首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Integrating and expressing stably a transgene into the cellular genome remain major challenges for gene-based therapies and for bioproduction purposes. While transposon vectors mediate efficient transgene integration, expression may be limited by epigenetic silencing, and persistent transposase expression may mediate multiple transposition cycles. Here, we evaluated the delivery of the piggyBac transposase messenger RNA combined with genetically insulated transposons to isolate the transgene from neighboring regulatory elements and stabilize expression. A comparison of piggyBac transposase expression from messenger RNA and DNA vectors was carried out in terms of expression levels, transposition efficiency, transgene expression and genotoxic effects, in order to calibrate and secure the transposition-based delivery system. Messenger RNA reduced the persistence of the transposase to a narrow window, thus decreasing side effects such as superfluous genomic DNA cleavage. Both the CTF/NF1 and the D4Z4 insulators were found to mediate more efficient expression from a few transposition events. We conclude that the use of engineered piggyBac transposase mRNA and insulated transposons offer promising ways of improving the quality of the integration process and sustaining the expression of transposon vectors.  相似文献   

3.
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.  相似文献   

4.
Matrix attachment regions (MARs) can enhance the expression level of transgene in Chinese hamster ovaries (CHO) cell expression system. However, improvements in function and analyses of the mechanism remains unclear. In this study, we screened two new and more functional MAR elements from the human genome DNA. The human MAR‐3 and MAR‐7 element were cloned and inserted downstream of the polyA site in a eukaryotic vector. The constructs were transfected into CHO cells, and screened under G418 to produce the stably transfected cell pools. The expression levels and stability of enhanced green fluorescent protein (eGFP) were detected by flow cytometry. The transgene copy number and transgene expression at mRNA level were detected by quantitative real‐time PCR. The results showed that the expression level of eGFP of cells transfected with MAR‐containing vectors were all higher than those of the vectors without MARs under transient and stably transfection. The enhancing effect of MAR‐7 was higher than that of MAR‐3. Additionally, we found that MAR significantly increased eGFP copy numbers and eGFP gene mRNA expression level as compared with the vector without. In conclusion, MAR‐3 and MAR‐7 gene can promote the expression of transgene in transfected CHO cells, and its effect may be related to the increase of the number of copies.  相似文献   

5.
Low‐level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR‐6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR‐6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP‐B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP‐B, DHFR intron MAR element and MAR‐6. Additionally, as expected, the three MAR‐containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non‐MAR‐containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP‐B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.  相似文献   

6.
Previous work has shown that the MAR (matrix attachment region) could increase transgene expression in stably transfected CHO (Chinese‐hamster ovary) cells. To study the positional effect of MAR on transgene expression, three expression vectors were constructed which contained the human β‐globin MAR in different sites, including the vector with two MARs flanking the CAT (chloramphenicol acetyltransferase) expression cassette, one MAR at the 5′ or 3′ site. These vectors were transfected into CHO cells. The level of CAT gene expression was most effectively increased by two MARs flanking the CAT expression cassette. This increase was also seen when MAR was inserted at the 5′ site upstream of the expression cassette, whereas the transgene expression level decreased when MAR was inserted at the 3′ site downstream of the expression cassette. We have also shown that the transgene expression level is not directly proportional to the gene copy number, and gene copy number dependency does not exist.  相似文献   

7.
In our previous study, we demonstrated that episomal vectors based on the characteristic sequence of matrix attachment regions (MARs) and containing the cytomegalovirus (CMV) promoter allow transgenes to be maintained episomally in Chinese hamster ovary (CHO) cells. However, the transgene expression was unstable and the number of copies was low. In this study, we focused on enhancers, various promoters and promoter variants that could improve the transgene expression stability, expression magnitude (level) and the copy number of a MAR‐based episomal vector in CHO‐K1 cells. In comparison with the CMV promoter, the eukaryotic translation elongation factor 1 α (EF‐1α, gene symbol EEF1A1) promoter increased the transfection efficiency, the transgene expression, the proportion of expression‐positive clones and the copy number of the episomal vector in long‐term culture. By contrast, no significant positive effects were observed with an enhancer, CMV promoter variants or CAG promoter in the episomal vector in long‐term culture. Moreover, the high‐expression clones harbouring the EF‐1α promoter tended to be more stable in long‐term culture, even in the absence of selection pressure. According to these findings, we concluded that the EF‐1α promoter is a potent regulatory sequence for episomal vectors because it maintains high transgene expression, transgene stability and copy number. These results provide valuable information on improvement of transgene stability and the copy number of episomal vectors.  相似文献   

8.
Safe and efficient gene transfer systems are the basis of gene therapy applications. Non-integrating lentiviral (NIL) vectors are among the most promising candidates for gene transfer tools, because they exhibit high transfer efficiency in both dividing and non-dividing cells and do not present a risk of insertional mutagenesis. However, non-integrating lentiviral vectors cannot introduce stable exogenous gene expression to dividing cells, thereby limiting their application. Here, we report the design of a non-integrating lentiviral vector that contains the minimal scaffold/matrix attachment region (S/MAR) sequence (SNIL), and this SNIL vector is able to retain episomal transgene expression in dividing cells. Using SNIL vectors, we detected the expression of the eGFP gene for 61 days in SNIL-transduced stable CHO cells, either with selection or not. In the NIL group without the S/MAR sequence, however, the transduced cells died under selection for the transient expression of NIL vectors. Furthermore, Southern blot assays demonstrated that the SNIL vectors were retained extrachromosomally in the CHO cells. In conclusion, the minimal S/MAR sequence retained the non-integrating lentiviral vectors in dividing cells, which indicates that SNIL vectors have the potential for use as a gene transfer tool.  相似文献   

9.
Currently available vectors for mammalian cells suffer from a number of limitations which make them only partially useful for genetic modification of eukaryotic cells and organisms and for gene therapy. While integration of a vector can lead to unpredictable interactions with the host genome and silencing of the integrated transgene, most non-integrating vectors mediate only transient expression of a transgene. All available vector types can lead to transformation of the recipient cell and many of them can cause serious immunological side effects in the organism. The ideal vector has to be free of these side effects and should allow long-term expression of a transgene in the absence of selection. In this report we describe a novel non-viral episomal expression system fulfilling these criteria. The gene encoding the truncated rat NGF-receptor gene under the control of the CMV-promoter was inserted into a vector construct containing a scaffold/matrix attached region (S/MAR). This vector was then transfected into CHO cells and human HaCat cells. We show that this vector replicates episomally in these cells and is mitotically stable in the abscence of selection over more than 100 generations. Moreover, we provide the first experimental data that the CMV-promoter in an episome is not subject to silencing by cytosine methylation, thus allowing long-term expression of the transgene in the absence of selection.  相似文献   

10.
Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases.  相似文献   

11.
Vectors used for gene targeting experiments usually consist of a selectable marker flanked by two regions of homology to the targeted gene. In a homologous recombination event, the selectable marker replaces an essential element of the target gene rendering it inactive. Other applications of gene targeting technology include gene replacement (knockins) and conditional vectors which allow for the generation of inducible or tissue-specific gene-targeting events. The assembly of gene-targeting vectors is generally a laborious process requiring considerable technical skill. The procedures presented here report the application of transposons as tools for the construction of targeting vectors. Two mini-Mu transposons were sequentially inserted by in vitro transposition at each side of the region targeted for deletion. One such transposon carries an antibiotic resistance marker suitable for selection in mammalian cells. A deletion is then generated between the two transposons either by LoxP-induced recombination or by restriction digestion followed by ligation. This deletion removes part of both transposons plus the targeted region in between, leaving a transposon carrying the selectable marker flanked by two arms which are homologous to the targeted gene. Targeting vectors constructed using these transposons were electroporated into embryonic stem cells and shown to be effective in gene-targeting events.  相似文献   

12.
The re-emergence of arboviral diseases such as Dengue Fever and La Crosse encephalitis is primarily due to the failure of insect vector control strategies. The development of a procedure capable of producing stable germ-line transformants in the insect vectors of these diseases would bridge the gap between gene expression systems being developed to curb vector transmission and the identification of important genes and regulatory sequences and their reintroduction back into the insect genome in the form of vector control strategies. The transposable element piggyBac is capable of transposition in a variety of insect species, and could serve as a versatile insect transformation vector. Using plasmid-based excision and transposition assays, we report that this short-ITR transposon undergoes precise, transposase-dependent excision and transposition in embryos of Aedes albopictus and Aedes triseriatus, the vectors of Dengue fever and LaCrosse encephalitis, respectively. These assays allow us easily and rapidly to confirm and assess the potential utility of piggyBac as a gene transfer tool in a given species. piggyBac is an exceptionally mobile and versatile genetic transformation vector, comparable to other transposons currently in use for the transformation of insects. The mobility of the piggyBac element seen in both Ae. albopictus and Ae. triseriatus is further evidence that it can be employed as a germ-line vector in important insect disease vectors.  相似文献   

13.
为研究核基质结合区 (MAR)序列不同插入位置对转基因表达作用的影响,PCR扩增人β 珠蛋白MAR分别插入到含氯霉素乙酰转移酶(chloramphenicol acetyltransferase,CAT)报告基因真核表达载体pCATG表达盒两侧、5′端及3′端.酶切鉴定后,用阳离子聚合物转染CHO细胞,G418筛选出阳性细胞克隆,ELISA分析CAT基因的表达水平,半定量PCR分析CAT基因相对拷贝数.结果表明,表达盒两侧含MAR序列的载体能提高介导的转基因表达水平平均提高10.4倍,5′端含MAR序列的载体表达水平平均提高3.9倍,3′端含MAR序列的载体反而降低转基因表达水平.5′端含MAR序列的表达载体其转基因相对拷贝数高于其它两组载体的基因拷贝数,转基因表达量与基因拷贝数不成正比.  相似文献   

14.
Non-viral transposons have been used successfully for genetic modification of clinically relevant cells including embryonic stem, induced pluripotent stem, hematopoietic stem and primary human T cell types. However, there has been limited evaluation of undesired genomic effects when using transposons for human genome modification. The prevalence of piggyBac(PB)-like terminal repeat (TR) elements in the human genome raises concerns. We evaluated if there were undesired genomic effects of the PB transposon system to modify human cells. Expression of the transposase alone revealed no mobilization of endogenous PB-like sequences in the human genome and no increase in DNA double-strand breaks. The use of PB in a plasmid containing both transposase and transposon greatly increased the probability of transposase integration; however, using transposon and transposase from separate vectors circumvented this. Placing a eGFP transgene within transposon vector backbone allowed isolation of cells free from vector backbone DNA. We confirmed observable directional promoter activity within the 5′TR element of PB but found no significant enhancer effects from the transposon DNA sequence. Long-term culture of primary human cells modified with eGFP-transposons revealed no selective growth advantage of transposon-harboring cells. PB represents a promising vector system for genetic modification of human cells with limited undesired genomic effects.  相似文献   

15.
Alternative conformations of a nucleic acid four-way junction   总被引:12,自引:0,他引:12  
Sleeping Beauty (SB), a member of the Tc1/mariner superfamily of transposable elements, is the only active DNA-based transposon system of vertebrate origin that is available for experimental manipulation. We have been using the SB element as a research tool to investigate some of the cis and trans-requirements of element mobilization, and mechanisms that regulate transposition in vertebrate species. In contrast to mariner transposons, which are regulated by overexpression inhibition, the frequency of SB transposition was found to be roughly proportional to the amount of transposase present in cells. Unlike Tc1 and mariner elements, SB contains two binding sites within each of its terminal inverted repeats, and we found that the presence of both of these sites is a strict requirement for mobilization. In addition to the size of the transposon itself, the length as well as sequence of the DNA outside the transposon have significant effects on transposition. As a general rule, the closer the transposon ends are, the more efficient transposition is from a donor molecule. We have found that SB can transform a wide range of vertebrate cells from fish to human. However, the efficiency and precision of transposition varied significantly among cell lines, suggesting potential involvement of host factors in SB transposition. A positive-negative selection assay was devised to enrich populations of cells harboring inserted transposons in their chromosomes. Using this assay, of the order of 10,000 independent transposon insertions can be generated in human cells in a single transfection experiment. Sleeping Beauty can be a powerful alternative to other vectors that are currently used for the production of transgenic animals and for human gene therapy.  相似文献   

16.
Sleeping Beauty (SB) is the most active Tc1/mariner-type transposable element in vertebrates, and is therefore a valuable vector for transposon mutagenesis in vertebrate models and for human gene therapy. We have analyzed factors affecting target site selection of SB in mammalian cells, by generating transposition events from extrachromosomal plasmids to chromosomes. In contrast to the local hopping observed when transposition is induced from a chromosomal context, mapping of 138 unique SB insertions on human chromosomes showed a fairly random genomic distribution, and a 35% occurrence of transposition into genes. Inspection of the DNA flanking the sites of element integration revealed significant differences from random DNA in both primary sequence and physical properties. The consensus sequence of SB target sites was found to be a palindromic AT-repeat, ATATATAT, in which the central TA is the canonical target site. We found however, that target site selection is determined primarily on the level of DNA structure, and not by specific base-pair interactions. Computational analyses revealed that insertion sites tend to have a bendable structure and a palindromic pattern of potential hydrogen-bonding sites in the major groove of the DNA. These features appear conserved in the Tc1/mariner family of transposons and in other, distantly related elements that share a common catalytic domain of the transposase, and integrate fairly randomly. No similar target site preference was found for non-randomly integrating elements. Our results suggest common factors influencing target site selection of a wide range of transposable elements.  相似文献   

17.
Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.  相似文献   

18.
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host–transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.  相似文献   

19.
Episomal gene expression vectors offer a safe and attractive alternative to integrating vectors. Here we describe the development of a high capacity episomal vector system exploiting human episomal retention sequences to provide efficient vector maintenance and regulated gene expression through the delivery of a genomic DNA locus. The iBAC-S/MAR vector is capable of the infectious delivery and retention of large genomic DNA transgenes by exploiting the high transgene capacity of herpes simplex virus type 1 (HSV-1) and the episomal retention properties of the scaffold/matrix attachment region (S/MAR). The iBAC-S/MAR vector was used to deliver and maintain a 135kb genomic DNA insert carrying the human low density lipoprotein receptor (LDLR) genomic DNA locus at high efficiency in CHO ldlr/ a7 cells. Long-term studies on CHO ldlr/ a7 clonal cell lines carrying iBAC-S/MAR-LDLR demonstrated low copy episomal stability of the vector for >100 cell generations without selection. Expression studies demonstrated that iBAC-S/MAR-LDLR completely restored LDLR function in CHO ldlr/ a7 cells to physiological levels and that this expression can be repressed by ~70% by high sterol levels, recapitulating the same feedback regulation seen at the endogenous LDLR locus. This vector overcomes the major problems of vector integration and unregulated transgene expression.  相似文献   

20.
Transposable elements can be considered as natural, non-viral gene delivery vehicles capable of efficient genomic insertion. The plasmid-based transposon system of Sleeping Beauty (SB) combines the advantages of viruses and naked DNA molecules. In contrast to plasmid vectors, transposons integrate through a precise, recombinase-mediated mechanism into chromosomes, providing long-term expression of the gene of interest in cells. The advantages of transposons in comparison to viral systems include their simplicity and improved safety/toxicity profiles. In addition, the hyperactive SB100X is the first plasmid-based delivery system that overcomes the efficacy of non-viral delivery. The transposon delivery system consists of the transposase and the integration cassette, recognized by the transposase. The plasmid-based transposon delivery system can be combined with any non-viral delivery method. Here we provide two detailed protocols to apply SB-mediated, non-viral gene transfer in cultured cells. In our first example, we use a lipid-based delivery method in combination with the transposon-based integration system in an easy-to-transfect (HeLa) cell line. Second, we show how to achieve 40–50% stable expression of a transgene in clinically relevant, hard-to-transfect cells (hematopoetic stem cells, HSCs) by nucleofection. The given protocols are adaptable to any vertebrate cells in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号