LPS markedly up‐regulated the expression of IL‐38. Treatment with rmIL‐38 dramatically enhanced the immunosuppressive activity of CD4+CD25+ Tregs after LPS stimulation and in septic mice induced by CLP, resulting in amplification of helper T cell (Th) 2 response and reduction in the proliferation of effector T cells. These effects were robustly abrogated when anti–IL‐38 antibody was administered. Administration of rmIL‐38 improved the survival rate of CLP mice. In addition, CD4+CD25+ Tregs depletion before the onset of sepsis obviously abolished IL‐38–mediated protective response. These findings suggest that IL‐38 enhances the immunosuppressive activity of CD4+CD25+ Tregs, which might contribute to the improvement of host immune function and prognosis in the setting of sepsis.  相似文献   

2.
3.
Tumor-infiltrating immune/inflammatory cells, the important components of the tumor microenvironment (TME), remarkably affect the progression of human cancers. To understand the actual conditions within the TME of colorectal cancer (CRC), the interrelationship among tumor-infiltrating neutrophils, M2 macrophages, and regulatory T-cells (Tregs) was systematically analyzed. The infiltration conditions of CD66b+ neutrophils, CD163+ M2 macrophages, and FOXP3+ Tregs in tissue microarrays including 1021 cases of CRC were determined by immunohistochemical analysis. The prediction power of these immune cells for CRC prognosis was evaluated by subgroup analysis of the CRC cohort. Results revealed the existence pattern of infiltrating neutrophils, and Tregs/M2 macrophages fulfilled a “X-low implies Y-high” Boolean relationship, indicative of a mutually exclusive correlation between neutrophils and M2 macrophages, and between neutrophils and Tregs in the TME of CRC. What’s more, the tumor-infiltrating M2 macrophages and Tregs were associated with adverse prognostic factors, whereas neutrophils were corelated with favorable factors. The high infiltration of neutrophils predicted longer survival and better chemotherapeutic response. Nonetheless, high infiltration of M2 macrophages and Tregs predicted poor prognosis. The combination of these tumor-infiltrating immune cells can serve as an effective predictor for the survival of CRC and for the chemotherapeutic outcomes of stage II–III patients.   相似文献   

4.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are life‐threatening condition in critically ill patients. Resveratrol (Res), a natural polyphenol, has therapeutic effect in animal model with ALI; however, whether Res attenuates ALI through modulation of macrophage phenotypes in the animal model remains unknown. We in this study treated LPS‐induced murine ALI with 30 mg/kg Res and observed significantly reduced severity of ALI in the Res‐treated mice 48 hours after Res treatment. Neutrophil infiltrates were significantly reduced, accompanied with lower infiltration of CD45+Siglec F? phenotype macrophages, but higher population of CD45+Siglec F+ and CD45+CD206+ alternatively activated macrophages (M2 cells) in the Res‐treated mice with ALI. In addition, the expression of IL‐1beta and CXCL15 cytokines was suppressed in the treated mice. However, Res treatment in mice with myeloid cell‐restricted SOCS3 deficiency did not significantly attenuate ALI severity and failed to increase population of both CD45+Siglec F+ and CD45+CD206+ M2 subtype macrophages in the murine ALI. Further studies in wild‐type macrophages revealed that Res treatment effectively reduced the expression of IL‐6 and CXCL15, and increased the expression of arginase‐1, SIRT1 and SOCS3. However, macrophages’ lack of SOCS3 expression were resistant to the Res‐induced suppression of IL‐6 and CXCL15 in vitro. Thus, we conclude that Res suppressed CD45+Siglec F? and CD45+CD206? M1 subtype macrophages through SOCS3 signalling in the LPS‐induced murine ALI.  相似文献   

5.
High macrophage infiltration has been correlated to improved survival in colorectal cancer (CRC). Tumor associated macrophages (TAMs) play complex roles in tumorigenesis since they are believed to hold both tumor preventing (M1 macrophages) and tumor promoting (M2 macrophages) activities. Here we have applied an immunohistochemical approach to determine the degree of infiltrating macrophages with a M1 or M2 phenotype in clinical specimens of CRC in relation to prognosis, both in CRC in general but also in subgroups of CRC defined by microsatellite instability (MSI) screening status and the CpG island methylator phenotype (CIMP). A total of 485 consecutive CRC specimens were stained for nitric oxide synthase 2 (NOS2) (also denoted iNOS) as a marker for the M1 macrophage phenotype and the scavenger receptor CD163 as a marker for the M2 macrophage phenotype. The average infiltration of NOS2 and CD163 expressing macrophages along the invasive tumor front was semi-quantitatively evaluated using a four-graded scale. Two subtypes of macrophages, displaying M1 (NOS2+) or M2 (CD163+) phenotypes, were recognized. We observed a significant correlation between the amount of NOS2+ and CD163+ cells (P<0.0001). A strong inverse correlation to tumor stage was found for both NOS2 (P<0.0001) and CD163 (P<0.0001) infiltration. Furthermore, patients harbouring tumors highly infiltrated by NOS2+ cells had a significantly better prognosis than those infiltrated by few NOS2+ cells, and this was found to be independent of MSI screening status and CIMP status. No significant difference was found on cancer-specific survival in groups of CRC with different NOS2/CD163 ratios. In conclusion, an increased infiltration of macrophages with a M1 phenotype at the tumor front is accompanied by a concomitant increase in macrophages with a M2 phenotype, and in a stage dependent manner correlated to a better prognosis in patients with CRC.  相似文献   

6.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a promising and novel anticancer cytokine, specifically kills numerous tumor cells by apoptosis. However, some malignancies are resistant to TRAIL treatment in clinical trials, thus limiting its therapeutic potential. In the present study, the TRAIL-resistant murine hepatocellular carcinoma cell line Hepa1-6 was used to elucidate the physiological significance of TRAIL resistance, especially with respect to the immune regulatory function of TRAIL. Hepa1-6 cells were resistant to TRAIL-induced apoptosis in vitro; however, intratumoral injection of recombinant soluble TRAIL inhibited tumor growth and prolonged survival time in tumor-bearing mice. Local TRAIL treatment decreased the number of intratumoral CD4+CD25+Foxp3+ regulatory T cells (Tregs) but did not affect CD4+CD25+Foxp3+ Tregs in the draining lymph nodes and spleen. Further investigation showed that TRAIL induced apoptosis of tumor-activated CD4+CD25+Foxp3+ Tregs, but not of CD4+CD25? T cells. Moreover, mouse TRAIL receptor DR5 expression was detected on the surface of the tumor-infiltrating CD4+CD25+Foxp3+ Tregs, but not on naïve CD4+CD25+Foxp3+ Tregs. Interestingly, intratumoral injection of TRAIL not only decreased the number of CD4+CD25+Foxp3+ Tregs but also increased the number of tumor-specific CD8+ CTL and augmented their cytotoxicity to the tumor cells. These data provide the novel evidence for an immune regulatory function of TRAIL and may shed light on the clinical application of TRAIL.  相似文献   

7.
The effect of cytokines (IL-2, IL-7, and IL-15) having a common γ-chain of receptors on the maturation and differentiation of CD3+CD45RA+CD4+/CD8+ lymphocytes in homeostatic cultivation model in vitro was analyzed. It was found that the maximum IL-2 concentration in the helper CD45RA+-T-cell population mediates an increase in the number of CD45RA+CD4+ T lymphocytes with the phenotype of mature and immature terminally differentiated TEMRA T cells. IL-15 leads to the production of lymphocytes with CD27CD62L+ phenotype (presumably, TEMRA, in which the CD62L expression persists). In the CD45RA+CD8+ T lymphocyte populations, the studied cytokines (IL-2, IL-7, and IL-15) initiate the production of mature TEMRA (E) T lymphocytes and memory T cells with the CD45RA?CD27+CD62L+ central phenotype (TCM).  相似文献   

8.

Background

CD4+ T cells are of great importance in the pathogenesis of systemic lupus erythematosus (SLE), as an imbalance between CD4+ regulatory T cells (Tregs) and CD4+ responder T cells (Tresps) causes flares of active disease in SLE patients. In this study, we aimed to find the role of aberrant Treg/Tresp cell differentiation for maintaining Treg/Tresp cell balance and Treg functionality.

Methods

To determine differences in the differentiation of Tregs/Tresps we calculated the percentages of CD45RA+CD31+ recent thymic emigrant (RTE) Tregs/Tresps and CD45RA+CD31? mature naive (MN) Tregs/Tresps, as well as CD45RA?CD31+ and CD45RA?CD31? memory Tregs/Tresps (CD31+ and CD31? memory Tregs/Tresps) within the total Treg/Tresp pool of 78 SLE remission patients compared with 94 healthy controls of different ages. The proliferation capacity of each Treg/Tresp subset was determined by staining the cells with anti-Ki67 monoclonal antibodies. Differences in the autologous or allogeneic Treg function between SLE remission patients and healthy controls were determined using suppression assays.

Results

With age, we found an increased differentiation of RTE Tregs via CD31+ memory Tregs and of RTE Tresps via MN Tresps into CD31? memory Tregs/Tresp in healthy volunteers. This opposite differentiation of RTE Tregs and Tresps was associated with an age-dependent increase in the suppressive activity of both naive and memory Tregs. SLE patients showed similar age-dependent Treg cell differentiation. However, in these patients RTE Tresps differentiated increasingly via CD31+ memory Tresps, whereby CD31? memory Tresps arose that were much more difficult to inhibit for Tregs than those that emerged through differentiation via MN Tresps. Consequently, the increase in the suppressive activity of Tregs with age could not be maintained in SLE patients. Testing the Tregs of healthy volunteers and SLE patients with autologous and nonautologous Tresps revealed that the significantly decreased Treg function in SLE patients was not exclusively attributed to an age-dependent diminished sensitivity of the Tresps for Treg suppression. The immunosuppressive therapy reduced the accelerated age-dependent Tresp cell proliferation to normal levels, but simultaneously inhibited Treg cell proliferation below normal levels.

Conclusions

Our data reveal that the currently used immunosuppressive therapy has a favorable effect on the differentiation and proliferation of Tresps but has a rather unfavorable effect on the proliferation of Tregs. Newer substances with more specific effects on the immune system would be desirable.
  相似文献   

9.
IL-2 receptor (IL-2R) signaling is essential for optimal stability and function of CD4+CD25hiFOXP3+ regulatory T cells (Treg); a cell type that plays an integral role in maintaining tolerance. Thus, we hypothesized that decreased response to IL-2 may be a common phenotype of subjects who have autoimmune diseases associated with variants in the IL2RA locus, including T1D and MS, particularly in cells expressing the high affinity IL-2R alpha chain (IL-2RA or CD25). To examine this question we used phosphorylation of STAT5 (pSTAT5) as a downstream measure of IL-2R signaling, and found a decreased response to IL-2 in CD4+CD25hi T cells of T1D and MS, but not SLE patients. Since the IL2RArs2104286 haplotype is associated with T1D and MS, we measured pSTAT5 in controls carrying the rs2104286 risk haplotype to test whether this variant contributed to reduced IL-2 responsiveness. Consistent with this, we found decreased pSTAT5 in subjects carrying the rs2104286 risk haplotype. Reduced IL-2R signaling did not result from lower CD25 expression on CD25hi cells; instead we detected increased CD25 expression on naive Treg from controls carrying the rs2104286 risk haplotype, and subjects with T1D and MS. However the rs2104286 risk haplotype correlated with increased soluble IL-2RA levels, suggesting that shedding of the IL-2R may account in part for the reduced IL-2R signaling associated with the rs2104286 risk haplotype. In addition to risk variants in IL2RA, we found that the T1D-associated risk variant of PTPN2rs1893217 independently contributed to diminished IL-2R signaling. However, even when holding genotype constant at IL2RA and PTPN2, we still observed a significant signaling defect in T1D and MS patients. Together, these data suggest that multiple mechanisms converge in disease leading to decreased response to IL-2, a phenotype that may eventually lead to loss of tolerance and autoimmunity.  相似文献   

10.
CD4+CD25+ regulatory T cells (Tregs) have been shown to protect against the development of abdominal aortic aneurysm (AAA). Cyclooxygenase‐2 (COX‐2), a pro‐inflammatory protein, can convert arachidonic acid into prostaglandins (PGs). The present study was aimed to investigate the effect of Tregs on COX‐2 expression in angiotension II (Ang II)‐induced AAA in ApoE?/? mice. Tregs were injected via tail vein in every 2 weeks. Ang II was continuously infused by a micropump for 28 days to induce AAA. In vivo, compared with the control group, adoptive transfer of Tregs significantly reduced the incidence of AAA, maximal diameter, and the mRNA and protein expression of COX‐2 in mice. Immunofluorescence showed that Tregs treatment reduced COX‐2 expression both in smooth muscle cells (SMCs) and macrophages in AAA. In vitro, the Western blot analysis showed that Tregs reduced Ang II‐induced COX‐2 expression in macrophages and SMCs. Meanwhile, ELISA showed that Tregs reduced Ang II‐induced prostaglandin E2 (PGE2) secretion. Moreover, Tregs increased SMC viability and induced transition of macrophages phenotype from M1 to M2. In conclusion, Tregs treatment dramatically decreased the expression of COX‐2 in vivo and in vitro, suggesting that Tregs could protect against AAA through inhibition of COX‐2. The study may shed light on the immune treatment of AAA.  相似文献   

11.
《Cytotherapy》2022,24(6):659-672
Regulatory T cells (Tregs) are crucial in inducing and maintaining tolerance. This unique capacity of Tregs, in combination with proof-of-principle in preclinical studies, highlights the potential clinical use of Tregs for the treatment of autoimmunity and transplant rejection. Although proven to be safe and well tolerated in the first clinical trials, only modest clinical results were observed. In this regard, it has been hypothesized that current challenges lie in the development of antigen-specific Tregs.Here, we present an innovative, good manufacturing practices (GMP)-compliant manufacturing protocol for Tregs applicable in a clinical-grade setting, allowing efficient and safe redirection of Treg specificity. First, a soluble polymer conjugated with antibodies to CD3 and CD28 and high amounts of exogenous IL-2 for in vitro Treg expansion resulted in a >70-fold and 185-fold increase of a pure population of CD4+CD127?CD25hi Tregs and CD4+CD127?CD25+CD45RA+ Tregs, respectively. Next, as a proof-of-principle, expanded Tregs were engineered by means of TCR-encoding mRNA electroporation to generate antigen-specific Tregs. This resulted in an expression of the newly introduced TCR in up to 85% of Tregs. Moreover, we did not observe a negative effect on the phenotype of Tregs, as demonstrated by the expression of FOXP3, Helios, CTLA-4 and CCR4, nor on the TSDR methylation status. Importantly, mRNA-engineered Tregs were still able to induce in vitro suppression of effector T cells and produced anti-inflammatory, but not pro-inflammatory, cytokines when activated.In conclusion, our findings demonstrate that high numbers of stable and functional Tregs can be obtained with high purity and successfully engineered for gain of function, in a GMP-compliant manner. We envisage that this clinical-grade protocol will provide solid basis for future clinical application of mRNA-engineered Tregs.  相似文献   

12.
IL2RA, a subunit of the high affinity receptor for interleukin-2 (IL2), plays a crucial role in immune homeostasis. Notably, IL2RA expression is induced in CD4+ T cells in response to various stimuli and is constitutive in regulatory T cells (Tregs). We selected for our study 18 CpGs located within cognate regulatory regions of the IL2RA locus and characterized their methylation in naive, regulatory, and memory CD4+ T cells. We found that 5/18 CpGs (notably CpG + 3502) show dynamic, active demethylation during the in vitro activation of naive CD4+ T cells. Demethylation of these CpGs correlates with appearance of IL2RA protein at the cell surface. We found no influence of cis located SNP alleles upon CpG methylation. Treg cells show constitutive demethylation at all studied CpGs. Methylation of 9/18 CpGs, including CpG +3502, decreases with age. Our data thus identify CpG +3502 and a few other CpGs at the IL2RA locus as coordinated epigenetic regulators of IL2RA expression in CD4+ T cells. This may contribute to unravel how the IL2RA locus can be involved in immune physiology and pathology.  相似文献   

13.

Introduction

CD4+CD25+/highCD127low/- regulatory T cells (Tregs) play a crucial role in maintaining peripheral tolerance. Data about the frequency of Tregs in rheumatoid arthritis (RA) are contradictory and based on the analysis of peripheral blood (PB) and synovial fluid (SF). Because Tregs exert their anti-inflammatory activity in a contact-dependent manner, the analysis of synovial membrane (SM) is crucial. Published reports regarding this matter are lacking, so we investigated the distribution and phenotype of Tregs in concurrent samples of SM, SF and PB of RA patients in comparison to those of osteoarthritis (OA) patients.

Methods

Treg frequency in a total of 40 patients (18 RA and 22 OA) matched for age and sex was assessed by flow cytometry. Functional status was assessed by analysis of cell surface markers representative of activation, memory and regulation.

Results

CD4+ T cells infiltrate the SM to higher frequencies in RA joints than in OA joints (P = 0.0336). In both groups, Tregs accumulate more within the SF and SM than concurrently in PB (P < 0.0001). Relative Treg frequencies were comparable in all compartments of RA and OA, but Treg concentration was significantly higher in the SM of RA patients (P = 0.025). Both PB and SM Tregs displayed a memory phenotype (CD45RO+RA-), but significantly differed in activation status (CD69 and CD62L) and markers associated with Treg function (CD152, CD154, CD274, CD279 and GITR) with only minor differences between RA and OA.

Conclusions

Treg enrichment into the joint compartment is not specific to inflammatory arthritis, as we found that it was similarly enriched in OA. RA pathophysiology might not be due to a Treg deficiency, because Treg concentration in SM was significantly higher in RA. Synovial Tregs represent a distinct phenotype and are activated effector memory cells (CD62L-CD69+), whereas peripheral Tregs are resting central memory cells (CD62L+CD69-).  相似文献   

14.
The maternal-foetal interface is an immune-privileged site where the semi-allogeneic embryo is protected from attacks by the maternal immune system. Uterine macrophages are key players in establishing and maintaining pregnancy, and the dysregulation of the M1-M2 subpopulation balance causes abortion. We separated two distinct mouse uterine macrophage subpopulations during early pregnancy, CD45+F4/80+CD206 M1-like (M1) and CD45+F4/80+CD206+ M2-like (M2) cells. The M1 preponderance was significantly exaggerated at 6 hours after lipopolysaccharide (LPS) treatment, and adoptive transfer of M2 macrophages partially rescued LPS-induced abortion. RNA sequencing analysis of mouse uterine M2 versus M1 revealed 1837 differentially expressed genes (DEGs), among which 629 was up-regulated and 1208 was down-regulated. Histone deacetylase 9 (Hdac9) was one of the DEGs and validated to be significantly up-regulated in uterine M2 as compared with M1. Remarkably, this differential expression profile between M1 and M2 was also evident in primary splenic macrophages and in vitro polarized murine peritoneal, bone marrow–derived and RAW 264.7 macrophages. In Hdac9/HDAC9 knockout RAW 264.7 and human THP-1–derived macrophages, the expression of M1 differentiation markers was unchanged or decreased whereas M2 markers were increased compared with the wild-type cells, and these effects were unrelated to compromised proliferation. Furthermore, Hdac9/HDAC9 ablation significantly enhanced the phagocytosis of fluorescent microspheres in M2 Raw 264.7 cells yet decreased the capacity of THP-1-derived M1 macrophages. The above results demonstrate that Hdac9/HDAC9 deficiency exaggerates M2 macrophage polarization in mouse and human macrophages, which may provide clues for our understanding of the epigenetic regulation on macrophage M1/M2 polarization in maternal-foetal tolerance.  相似文献   

15.
Here, we show that apolipoprotein A1 (apoA1), the major protein component of high density lipoprotein (HDL), through both innate and adaptive immune processes, potently suppresses tumor growth and metastasis in multiple animal tumor models, including the aggressive B16F10L murine malignant melanoma model. Mice expressing the human apoA1 transgene (A1Tg) exhibited increased infiltration of CD11b+ F4/80+ macrophages with M1, anti-tumor phenotype, reduced tumor burden and metastasis, and enhanced survival. In contrast, apoA1-deficient (A1KO) mice showed markedly heightened tumor growth and reduced survival. Injection of human apoA1 into A1KO mice inoculated with tumor cells remarkably reduced both tumor growth and metastasis, enhanced survival, and promoted regression of both tumor and metastasis burden when administered following palpable tumor formation and metastasis development. Studies with apolipoprotein A2 revealed the anti-cancer therapeutic effect was specific to apoA1. In vitro studies ruled out substantial direct suppressive effects by apoA1 or HDL on tumor cells. Animal models defective in different aspects of immunity revealed both innate and adaptive arms of immunity contribute to complete apoA1 anti-tumor activity. This study reveals a potent immunomodulatory role for apoA1 in the tumor microenvironment, altering tumor-associated macrophages from a pro-tumor M2 to an anti-tumor M1 phenotype. Use of apoA1 to redirect in vivo elicited tumor-infiltrating macrophages toward tumor rejection may hold benefit as a potential cancer therapeutic.  相似文献   

16.
Interleukin-17 (IL-17) is prevalent in tumor tissue and suppresses effective anti-tumor immune responses. However, the source of the increased tumor-infiltrating IL-17 and its contribution to tumor progression in human gastric cancer remain poorly understood. In this study, we enrolled 112 gastric cancer patients, immunofluorescence was used to evaluate the colocalization of CD3, CD4, CD56, CD20, CD68, and mast cell tryptase (MCT) with IL-17. Immunohistochemistry was used to evaluate the distribution of microvessel density (CD34), CD66b+, CD68+, and FoxP3+ cells in different microanatomical areas. Prognostic value was determined by Kaplan-Meier analysis and a Cox regression model. The results showed that mast cells, but not T cells or macrophages, were the predominant cell type producing IL-17 in gastric cancer. Significant positive correlations were detected between densities of mast cell-derived IL-17 and microvessels, neutrophils, and regulatory T cells (Tregs). Futhermore, we found that the majority of vascular endothelial cells expressing Interleukin-17 receptor (IL-17R). Kaplan-Meier analysis revealed that increasing intratumor infiltrated mast cells and IL-17+ cells, as well as MCT+ IL-17+ cells, were significantly associated with worse overall survival. These findings indicated that mast cells were the major source of IL-17 in gastric cancer, and intratumor IL-17 infiltration may have promoted tumor progression by enhancing angiogenesis in the tumor microenvironment through the axis of IL-17/IL-17R. IL-17-positive mast cells showed a prognostic factor in gastric cancer, indicating that immunotherapy targeting mast cells might be an effective strategy to control intratumor IL-17 infiltration, and consequently reverse immunosuppression in the tumor microenvironment, facilitating cancer immunotherapy.  相似文献   

17.
18.
《Cytotherapy》2023,25(3):245-253
Background aimsCD4+CD25+CD127lo regulatory T cells (Tregs) are responsible for maintaining immune homeostasis. Tregs can be rendered defective and deficient as a result of the immune imbalance seen in lung injury, and such dysfunction can play a major role in continued tissue inflammation. The authors hypothesized that adoptive therapy with healthy allogeneic umbilical cord blood (UCB)-derived Tregs may be able to resolve inflammation.ResultsEx vivo-expanded UCB Tregs exhibited a unique phenotype with co-expression of CD45RA+CD45RO+ >80% and lung homing markers, including CD49d. UCB Tregs did not turn pathogenic when exposed to IL-6. Co-culture with increasing doses of dexamethasone led to a synergistic increase in UCB Treg-induced apoptosis of conventional T cells (Tcons), which translated into significantly higher suppression of proliferating Tcons, especially at a lower Treg:Tcon ratio. Multiple injections of UCB Tregs led to their preferential accumulation in lung tissue in an immune injury xenogenic model. A significant decrease in lung resident cytotoxic CD8+ T cells (P = 0.0218) correlated with a sustained decrease in their systemic distribution compared with controls (P < 0.0001) (n = 7 per arm) as well as a decrease in circulating human soluble CD40 ligand level (P = 0.031). Tissue architecture was preserved in the treatment arm, and a significant decrease in CD3+ and CD8+ burden was evident in immunohistochemistry analysis.ConclusionsUCB Treg adoptive therapy is a promising therapeutic strategy for treatment of lung injury.  相似文献   

19.
Immunotherapy is expected to become the most promising new treatment for ovarian cancer owing to its immunogenicity. However, immunosuppression in the tumor microenvironment is a major obstacle to the efficacy of tumor therapy. Studies have found different metabolism ways of regulatory T cells (Tregs) in the cancer environment may be related to the immunosuppression and Toll-like receptor 8 (TLR8) can reverse the suppression function of Tregs. But it is still unclear that if the TLR8-mediated function reversal is associated with the change of glucose metabolism of Tregs. It was found that the positive expression rates of Glut1, HIF-1α, and Ki67 in CD4+ Treg cells of OC were significantly higher than that in benign ovarian tumor and HC, and also significantly higher than that in CD4+ Teffs of OC. What’s more, compared with CD4+ Teff group, CD4+ Tregs highly expressed seven genes and three proteins related to glucose metabolism and had higher levels of glucose uptake and glycolysis. After activating TLR8 signal of CD4+ Tregs, the proliferation level of naive CD4+ T cells was higher than that of the control group. At the same time, the expression levels of eight genes and five proteins related to glucose metabolism in CD4+ Treg cells with TLR8 activated were decreased and levels of glucose uptake and glycolysis were also lower. Furthermore, TLR8 signaling also downregulated the mTOR pathway in CD4+ Tregs. CD4+ Tregs pretreated with 2-deoxy-d-Glucose (2-DG) and galloflavin also attenuated the inhibition of Teffs proliferation. Although CD4+ Tregs pretreated with 2-DG and galloflavin before activating TLR8 signal had no significant difference compared with the group only treated with inhibitors, which suggested TLR8-mediated reversal of CD4+ Treg cells inhibitory function in ovarian cancer cells co-cultured microenvironment had a causal relationship with glucose metabolism.Subject terms: Glycobiology, Tumour immunology  相似文献   

20.
Immunotherapeutic strategies are increasingly being explored as a method of enhancing anti-tumour immune responses in patients with acute myeloid leukaemia (AML). Regulatory CD4+ T cells (Tregs) suppress effector T and natural killer (NK) cells and therefore pose a potential challenge to the efficacy of immunotherapy. AML cells transduced with a lentivirus expressing CD80 (B7.1) and IL2 (LV-CD80/IL2) are capable of stimulating T and NK cell cytotoxicity in vitro. This study examines the effect of CD80/IL2 modified AML cells on Treg number and function. We report a significant increase in the number of CD8+ T cells (P = 0.046) CD3CD56+ NK cells (P = 0.028) and CD3+CD4+CD25highFoxp3+ Tregs (P = 0.043) following stimulation for 7 days with allogeneic LV-CD80/IL2 AMLs. In contrast, autologous LV-CD80/IL2 AML cell cultures provide a weaker stimulation with a lower number of CD8+ T cells (P = 0.011) and no change in NK cell or Treg numbers. However, an increase in cytotoxic CD8+ T cells and NK cells are detected following both allogeneic and autologous LV-CD80/IL2 stimulation as demonstrated by an increase in IFN-γ and CD107a expression. Despite the presence of increased numbers of Tregs with suppressive activity in a subset of cultures, increased lysis of unmodified AMLs was still achieved following allogeneic (day 0, 2.2%; day 7, 20.4%) and more importantly, autologous LV-CD80/IL2 culture in which AML patients had recently received intensive chemotherapy (day 0, 0%; day 7, 16%). Vaccination with LV-CD80/IL2 therefore provides a potential strategy to enhance anti-leukaemia immune responses without a concomitant stimulation of Treg-mediated inhibition of cytotoxic immunological responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号