首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli synthesizes three selenocysteine-dependent formate dehydrogenases (Fdh) that also have a molybdenum cofactor. Fdh-H couples formate oxidation with proton reduction in the formate hydrogenlyase (FHL) complex. The activity of Fdh-H in solution can be measured with artificial redox dyes but, unlike Fdh-O and Fdh-N, it has never been observed by chromogenic activity staining after non-denaturing polyacrylamide gel electrophoresis (PAGE). Here, we demonstrate that Fdh-H activity is present in extracts of cells from stationary phase cultures and forms a single, fast-migrating species. The activity is oxygen labile during electrophoresis explaining why it has not been previously observed as a discreet activity band. The appearance of Fdh-H activity was dependent on an active selenocysteine incorporation system, but was independent of the [NiFe]-hydrogenases (Hyd), 1, 2 or 3. We also identified new active complexes of Fdh-N and Fdh-O during fermentative growth. The findings of this study indicate that Fdh-H does not form a strong complex with other Fdh or Hyd enzymes, which is in line with it being able to deliver electrons to more than one redox-active enzyme complex.  相似文献   

2.
Glutathione peroxidase (GPx) of mammalian cells and Escherichia coli formate dehydrogenase both contain a selenocysteine (SeCys) in their amino acid (aa) sequence. In these two enzymes, this aa is encoded by a UGA codon, which is usually a stop codon for protein synthesis. We constructed plasmids to test the synthesis of GPx in E. coli. These constructions permitted high-level production of GPx mutants, where the SeCys codon was replaced by cysteine (UGC, UGU) or serine (UCA) codons, but synthesis of selenoprotein could not be detected: our data suggest that signals used for the recognition of the UGA codon as a SeCys codon are not conserved between E. coli and mammalian cells.  相似文献   

3.
ABSTRACT. The α- and the β-tubulin genes of the hypotrichous ciliate Euplotes octocarinatus were isolated from a size-selected macronuclear DNA library. The α-tubulin gene is located on a 1,587 bp macronuclear DNA molecule and the β-tubulin gene on a 1,524 bp macronuclear DNA molecule. Sequencing revealed that all the cysteine residues of the two genes are encoded by the common cysteine codons UGU and UGC and none by an UGA codon. This is in contrast to the genes of E. octocarinatus sequenced so far, where some of the cysteines are encoded by the opal codon UGA. The tubulin genes end like other Euplotes genes with a TAA. They do not contain introns. The last codon for an amino acid in the α-tubulin gene is a GAA which codes for glutamic acid. This is in contrast to what has been reported for most α-tubulin genes, but it supports findings for other hypotrichous ciliates. No evidence for the existence of more than one type of α- and one type of β-tubulin genes could be obtained.  相似文献   

4.
The path of unspecific incorporation of selenium in Escherichia coli   总被引:2,自引:0,他引:2  
The path of unspecific selenium incorporation into proteins was studied in Escherichia coli mutants blocked in the biosynthesis of cysteine and methionine or altered in its regulation. Selenium incorporation required all enzymatic steps of cysteine biosynthesis except sulfite reduction, indicating that intracellular reduction of selenite occurs nonenzymatically. Cysteine (but not methionine) supplementation prevented unspecific incorporation of selenium by repressing cysteine biosynthesis. On the other hand, when the biosynthesis of cysteine was derepressed in regulatory mutants, selenium was incorporated to high levels. These findings and the fact that methionine auxotrophic strains still displayed unspecific incorporation show that selenium incorporation into proteins in E. coli occurs mainly as selenocysteine. These findings also provide information on the labeling conditions for incorporating 75Se only and specifically into selenoproteins. Received: 2 May 1997 / Accepted: 23 June 1997  相似文献   

5.
A-type carrier (ATC) proteins of the Isc (iron-sulfur cluster) and Suf (sulfur mobilization) iron-sulfur ([Fe-S]) cluster biogenesis pathways are proposed to traffic preformed [Fe-S] clusters to apoprotein targets. In this study, we analyzed the roles of the ATC proteins ErpA, IscA, and SufA in the maturation of the nitrate-inducible, multisubunit anaerobic respiratory enzymes formate dehydrogenase N (Fdh-N) and nitrate reductase (Nar). Mutants lacking SufA had enhanced activities of both enzymes. While both Fdh-N and Nar activities were strongly reduced in an iscA mutant, both enzymes were inactive in an erpA mutant and in a mutant unable to synthesize the [Fe-S] cluster scaffold protein IscU. It could be shown for both Fdh-N and Nar that loss of enzyme activity correlated with absence of the [Fe-S] cluster-containing small subunit. Moreover, a slowly migrating form of the catalytic subunit FdnG of Fdh-N was observed, consistent with impeded twin arginine translocation (TAT)-dependent transport. The highly related Fdh-O enzyme was also inactive in the erpA mutant. Although the Nar enzyme has its catalytic subunit NarG localized in the cytoplasm, it also exhibited aberrant migration in an erpA iscA mutant, suggesting that these modular enzymes lack catalytic integrity due to impaired cofactor biosynthesis. Cross-complementation experiments demonstrated that multicopy IscA could partially compensate for lack of ErpA with respect to Fdh-N activity but not Nar activity. These findings suggest that ErpA and IscA have overlapping roles in assembly of these anaerobic respiratory enzymes but demonstrate that ErpA is essential for the production of active enzymes.  相似文献   

6.
In eukaryotes, the synthesis of selenoproteins depends on an exogenous supply of selenium, required for synthesis of the novel amino acid, selenocysteine, and on the presence of a “selenium translation element” in the 3′ untranslated region of mRNA. The selenium translation element is required to re-interpret the stop codon, UGA, as coding for selenocysteine incorporation and chain elongation. Messenger RNA lacking the selenium translation element and/or an inadequate selenium supply lead to chain termination at the UGA codon. We exploited these properties to provide direct translational control of protein(s) encoded by transfected cDNAs. Selenium-dependent translation of mRNA transcribed from target cDNA was conferred by mutation of an in-frame UGU, coding for cysteine, to UGA, coding for either selenocysteine or termination, then fusing the mutated coding region to a 3′ untranslated region containing the selenium translation element of the human cellular glutathione peroxidase gene. In this study, the biological consequences of placing this novel amino acid in the polypeptide chain was examined with two proteins of known function: the rat growth hormone receptor and human thyroid hormone receptor β1. UGA (opal) mutant-STE fusion constructs of the cDNAs encoding these two polypeptides showed selenium-dependent expression and their selenoprotein products maintained normal ligand binding and signal transduction. Thus, integration of selenocysteine had little or no consequence on the functional activity of the opal mutants; however, opal mutants were expressed at lower levels than their wild-type counterparts in transient expression assays. The ability to integrate this novel amino acid at predetermined positions in a polypeptide chain provides selenium-dependent translational control to the expression of a wide variety of target genes, allows facile 75Se radioisotopic labeling of the heterologous proteins, and permits site-specific heavy atom substitution. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The erythrocyte-free, isolated perfused rat liver was used to study the incorporation of selenium into glutathione peroxidase. Gel filtration and ion exchange chromatography of liver supernatant demonstrated 75Se incorporation into glutathione peroxidase. A 9-fold excess of unlabelled selenium as selenite or selenide very effectively reduced 75Se incorporation from L[75Se]-selenocystine, but a 100-fold excess of unlabelled selenium as selenocystine was relatively ineffective as compared to selenite or selenide in diluting 75Se incorporation from [75Se]selenite. These results indicate that selenide and selenite are more readily metabolized than is selenocysteine to the immediate selenium precursor used for glutathione peroxidase synthesis, and suggest a posttranslational modification at another amino acid residue, rather than direct incorporation of selenocysteine, as the mechanism for formation of the presumed selenocysteine moiety of the enzyme.  相似文献   

8.
Selenocysteine occurs in the peptide backbone of several selenoenzymes. The mechanism, of selenocysteine incorporation has not been well characterized. The incorporation of selenocysteine into protein in a rabbit reticulocyte lysate (RRL) was studied at high levels of selenocysteine. [75Se]Selenocysteine incorporation was inhibited by cycloheximide and by nuclease treatment. Random RNA copolymers were tested for protein synthesis activity in the messenger RNA-dependent RRL system. Of the active polymers, poly CIU and GU most strongly stimulated the incorporation of selenocysteine. In a series of four polymers with different ratios of U to G, incorporation of selenocysteine and cysteine increased with increasing percentages of U, suggesting that selenocysteine and cysteine responded to the same codon, presumably UGU. Of the 20 protein amino acids, only cysteine and cystine competed with selenocysteine incorporation. Selenocysteine was charged to cysteine-accepting tRNA in RRL. These results show that at supraphysiological concentrations selenocysteine can substitute for cysteine in RRL protein synthesis. Misincorporation of selenocysteine could be important when animal tissues contain high levels of selenium.  相似文献   

9.
Selenoproteins are unique as they contain selenium in their active site in the form of the 21st amino acid selenocysteine (Sec), which is encoded by an in-frame UGA stop codon. Sec incorporation requires both cis- and trans-acting factors, which are known to be sufficient for Sec incorporation in vitro, albeit with low efficiency. However, the abundance of the naturally occurring selenoprotein that contains 10 Sec residues (SEPP1) suggests that processive and efficient Sec incorporation occurs in vivo. Here, we set out to study native SEPP1 synthesis in vitro to identify factors that regulate processivity and efficiency. Deletion analysis of the long and conserved 3′-UTR has revealed that the incorporation of multiple Sec residues is inherently processive requiring only the SECIS elements but surprisingly responsive to the selenium concentration. We provide evidence that processive Sec incorporation is linked to selenium utilization and that reconstitution of known Sec incorporation factors in a wheat germ lysate does not permit multiple Sec incorporation events, thus suggesting a role for yet unidentified mammalian-specific processes or factors. The relationship between our findings and the channeling theory of translational efficiency is discussed.  相似文献   

10.
The accuracy of protein synthesis in reticulocyte and HeLa cell lysates   总被引:1,自引:0,他引:1  
The accuracy of translation in protein synthesis is measured as the rate of misincorporation of a particular amino acid, different from that specified by an mRNA codon, into protein. The cowpea variant of tobacco mosaic virus, CcTMV, contains no cysteine or methionine in its coat protein. Translation in vitro of purified CcTMV coat protein mRNA by rabbit reticulocyte and HeLa cell lysates has been performed. The coat protein product was purified by immunoprecipitation with specific antisera, and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The error rate was measured by comparing the incorporation of [35S]cysteine with incorporation of [3H]leucine, and the total CcTMV coat protein synthesized was calculated from its known leucine content. An error rate of (1-2) X 10(-3) cysteines/CcTMV coat protein was obtained with reticulocyte lysates. If errors were cysteine incorporation in place of arginine, this number is converted to 3 X 10(-4) cysteine/codon. If cysteine was incorporated anywhere in the polypeptide, the rate is 9 X 10(-6) cysteines/amino acid. The error frequencies with HeLa cell lysates were 6-fold higher. Paromomycin, a eukaryotic misreading antibiotic, increased error rates 10-fold in both lysates. These data compare well with in vivo measurements and suggest that some transformed cells may survive with higher mistranslation rates.  相似文献   

11.
The misincorporation of cysteine (codon: UGU/C) into twelve ribosomal proteins devoid of cysteine has been studied. Although it is generally assumed that cysteine is misincorporated at arginine and tryptophan residues (codons: CGU/U and UGG respectively), our results are consistent with the idea that cysteine is also misincorporated at phenylalanine residues (codon: UUU/C) through a second-position C:U mismatch. Cysteine was found in ribosomal proteins L29, L32/L33 and S10, under conditions where only its misincorporation at neutral residues was measured. Since these proteins contain no tryptophan, the date imply that cysteine has replaced a neutral amino acid other than tryptophan. Because there was a statistically significant correlation between the total level of cysteine in the twelve proteins under study and their content of phenylalanine and arginine residues, we conclude that there is a likelihood of cysteine misincorporation at phenylalanine residues, in addition to its misincorporation at arginine and tryptophan residues. Our measurements are consistent with the existence of a cluster of ribosomal proteins having an average mistranslation frequency of 2.5 X 10(-4)/residue and another having an average mistranslation frequency of 10(-3)/residue. There was three times less cysteine misincorporated into ribosomal protein L1 than into L7/L12, although the L1 mRNA contains eleven CGU/C codons and four UUU/C codons while the L7/L12 mRNA contains only one arginine and two phenylalanine codons (both proteins are free of tryptophan). Furthermore, the mRNAs for both L1 and L7/L12 contain a CGU codon located in the context GUA-codon-GG and there was as much cysteine incorporated at this codon in L7/L12 [Bouadloun, F., Donner, D. and Kurland, C.G. (1983) EMBO J. 2, 1351-1356] than in the whole of L1. This suggests that, relatively speaking, little cysteine is to be found at the phenylalanine and the other ten arginine positions of L1 and that the phenylalanine residues of L7/L12 are particularly error-prone.  相似文献   

12.
Selenocysteine incorporation into proteins is directed by an opal (UGA) codon and requires the existence of a stem-loop structure in the mRNA flanking the UGA at its 3' side. To analyze the sequence and secondary-structure requirements for UGA decoding, we have introduced mutations into the fdhA gene from Methanobacterium formicicum, which codes for the alpha subunit of the F420-reducing formate dehydrogenase. The M. formicicum enzyme contains a cysteine residue at the position where the Escherichia coli formate dehydrogenase H carries a selenocysteine moiety. The codon (UGC) for this cysteine residue was changed into a UGA codon, and mutations were successively introduced at the 5' and 3' sides to generate a stable secondary structure of the mRNA and to approximate the sequence of the predicted E. coli fdhF mRNA hairpin structure. It was found that introduction of the UGA and generation of a stable putative stem-loop structure were not sufficient for decoding with selenocysteine. Efficient selenocysteine incorporation, however, was obtained when the loop and the immediately adjacent portion of the putative stem had a sequence identical to that present in the E. coli fdhF mRNA structure.  相似文献   

13.
An effect of codon context on the mistranslation of UGU codons in vitro   总被引:2,自引:0,他引:2  
Effects of codon context on nonsense codon suppression may act either through release factor recognition of termination codons or aminoacyl-tRNA selection by the ribosome. The latter hypothesis has been studied by comparing misreading by Escherichia coli UGA suppressor tryptophan tRNA of UGU (cysteine) codons in two synthetic polymers, poly(U-G) and poly( U5 , G), which differ in sequence around the UGU codons. In vitro translation of these polymers in a cell-free system from E. coli yielded selection errors of 4 X 10(-3) and 1.75 X 10(-2) for UGU codons in poly(U-G) and poly( U5 , G), respectively. This difference suggests that codon context may significantly affect misincorporation of amino acids into protein.  相似文献   

14.
The 0.3 protein encoded by coliphage T7 does not normally contain cysteine residues. Incorporation of [35S]cysteine can therefore be used to assay mistranslation. We have purified 0.3 protein, synthesized in the presence of [35S]cysteine, from T7 infected cells of E. coli and determined the locations of misincorporated cysteine residues. Analysis of the molecular weights (Mr) of [35S]cysteine-labeled tryptic peptides of 0.3 protein demonstrated that cysteine (encoded by UGU or UGC) is not extensively misincorporated, as might be predicted by substitution for arginine residues (encoded by CGU or CGC). Edman degradation of the amino-terminal 50 residues of [35S]cysteine-labeled 0.3 protein determined that cysteine was most frequently misincorporated at position 15, which is correctly occupied by a tyrosine residue (encoded by UAC). There are four other tyrosine codons (1 UAU; 3 UAC) in the region of the 0.3 protein studied, but these were not mistranslated. The context in which a codon is located must therefore be more important in causing mistranslation than the sequence of the codon itself. Misincorporation of [35S]cysteine was also found at positions 9 (ACC, asparagine), 16 (GAA, glutamic acid), 41 (GCC, alanine) and 42 (GAU, aspartic acid). One mistranslation event appears to increase the likelihood that the following codon will also be mistranslated. This clustering of misincorporated [35S]cysteine residues was accentuated in 0.3 protein synthesized in the presence of streptomycin.  相似文献   

15.
Involvement of the bacterial thiopurine methyltransferase (bTPMT) in natural selenium methylation by freshwater was investigated. A freshwater environment that had no known selenium contamination but exhibited reproducible emission of dimethyl selenide (DMSe) or dimethyl diselenide (DMDSe) when it was supplemented with an organic form of selenium [(methyl)selenocysteine] or an inorganic form of selenium (sodium selenite) was used. The distribution of the bTPMT gene (tpm) in the microflora was studied. Freshwater bacteria growing on 10 μM sodium selenite and 10 μM sodium selenate were isolated, and 4.5 and 10% of the strains, respectively, were shown by colony blot hybridization to hybridize with a Pseudomonas syringae tpm DNA probe. Ribotyping showed that these strains are closely related. The complete rrs sequence of one of the strains, designated Hsa.28, was obtained and analyzed. Its closest phyletic neighbor was found to be the Pseudomonas anguilliseptica rrs sequence. The Hsa.28 strain grown with sodium selenite or (methyl)selenocysteine produced significant amounts of DMSe and DMDSe. The Hsa.28 tpm gene was isolated by genomic DNA library screening and sequencing. BLASTP comparisons of the deduced Hsa.28 bTPMT sequence with P. syringae, Pseudomonas aeruginosa, Vibrio cholerae, rat, and human thiopurine methyltransferase sequences revealed that the levels of similarity were 52 to 71%. PCR-generated Escherichia coli subclones containing the Hsa.28 tpm open reading frame were constructed. E. coli cells harboring the constructs and grown with sodium selenite or (methyl)selenocysteine produced significant levels of DMSe and DMDSe, confirming that the gene plays a role in selenium methylation. The effect of strain Hsa.28 population levels on freshwater DMSe and DMDSe emission was investigated. An increase in the size of the Hsa.28 population was found to enhance significantly the emission of methyl selenides by freshwater samples supplemented with sodium selenite or (methyl)selenocysteine. These data suggest that bTPMT can play a role in natural freshwater selenium methylation processes.  相似文献   

16.
The translation of mammalian selenoprotein mRNAs requires the 3' untranslated region that contains a selenocysteine insertion sequence (SECIS) element necessary for decoding an in-frame UGA codon as selenocysteine (Sec). Selenoprotein biosynthesis is inefficient, which may be due to competition between Sec insertion and termination at the UGA/Sec codon. We analyzed the polysome distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, a member of the glutathione peroxidase family of selenoproteins, in rat hepatoma cell and mouse liver extracts. In linear sucrose gradients, the sedimentation velocity of PHGPx mRNA was impeded compared to CuZn superoxide dismutase (SOD) mRNA, which has a coding region of similar size. Selenium supplementation increased the loading of ribosomes onto PHGPx mRNA, but not CuZn SOD mRNA. To determine whether the slow sedimentation velocity of PHGPx mRNA is due to a block in elongation, we analyzed the polysome distribution of wild-type and mutant mRNAs translated in vitro. Mutation of the UGA/Sec codon to UGU/cysteine increased ribosome loading and protein synthesis. When UGA/Sec was replaced with UAA or when the SECIS element core was deleted, the distribution of the mutant mRNAs was similar to the wild-type mRNA. Addition of SECIS-binding protein SBP2, which is essential for Sec insertion, increased ribosome loading and translation of wild-type PHGPx mRNA, but had no effect on the mutant mRNAs. These results suggest that elongation is impeded at UGA/Sec, and that selenium and SBP2 alleviate this block by promoting Sec incorporation instead of termination.  相似文献   

17.
赭纤虫RNA聚合酶Ⅰ基因片段的分析   总被引:1,自引:0,他引:1  
梁爱华  王伟  K.Heckmann 《动物学报》1999,45(4):435-439
赭纤虫被认为是一类进化过程中较为原始的纤毛虫。本研究以储纤虫基因组DNA为模板,利用锚定PCR技术,扩增出RNA聚合酶I第二大亚基基因片段,并对扩增出的基因片段进行了克隆和序列分析。结果表明:由该基因片段导出的氨基酸序列中共有10个半胱氨酸,均由通用密码子UGU、UGC编码,开放读框中不存在由UGA转译为半眈氨酸这一非通用密码的现象。  相似文献   

18.
The reaction of one of the four cysteinyl residues of thymidylate synthetase from methotrexate-resistant Lactobacillus casei with a variety of sulfhydryl reagents results in complete inhibition of the enzyme. Kinetic studies indicate that the rates of reactivity of the reagents tested are N-ethylmaleimide > iodoacetamide > N-(iodoacetylaminoethyl)-S-naphthylamine-1-sulfonic acid > iodoacetic acid. The enzyme is also inactivated by 5-Hg-deoxyuridylate, a compound which reacts stoichiometrically with a single cysteine. Unlike the other reagents, the inhibition produced by this compound can be completely reversed by added thiols. The same cysteine appears to react with all of the sulfhydryl reagents, as shown by competition experiments and by protection against inactivation by deoxyuridylate. Even at a 100-fold excess of the alkylating agents, only one of the four cysteines in the native enzyme was reactive, attesting to the uniqueness of this residue. Carboxypeptidase A inactivation of the enzyme does not affect either the binding of deoxyuridylate to the enzyme or the reactivity of N-ethylmaleimide with the “catalytic” cysteine. Under denaturing conditions, all four cysteinyl residues react with N-ethylmaleimide or iodoacetate, as shown by identifying the reaction products by amino acid analysis. The covalent ternary complex [(+)5,10-methylenetetrahydrofolate-5-fluorodeoxyuridylate-thymidylate synthetase] (molar ratio = 2:2:1) revealed only two cysteinyl residues capable of reacting with N-ethylmaleimide or iodoacetate upon denaturation. From these data, it appears that one cysteine is involved in the binding of deoxyuridylate and that two of the enzyme's four cysteines are responsible for binding 5-fluorodeoxyuridylate in the ternary complex.  相似文献   

19.
Type 2 deiodinase (D2) is a low Km iodothyronine deiodinase that metabolizes thyroxine (T4) to the active metabolite T3. We have recently shown that the cDNA for the human D2 coding region contains two in-frame selenocysteine (TGA) codons. The 3' TGA is seven codons 5' to a universal stop codon, TAA. The human D2 enzyme, transiently expressed in HEK-293 cells, can be in vivo labeled with 75Se as a doublet of approximately 31 kDa. This doublet is consistent with the possibility that the carboxy-terminal TGA codon can either encode selenocysteine or function as a stop codon. To test this hypothesis we mutagenized the second selenocysteine codon to a cysteine (TGC) or to an unambiguous stop codon (TAA). While the selenium incorporation pattern is different between the wild-type and mutant proteins, the deiodination properties of the enzyme are not affected by mutating the 3'TGA codon. Thus, we conclude that neither this residue nor the remaining seven carboxy-terminal amino acids are critical for the deiodination process.  相似文献   

20.
Selenoproteins are a unique family of proteins, characterized by the co-translational incorporation of selenium as selenocysteine, which play key roles in antioxidant defense. Among selenoproteins, selenoprotein P (Sepp1) is particularly distinctive due to the fact that it contains multiple selenocysteine residues and has been postulated to act in selenium transport. Within the brain, Sepp1 delivers selenium to neurons by binding to the ApoER2 receptor. Upon feeding a selenium-deficient diet, mice lacking ApoER2 or Sepp1 develop severe neurological dysfunction and exhibit widespread brainstem neurodegeneration, indicating an important role for ApoER2-mediated Sepp1 uptake in normal brain function. Selenocysteine lyase (Scly) is an enzyme that plays an important role in selenium homeostasis, in that it catalyzes the decomposition of selenocysteine and allows selenium to be recycled for additional selenoprotein synthesis. We previously reported that constitutive deletion of Scly results in neurological deficits only when mice are challenged with a low selenium diet. To gain insight into the relationship between Sepp1 and Scly in selenium metabolism, we created novel transgenic mice constitutively lacking both genes (Scly−/−Sepp1−/−) and characterized the neurobehavioral phenotype. We report that deletion of Scly in conjunction with Sepp1 further aggravates the phenotype of Sepp1−/− mice, as these mice needed supraphysiological selenium supplementation to survive, and surviving mice exhibited impaired motor coordination, audiogenic seizures, and brainstem neurodegeneration. These findings provide the first in vivo evidence that Scly and Sepp1 work cooperatively to maintain selenoprotein function in the mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号