共查询到20条相似文献,搜索用时 0 毫秒
1.
Danielle E. Chandler 《Biophysical journal》2009,97(11):2978-2984
The photosynthetic apparatus of purple bacteria is contained within organelles called chromatophores, which form as extensions of the cytoplasmic membrane. The shape of these chromatophores can be spherical (as in Rhodobacter sphaeroides), lamellar (as in Rhodopseudomonas acidophila and Phaeospirillum molischianum), or tubular (as in certain Rb. sphaeroides mutants). Chromatophore shape is thought to be influenced by the integral membrane proteins Light Harvesting Complexes I and II (LH1 and LH2), which pack tightly together in the chromatophore. It has been suggested that the shape of LH2, together with its close packing in the membrane, induces membrane curvature. The mechanism of LH2-induced curvature is explored via molecular dynamics simulations of multiple LH2 complexes in a membrane patch. LH2s from three species—Rb. sphaeroides, Rps. acidophila, and Phsp. molischianum—were simulated in different packing arrangements. In each case, the LH2s pack together and tilt with respect to neighboring LH2s in a way that produces an overall curvature. This curvature appears to be driven by a combination of LH2's shape and electrostatic forces that are modulated by the presence of well-conserved cytoplasmic charged residues, the removal of which inhibits LH2 curvature. The interaction of LH2s and an LH1 monomer is also explored, and it suggests that curvature is diminished by the presence of LH1 monomers. The implications of our results for chromatophore shape are discussed. 相似文献
2.
Michael G. Hanna IV Ioanna Mela Lei Wang Robert M. Henderson Edwin R. Chapman J. Michael Edwardson Anjon Audhya 《The Journal of biological chemistry》2016,291(3):1014-1027
The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5′-[(β,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission. 相似文献
3.
Caveolin-1 (cav-1) is an important player in cell signaling and endocytosis that has been shown to colocalize with cholesterol-rich membrane domains. Experimental studies with varying cav-1 constructs have suggested that it can induce both cholesterol clustering and membrane curvature. Here, we probe the molecular origin of membrane curvature and cholesterol clustering by cav-1 by using coarse-grain molecular dynamics simulations. We have performed a series of simulations of a functionally important cav-1 construct, comprising the membrane-interacting domains and a C-terminal palmitoyl tail. Our results suggest that cav-1 is able to induce cholesterol clustering in the membrane leaflet to which it is bound as well as the opposing leaflet. A positive membrane curvature is observed upon cav-1 binding in cholesterol-containing bilayers. Interestingly, we observe an interplay between cholesterol clustering and membrane curvature such that cav-1 is able to induce higher membrane curvature in cholesterol-rich membranes. The role of the cav-1 palmitoyl tail is less clear and appears to increase the membrane contacts. Further, we address the importance of the secondary structure of cav-1 domains and show that it could play an important role in membrane curvature and cholesterol clustering. Our work is an important step toward a molecular picture of caveolae and vesicular endocytosis. 相似文献
4.
5.
6.
Pei-Wen Chen Xiaoying Jian Hye-Young Yoon Paul A. Randazzo 《The Journal of biological chemistry》2013,288(8):5849-5860
Focal adhesions (FAs) are dynamic structures that connect the actin cytoskeleton with the extracellular matrix. At least six ADP-ribosylation factor (Arf) GTPase-activating proteins (GAPs), including ARAP2 (an Arf6 GAP), are implicated in regulation of FAs but the mechanisms for most are not well defined. Although Rac1 has been reported to function downstream of Arf6 to control membrane ruffling and cell migration, this pathway has not been directly examined as a regulator of FAs. Here we test the hypothesis that ARAP2 promotes the growth of FAs by converting Arf6·GTP to Arf6·GDP thereby preventing the activation of the Rho family GTP-binding protein Rac1. Reduced expression of ARAP2 decreased the number and size of FAs in cells and increased cellular Arf6·GTP and Rac1·GTP levels. Overexpression of ARAP2 had the opposite effects. The effects of ARAP2 on FAs and Rac1 were dependent on a functional ArfGAP domain. Constitutively active Arf6 affected FAs in the same way as did reduced ARAP2 expression and dominant negative mutants of Arf6 and Rac1 reversed the effect of reduced ARAP2 expression. However, neither dominant negative Arf6 nor Rac1 had the same effect as ARAP2 overexpression. We conclude that changes in Arf6 and Rac1 activities are necessary but not sufficient for ARAP2 to promote the growth of FAs and we speculate that ARAP2 has additional functions that are effector in nature to promote or stabilize FAs. 相似文献
7.
Regina Leber Michael Pachler Ivo Kabelka Irene Svoboda Daniel Enkoller Robert Vácha Karl Lohner Georg Pabst 《Biophysical journal》2018,114(8):1945-1954
Mixtures of the frog peptides magainin 2 and PGLa are well-known for their pronounced synergistic killing of Gram-negative bacteria. We aimed to gain insight into the underlying biophysical mechanism by interrogating the permeabilizing efficacies of the peptides as a function of stored membrane curvature strain. For Gram-negative bacterial-inner-membrane mimics, synergism was only observed when the anionic bilayers exhibited significant negative intrinsic curvatures imposed by monounsaturated phosphatidylethanolamine. In contrast, the peptides and their mixtures did not exhibit significant activities in charge-neutral mammalian mimics, including those with negative curvature, which is consistent with the requirement of charge-mediated peptide binding to the membrane. Our experimental findings are supported by computer simulations showing a significant decrease of the peptide-insertion free energy in membranes upon shifting intrinsic curvatures toward more positive values. The physiological relevance of our model studies is corroborated by a remarkable agreement with the peptide’s synergistic activity in Escherichia coli. We propose that synergism is related to a lowering of a membrane-curvature-strain-mediated free-energy barrier by PGLa that assists membrane insertion of magainin 2, and not by strict pairwise interactions of the two peptides as suggested previously. 相似文献
8.
Jacques KM Nie Z Stauffer S Hirsch DS Chen LX Stanley KT Randazzo PA 《The Journal of biological chemistry》2002,277(49):47235-47241
The effectors of monomeric GTP-binding proteins can influence interactions with GTPase-activating proteins (GAPs) in two ways. In one case, effector and GAP binding to the GTP-binding protein is mutually exclusive. In another case, the GTP-binding protein bound to an effector is the substrate for the GTPase-activating protein. Here predictions for these two mechanisms were tested for the Arf1 effector GGA and ASAP family Arf GAPs. GGA inhibited Arf GAP activity of ASAP1, AGAP1, ARAP1, and Arf GAP1 and inhibited binding of Arf1.GTPgammaS to AGAP1 with K(i) values correlating with the K(d) for the GGA.Arf1 complex. ASAP1 blocked Arf1.GTPgammaS binding to GGA with a K(i) similar to the K(d) for the ASAP.Arf1.GTPgammaS complex. No interaction of GGA with ASAP1 was detected. Consistent with GGA sequestering Arf from GAPs, overexpression of GGA slowed the rate of Arf dissociation from the Golgi apparatus following treatment with brefeldin A. Mutational analysis revealed the amino-terminal alpha-helix and switch I of Arf1 contributed to interaction with both GGA and GAPs. These data exclude the mechanism previously documented for Arf GAP1/coatomer in which Arf1 is inactivated in a tripartite complex. Instead, termination of Arf1 signals mediated through GGA require that Arf1.GTP dissociates from GGA prior to interaction with GAP and consequent hydrolysis of GTP. 相似文献
9.
Small guanosine triphosphatase (GTPase) ADP-ribosylation factors (Arfs) regulate membrane traffic and actin reorganization under the strict control of GTPase-activating proteins (GAPs). ARAP1 (Arf GAP with Rho GAP domain, ankyrin repeat, and PH domain 1) is an Arf GAP molecule with multiple PH domains that recognize phosphatidylinositol 3,4,5-trisphosphate. We found that growth factor stimulation induced localization of ARAP1 to an area of the plasma membrane inside the ring structure of circular dorsal ruffles (CDRs). Moreover, expression of ARAP1 increased the size of the CDR filamentous-actin ring in an Arf GAP activity-dependent manner, whereas smaller CDRs were formed by ARAP1 knockdown. In addition, expression of a dominant-negative mutant of Arf1 and Arf5, the substrates of ARAP1, expanded the size of CDRs, suggesting that the two Arf isoforms regulate ring structure downstream of ARAP1. Therefore our results reveal a novel molecular mechanism of CDR ring size control through the ARAP1-Arf1/5 pathway. 相似文献
10.
Geometrical Membrane Curvature as an Allosteric Regulator of Membrane Protein Structure and Function
Asger Tonnesen Sune?M. Christensen Vadym Tkach Dimitrios Stamou 《Biophysical journal》2014,106(1):201-209
Transmembrane proteins are embedded in cellular membranes of varied lipid composition and geometrical curvature. Here, we studied for the first time the allosteric effect of geometrical membrane curvature on transmembrane protein structure and function. We used single-channel optical analysis of the prototypic transmembrane β-barrel α-hemolysin (α-HL) reconstituted on immobilized single small unilamellar liposomes of different diameter and therefore curvature. Our data demonstrate that physiologically abundant geometrical membrane curvatures can enforce a dramatic allosteric regulation (1000-fold inhibition) of α-HL permeability. High membrane curvatures (1/diameter ∼1/40 nm−1) compressed the effective pore diameter of α-HL from 14.2 ± 0.8 Å to 11.4 ± 0.6 Å. This reduction in effective pore area (∼40%) when combined with the area compressibility of α-HL revealed an effective membrane tension of ∼50 mN/m and a curvature-imposed protein deformation energy of ∼7 kBT. Such substantial energies have been shown to conformationally activate, or unfold, β-barrel and α-helical transmembrane proteins, suggesting that membrane curvature could likely regulate allosterically the structure and function of transmembrane proteins in general. 相似文献
11.
Geometrical Membrane Curvature as an Allosteric Regulator of Membrane Protein Structure and Function
Transmembrane proteins are embedded in cellular membranes of varied lipid composition and geometrical curvature. Here, we studied for the first time the allosteric effect of geometrical membrane curvature on transmembrane protein structure and function. We used single-channel optical analysis of the prototypic transmembrane β-barrel α-hemolysin (α-HL) reconstituted on immobilized single small unilamellar liposomes of different diameter and therefore curvature. Our data demonstrate that physiologically abundant geometrical membrane curvatures can enforce a dramatic allosteric regulation (1000-fold inhibition) of α-HL permeability. High membrane curvatures (1/diameter ∼1/40 nm−1) compressed the effective pore diameter of α-HL from 14.2 ± 0.8 Å to 11.4 ± 0.6 Å. This reduction in effective pore area (∼40%) when combined with the area compressibility of α-HL revealed an effective membrane tension of ∼50 mN/m and a curvature-imposed protein deformation energy of ∼7 kBT. Such substantial energies have been shown to conformationally activate, or unfold, β-barrel and α-helical transmembrane proteins, suggesting that membrane curvature could likely regulate allosterically the structure and function of transmembrane proteins in general. 相似文献
12.
The sorting of lipids and proteins in cellular trafficking pathways is a process of central importance in maintaining compartmentalization in eukaryotic cells. However, the mechanisms behind these sorting phenomena are currently far from being understood. Among several mechanistic suggestions, membrane curvature has been invoked as a means to segregate lipids and proteins in cellular sorting centers. To assess this hypothesis, we investigate the sorting of lipid analog dye trace components between highly curved tubular membranes and essentially flat membranes of giant unilamellar vesicles. Our experimental findings indicate that intracellular lipid sorting, contrary to frequent assumptions, is unlikely to occur by lipids fitting into membrane regions of appropriate curvature. This observation is explained in the framework of statistical mechanical lattice models that show that entropy, rather than curvature energy, dominates lipid distribution in the absence of strongly preferential lateral intermolecular interactions. Combined with previous findings of curvature induced phase segregation, we conclude that lipid cooperativity is required to enable efficient sorting. In contrast to lipid analog dyes, the peripheral membrane binding protein Cholera toxin subunit B is effectively curvature-sorted. The sorting of Cholera toxin subunit B is rationalized by statistical models. We discuss the implications of our findings for intracellular sorting mechanisms. 相似文献
13.
14.
BRCA1 and CtIP Are Both Required to Recruit Dna2 at Double-Strand Breaks in Homologous Recombination
Nguyen Ngoc Hoa Junya Kobayashi Masato Omura Mayumi Hirakawa Soo-Hyun Yang Kenshi Komatsu Tanya T. Paull Shunichi Takeda Hiroyuki Sasanuma 《PloS one》2015,10(4)
Homologous recombination plays a key role in the repair of double-strand breaks (DSBs), and thereby significantly contributes to cellular tolerance to radiotherapy and some chemotherapy. DSB repair by homologous recombination is initiated by 5’ to 3’ strand resection (DSB resection), with nucleases generating the 3’ single-strand DNA (3’ssDNA) at DSB sites. Genetic studies of Saccharomyces cerevisiae demonstrate a two-step DSB resection, wherein CtIP and Mre11 nucleases carry out short-range DSB resection followed by long-range DSB resection done by Dna2 and Exo1 nucleases. Recent studies indicate that CtIP contributes to DSB resection through its non-catalytic role but not as a nuclease. However, it remains elusive how CtIP contributes to DSB resection. To explore the non-catalytic role, we examined the dynamics of Dna2 by developing an immuno-cytochemical method to detect ionizing-radiation (IR)-induced Dna2-subnuclear-focus formation at DSB sites in chicken DT40 and human cell lines. Ionizing-radiation induced Dna2 foci only in wild-type cells, but not in Dna2 depleted cells, with the number of foci reaching its maximum at 30 minutes and being hardly detectable at 120 minutes after IR. Induced foci were detectable in cells in the G2 phase but not in the G1 phase. These observations suggest that Dna2 foci represent the recruitment of Dna2 to DSB sites for DSB resection. Importantly, the depletion of CtIP inhibited the recruitment of Dna2 to DSB sites in both human cells and chicken DT40 cells. Likewise, a defect in breast cancer 1 (BRCA1), which physically interacts with CtIP and contributes to DSB resection, also inhibited the recruitment of Dna2. Moreover, CtIP physically associates with Dna2, and the association is enhanced by IR. We conclude that BRCA1 and CtIP contribute to DSB resection by recruiting Dna2 to damage sites, thus ensuring the robust DSB resection necessary for efficient homologous recombination. 相似文献
15.
《Structure (London, England : 1993)》2014,22(3):421-430
- Download : Download high-res image (424KB)
- Download : Download full-size image
16.
Yoon HY Jacques K Nealon B Stauffer S Premont RT Randazzo PA 《Cellular signalling》2004,16(9):1033-1044
The Arf GAPs are a structurally diverse group of proteins that catalyze the hydrolysis of GTP bound to Arf1. Here, we directly compare the role of amino acids 2-17 of Arf1, a GTP- and phospholipid-sensitive switch, for interaction with three Arf GAPs: Arf GAP1, AGAP1 and ASAP1. Sequestration of amino acids 2-17 with an antibody inhibited interaction with the three tested Arf GAPs. Examination of Arf1 mutants also indicated that [2-17]Arf1 is a critical structural determinant of interaction with all three Arf GAPs; however, the effect of specific mutations differed among the GAPs. Compared to wild-type Arf1, Arf1 with the amino terminal 13 ([Delta13]Arf1) and 17 amino acids ([Delta17]Arf1) deleted had 200- and 4000-fold reduced interaction with ASAP1 and 150-fold reduced interaction with AGAP1. In contrast, deletion of the amino terminus of Arf reduced interaction with Arf GAP1 by 5-fold. By analysis of point mutants, we found that lysines 15 and 16 had a greater contribution to productive interaction between Arf1, ASAP1 and AGAP1 than between Arf1 and Arf GAP1. Leucine 8 contributed to the interaction with Arf GAP1 but not with ASAP1 and AGAP1. Amino acids 2-17 of Arf1, isolated from the protein, inhibited GAP activity of Arf GAP1, ASAP1 and AGAP1 and bound directly to ASAP1. Taken together, our results indicate that (i) Arf GAPs interact with amino acids 2-17 of Arf1 and (ii) each subgroup of Arf GAPs has a unique interface with Arf1. 相似文献
17.
Agafonov AV Gritsenko EN Shlyapnikova EA Kharakoz DP Belosludtseva NV Lezhnev EI Saris NE Mironova GD 《The Journal of membrane biology》2007,215(1):57-68
A Ca(2+)-induced phase separation of palmitic acid (PA) in the membrane of azolectin unilamellar liposomes has been demonstrated with the fluorescent membrane probe nonyl acridine orange (NAO). It has been shown that NAO, whose fluorescence in liposomal membranes is quenched in a concentration-dependent way, can be used to monitor changes in the volume of lipid phase. The incorporation of PA into NAO-labeled liposomes increased fluorescence corresponding to the expansion of membrane. After subsequent addition of Ca(2+), fluorescence decreased, which indicated separation of PA/Ca(2+) complexes into distinct membrane domains. The Ca(2+)-induced phase separation of PA was further studied in relation to membrane permeabilization caused by Ca(2+) in the PA-containing liposomes. A supposition was made that the mechanism of PA/Ca(2+)-induced membrane permeabilization relates to the initial stage of Ca(2+)-induced phase separation of PA and can be considered as formation of fast-tightening lipid pores due to chemotropic phase transition in the lipid bilayer. 相似文献
18.
Míriam Rodríguez-Vázquez David Vaquero Esmeralda Parra-Peralbo John E. Mejía-Morales Joaquim Culi 《PLoS genetics》2015,11(6)
Lipophorin, the main Drosophila lipoprotein, circulates in the hemolymph transporting lipids between organs following routes that must adapt to changing physiological requirements. Lipophorin receptors expressed in developmentally dynamic patterns in tissues such as imaginal discs, oenocytes and ovaries control the timing and tissular distribution of lipid uptake. Using an affinity purification strategy, we identified a novel ligand for the lipophorin receptors, the circulating lipoprotein Lipid Transfer Particle (LTP). We show that specific isoforms of the lipophorin receptors mediate the extracellular accumulation of LTP in imaginal discs and ovaries. The interaction requires the LA-1 module in the lipophorin receptors and is strengthened by a contiguous region of 16 conserved amino acids. Lipophorin receptor variants that do not interact with LTP cannot mediate lipid uptake, revealing an essential role of LTP in the process. In addition, we show that lipophorin associates with the lipophorin receptors and with the extracellular matrix through weak interactions. However, during lipophorin receptor-mediated lipid uptake, LTP is required for a transient stabilization of lipophorin in the basolateral plasma membrane of imaginal disc cells. Together, our data suggests a molecular mechanism by which the lipophorin receptors tether LTP to the plasma membrane in lipid acceptor tissues. LTP would interact with lipophorin particles adsorbed to the extracellular matrix and with the plasma membrane, catalyzing the exchange of lipids between them. 相似文献
19.
Flisiak S Zeeh JC Guibert B Cherfils J Zeghouf M 《Biochemical and biophysical research communications》2008,377(1):156-160
Guanine nucleotide exchange factors (GEFs) stimulate the activation of small GTP-binding proteins (GTPases). Establishing their specificity is a challenging issue, in which chemical genetics are rapidly gaining interest. We report a mutation in the Arf1 GTPase, K38A, which differentially alters its sensitivity to GEF inhibitors. The mutation renders Arf1 insensitive to LM11, a GEF inhibitor that we previously discovered by structure-based screening. In contrast, full inhibition by the natural compound Brefeldin A (BFA) is retained. We show that the mutation is otherwise silent towards the biochemical and cellular properties of Arf1, notably its binding to effectors as measured by a novel GEF-protection assay. This is thus the first GTPase mutant with different responses to two classes of inhibitors, and a novel tool to analyze Arf and ArfGEF specificity and functions in vitro and in cells. 相似文献