首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Protein kinase plays an essential role in controlling cardiac growth and hypertrophic remodeling. The cardiac troponin I-interacting kinase (TNNI3K), a novel cardiac specific kinase, is associated with cardiomyocyte hypertrophy. However, the precise function of TNNI3K in regulating cardiac remodeling has remained controversial.

Methods and Results

In a rat model of cardiac hypertrophy generated by transverse aortic constriction, myocardial TNNI3K expression was significantly increased by 1.62 folds (P<0.05) after constriction for 15 days. To investigate the role of TNNI3K in cardiac hypertrophy, we generated transgenic mouse lines with overexpression of human TNNI3K specifically in the heart. At the age of 3 months, the high-copy-number TNNI3K transgenic mice demonstrated a phenotype of concentric hypertrophy with increased heart weight normalized to body weight (1.31 fold, P<0.01). Echocardiography and non-invasive hemodynamic assessments showed enhanced cardiac function. No necrosis or myocyte disarray was observed in the heart of TNNI3K transgenic mice. This concentric hypertrophy maintained up to 12 months of age without cardiac dysfunction. The phospho amino acid analysis revealed that TNNI3K is a protein-tyrosine kinase. The yeast two-hybrid screen and co-immunoprecipitation assay identified cTnI as a target for TNNI3K. Moreover, TNNI3K overexpression induced cTnI phosphorylation at Ser22/Ser23 in vivo and in vitro, suggesting that TNNI3K is a novel upstream regulator for cTnI phosphorylation.

Conclusion

TNNI3K promotes a concentric hypertrophy with enhancement of cardiac function via regulating the phosphorylation of cTnI. TNNI3K could be a potential therapeutic target for preventing from heart failure.  相似文献   

2.
The cardiac troponin I (cTnI) R21C (cTnI-R21C) mutation has been linked to hypertrophic cardiomyopathy and renders cTnI incapable of phosphorylation by PKA in vivo. Echocardiographic imaging of homozygous knock-in mice expressing the cTnI-R21C mutation shows that they develop hypertrophy after 12 months of age and have abnormal diastolic function that is characterized by longer filling times and impaired relaxation. Electrocardiographic analyses show that older R21C mice have elevated heart rates and reduced cardiovagal tone. Cardiac myocytes isolated from older R21C mice demonstrate that in the presence of isoproterenol, significant delays in Ca2+ decay and sarcomere relaxation occur that are not present at 6 months of age. Although isoproterenol and stepwise increases in stimulation frequency accelerate Ca2+-transient and sarcomere shortening kinetics in R21C myocytes from older mice, they are unable to attain the corresponding WT values. When R21C myocytes from older mice are treated with isoproterenol, evidence of excitation-contraction uncoupling is indicated by an elevation in diastolic calcium that is frequency-dissociated and not coupled to shorter diastolic sarcomere lengths. Myocytes from older mice have smaller Ca2+ transient amplitudes (2.3-fold) that are associated with reductions (2.9-fold) in sarcoplasmic reticulum Ca2+ content. This abnormal Ca2+ handling within the cell may be attributed to a reduction (2.4-fold) in calsequestrin expression in conjunction with an up-regulation (1.5-fold) of Na+-Ca2+ exchanger. Incubation of permeabilized cardiac fibers from R21C mice with PKA confirmed that the mutation prevents facilitation of mechanical relaxation. Altogether, these results indicate that the inability to enhance myofilament relaxation through cTnI phosphorylation predisposes the heart to abnormal diastolic function, reduced accessibility of cardiac reserves, dysautonomia, and hypertrophy.  相似文献   

3.
Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam''s energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central regulation of body fat in this physiological state.  相似文献   

4.
SHARPIN is a key regulator of NFKB and integrin signaling. Mice lacking Sharpin develop a phenotype known as chronic proliferative dermatitis (CPDM), typified by progressive epidermal hyperplasia, apoptosis of keratinocytes, cutaneous and systemic eosinophilic inflammation, and hypoplasia of secondary lymphoid organs. Rag1−/− mice, which lack mature B and T cells, were crossed with Sharpin−/− mice to examine the role of lymphocytes in CDPM. Although inflammation in the lungs, liver, and joints was reduced in these double mutant mice, dermatitis was not reduced in the absence of functional lymphocytes, suggesting that lymphocytes are not primary drivers of the inflammation in the skin. Type 2 cytokine expression is increased in CPDM. In an attempt to reduce this aspect of the phenotype, Il4ra−/− mice, unresponsive to both IL4 and IL13, were crossed with Sharpin−/− mice. Double homozygous Sharpin−/−, Il4ra−/− mice developed an exacerbated granulocytic dermatitis, acute system inflammation, as well as hepatic necrosis and mineralization. High expression of CHI3L4, normally seen in CPDM skin, was abolished in Sharpin−/−, Il4ra−/− double mutant mice indicating the crucial role of IL4 and IL13 in the expression of this protein. Cutaneous eosinophilia persisted in Sharpin−/−, Il4ra−/− mice, although expression of Il5 mRNA was reduced and the expression of Ccl11 and Ccl24 was completely abolished. TSLP and IL33 were both increased in the skin of Sharpin−/− mice and this was maintained in Sharpin−/−, Il4ra−/− mice suggesting a role for TSLP and IL33 in the eosinophilic dermatitis in SHARPIN-deficient mice. These studies indicate that cutaneous inflammation in SHARPIN-deficient mice is autoinflammatory in nature developing independently of B and T lymphocytes, while the systemic inflammation seen in CPDM has a strong lymphocyte-dependent component. Both the cutaneous and systemic inflammation is enhanced by loss of IL4 and IL13 signaling indicating that these cytokines normally play an anti-inflammatory role in SHARPIN-deficient mice.  相似文献   

5.
6.
7.
It is well established that the intestinal microbiota plays a key role in the pathogenesis of Crohn''s disease (CD) and ulcerative colitis (UC) collectively referred to as inflammatory bowel disease (IBD). Epidemiological studies have provided strong evidence that IBD patients bear increased risk for the development of colorectal cancer (CRC). However, the impact of the microbiota on the development of colitis-associated cancer (CAC) remains largely unknown. In this study, we established a new model of CAC using azoxymethane (AOM)-exposed, conventionalized-Il10−/− mice and have explored the contribution of the host intestinal microbiota and MyD88 signaling to the development of CAC. We show that 8/13 (62%) of AOM-Il10−/− mice developed colon tumors compared to only 3/15 (20%) of AOM- wild-type (WT) mice. Conventionalized AOM-Il10−/− mice developed spontaneous colitis and colorectal carcinomas while AOM-WT mice were colitis-free and developed only rare adenomas. Importantly, tumor multiplicity directly correlated with the presence of colitis. Il10−/− mice mono-associated with the mildly colitogenic bacterium Bacteroides vulgatus displayed significantly reduced colitis and colorectal tumor multiplicity compared to Il10−/− mice. Germ-free AOM-treated Il10−/− mice showed normal colon histology and were devoid of tumors. Il10−/−; Myd88−/− mice treated with AOM displayed reduced expression of Il12p40 and Tnfα mRNA and showed no signs of tumor development. We present the first direct demonstration that manipulation of the intestinal microbiota alters the development of CAC. The TLR/MyD88 pathway is essential for microbiota-induced development of CAC. Unlike findings obtained using the AOM/DSS model, we demonstrate that the severity of chronic colitis directly correlates to colorectal tumor development and that bacterial-induced inflammation drives progression from adenoma to invasive carcinoma.  相似文献   

8.
The serine-threonine kinase, Akt, inhibits cardiomyocyte apoptosis acutely both in vitro and in vivo. However, the effects of chronic Akt activation in the heart are unknown. To address this issue, we generated transgenic mice (TG+) with cardiac-specific expression of a constitutively active mutant of Akt (myr-Akt) driven by the myosin heavy chain-alpha promoter. Three TG+ founders (9-19 weeks) died suddenly with massive cardiac dilatation. Two viable TG+ lines (TG564 and TG20) derived from independent founders demonstrated cardiac-specific transgene expression as well as activation of Akt and p70S6 kinase. TG564 (n = 19) showed cardiac hypertrophy with a heart/body weight ratio 2.3-fold greater than littermates (n = 17, p < 0.005). TG20 (n = 18) had less marked cardiac hypertrophy with a heart/body weight ratio 1.6-fold greater than littermates (n = 17, p < 0.005). Isolated TG564 myocytes were also hypertrophic with surface areas 1.7-fold greater than littermates (p < 0.000001). Echocardiograms in both lines demonstrated concentric hypertrophy and preserved systolic function. After ischemia-reperfusion, TG+ had a 50% reduction in infarct size versus TG- (17 +/- 3% versus 34 +/- 4%, p < 0.001). Thus, chronic Akt activation is sufficient to cause a spectrum of phenotypes from moderate cardiac hypertrophy with preserved systolic function and cardioprotection to massive cardiac dilatation and sudden death.  相似文献   

9.
Transgenic mice were generated to express a restrictive cardiomyopathy (RCM) human cardiac troponin I (cTnI) R192H mutation in the heart (cTnI(193His) mice). The objective of this study was to assess cardiac function during the development of diastolic dysfunction and to gain insight into the pathophysiological impact of the RCM cTnI mutation. Cardiac function and pathophysiological changes were monitored in cTnI193His mice and wild-type littermates for a period of 12 mo. It progressed gradually from abnormal relaxation to diastolic dysfunction characterized with high-resolution echocardiography by a reversed E-to-A ratio, increased deceleration time, and prolonged isovolumetric relaxation time. At the age of 12 mo, cardiac output in cTnI(193His) mice was significantly declined, and some transgenic mice showed congestive heart failure. The negative impact of cTnI193His on ventricular contraction and relaxation was further demonstrated in isolated mouse working heart preparations. The main morphological change in cTnI193His myocytes was shortened cell length. Dobutamine stimulation increased heart rate in cTnI193His mice but did not improve CO. The cTnI193His mice had a phenotype similar to that in human RCM patients carrying the cTnI mutation characterized morphologically by enlarged atria and restricted ventricles and functionally by diastolic dysfunction and diastolic heart failure. The results demonstrate a critical role of the COOH-terminal domain of cTnI in the diastolic function of cardiac muscle.  相似文献   

10.

Rationale

TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear.

Objectives

We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4 -/-) model.

Methods and Results

Morpho-functional analysis revealed left ventricular (LV) eccentric hypertrophy in Trpm4 -/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks) when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4 -/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4 -/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase.

Conclusions

TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular electrical activity which impact heart development.  相似文献   

11.
12.
Although increased levels of circulating interleukin (IL)-18 have been demonstrated in patients with cardiovascular diseases, the functional consequences of chronically increased circulating IL-18 with respect to myocardial function have not been defined. Thus we aimed to examine the effects of chronic IL-18 exposure on left ventricular (LV) function in healthy mice. Moreover, to clarify whether IL-18 has direct effects on the cardiomyocyte, we examined effects of IL-18 on cardiomyocytes in vitro. After 7 days of daily intraperitoneal injections of 0.5 microg IL-18 in healthy mice, a 40% (P < 0.05) reduction in the LV maximal positive derivative, a 25% (P < 0.05) reduction in the LV maximal rate of pressure decay, and a 2.8-fold (P < 0.001) increase in the LV end-diastolic pressure were measured, consistent with myocardial dysfunction. Furthermore, we measured a 75% (P < 0.05) reduction in beta-adrenergic responsiveness to isoproterenol. IL-18 induced myocardial hypertrophy, and there was a 2.9-fold increase (P < 0.05) in atrial natriuretic peptide mRNA expression in the LV myocardium. In vitro examinations of isolated adult rat cardiomyocytes being stimulated with IL-18 (0.1 microg/ml) exhibited an increase in peak Ca2+ transients (P < 0.05) and in diastolic Ca2+ concentrations (P < 0.05). In conclusion, this study shows that daily administration of IL-18 in healthy mice causes LV myocardial dysfunction and blunted beta-adrenergic responsiveness to isoproterenol. A direct effect of IL-18 on the cardiomyocyte in vitro was demonstrated, suggesting that IL-18 reduces the responsiveness of the myofilaments to Ca2+. Finally, induction of myocardial hypertrophy by IL-18 indicates a role for this cytokine in myocardial remodeling.  相似文献   

13.
Parasitic food-borne diseases and chronic social stress are frequent attributes of day-to-day human life. Therefore, our aim was to model the combined action of chronic Opisthorchis felineus infection and repeated social defeat stress in C57BL/6 mice. Histological examination of the liver revealed inflammation sites, pronounced periductal fibrosis, and cholangiofibrosis together with proliferation of bile ducts and hepatocyte dystrophy in the infected mice, especially in the stress-exposed ones. Simultaneously with liver pathology, we detected significant structural changes in the cerebral cortex. Immunohistochemical analysis of the hippocampus indicated the highest increase in numerical density of Iba 1-, IL-6-, iNOS-, and Arg1-positive cells in mice simultaneously subjected to the two adverse factors. The number of GFAP-positive cells rose during repeated social defeat stress, most strongly in the mice subjected to both infection and stress. Real-time PCR analysis showed that the expression of genes Aif1 and Il6 differed among the analysed brain regions (hippocampus, hypothalamus, and frontal cortex) and depended on the adverse factors applied. In addition, among the brain regions, there was no consistent increase or decrease in these parameters when the two adverse treatments were combined: (i) in the hippocampus, there was upregulation of Aif1 and no change in Il6 expression; (ii) in the hypothalamus, expression levels of Aif1 and Il6 were not different from controls; and (iii) in the frontal cortex, Aif1 expression did not change while Il6 expression increased. It can be concluded that a combination of two long-lasting adverse factors, O. felineus infection and repeated social defeat stress, worsens not only the hepatic but also brain state, as evidenced behaviorally by disturbances of the startle response in mice.  相似文献   

14.
Interleukin 10 (IL10) is a potent immune-regulating cytokine and inhibitor of inflammatory cytokine synthesis. To evaluate the anti-inflammatory role of IL10 in pregnancy, the response of genetically IL10-deficient mice to low-dose lipopolysaccharide (LPS)-induced abortion was examined. When IL10-null mutant C57Bl/6 (Il10(-/-)) and control (Il10(+/+)) mice were administered low-dose LPS on Day 9.5 of gestation, IL10 deficiency predisposed to fetal loss accompanied by growth restriction in remaining viable fetuses, with an approximately 10-fold reduction in the threshold dose for 100% abortion. After LPS administration, inflammatory cytokines tumor necrosis factor-alpha (TNFA) and IL6 were markedly increased in serum, uterine, and conceptus tissues in Il10(-/-) mice compared with Il10(+/+) mice, with elevated local synthesis of Tnfa and Il6 mRNAs in the gestational tissues. IL1A and IL12p40 were similarly elevated in serum and gestational tissues, whereas interferon gamma (IFNG) and soluble TNFRII content were unchanged in the absence of IL10. Recombinant IL10 rescued the increased susceptibility to LPS-induced fetal loss in Il10(-/-) mice but did not improve outcomes in Il10(+/+) mice. IL10 genotype also influenced the responsiveness of mice to a TNFA antagonist, etanercept. Fetal loss in Il10(-/-) mice was partly alleviated by moderate or high doses of etanercept, whereas Il10(+/+) mice were refractory to high-dose etanercept, consistent with attenuation by IL10 status of TNFA bioavailability after etanercept treatment. These data show that IL10 modulates resistance to inflammatory stimuli by downregulating expression of proinflammatory cytokines TNFA, IL6, IL1A, and IL12, acting to protect against inflammation-induced pathology in the implantation site.  相似文献   

15.
16.
17.
Cardiac troponin I (TnI) knockout mice exhibit a phenotype of sudden death at 17-18 days after birth due to a progressive loss of TnI. The objective of this study was to gain insight into the physiological consequences of TnI depletion and the cause of death in these mice. Cardiac function was monitored serially between 12 and 17 days of age by using high-resolution ultrasonic imaging and Doppler echocardiography. Two-dimensional B-mode and anatomical M-mode imaging and Doppler echocardiography were performed using a high-frequency ( approximately 20-45 MHz) ultrasound imaging system on homozygous cardiac TnI mutant mice (cTnI(-/-)) and wild-type littermates. On day 12, cTnI(-/-) mice were indistinguishable from wild-type mice in terms of heart rate, atrial and LV (LV) chamber dimensions, LV posterior wall thickness, and body weight. By days 16 through 17, wild-type mice showed up to a 40% increase in chamber dimensions due to normal growth, whereas cTnI(-/-) mice showed increases in atrial dimensions of up to 97% but decreases in ventricular dimensions of up to 70%. Mitral Doppler analysis revealed prolonged isovolumic relaxation time and pronounced inversion of the mitral E/A ratio (early ventricular filling wave-to-late atrial contraction filling wave) only in cTnI(-/-) mice indicative of impaired LV relaxation. cTnI(-/-) mouse hearts showed clear signs of failure on day 17, characterized by >50% declines in cardiac output, ejection fraction, and fractional shortening. B-mode echocardiography showed a profoundly narrowed tube-like LV and enlarged atria at this time. Our data are consistent with TnI deficiency causing impaired LV relaxation, which leads to diastolic heart failure in this model.  相似文献   

18.
We investigated the relationship between gut health, visceral fat dysfunction and metabolic disorders in diet-induced obesity. C57BL/6J mice were fed control or high saturated fat diet (HFD). Circulating glucose, insulin and inflammatory markers were measured. Proximal colon barrier function was assessed by measuring transepithelial resistance and mRNA expression of tight-junction proteins. Gut microbiota profile was determined by 16S rDNA pyrosequencing. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 mRNA levels were measured in proximal colon, adipose tissue and liver using RT-qPCR. Adipose macrophage infiltration (F4/80+) was assessed using immunohistochemical staining. HFD mice had a higher insulin/glucose ratio (P = 0.020) and serum levels of serum amyloid A3 (131%; P = 0.008) but reduced circulating adiponectin (64%; P = 0.011). In proximal colon of HFD mice compared to mice fed the control diet, transepithelial resistance and mRNA expression of zona occludens 1 were reduced by 38% (P<0.001) and 40% (P = 0.025) respectively and TNF-α mRNA level was 6.6-fold higher (P = 0.037). HFD reduced Lactobacillus (75%; P<0.001) but increased Oscillibacter (279%; P = 0.004) in fecal microbiota. Correlations were found between abundances of Lactobacillus (r = 0.52; P = 0.013) and Oscillibacter (r = −0.55; P = 0.007) with transepithelial resistance of the proximal colon. HFD increased macrophage infiltration (58%; P = 0.020), TNF-α (2.5-fold, P<0.001) and IL-6 mRNA levels (2.5-fold; P = 0.008) in mesenteric fat. Increased macrophage infiltration in epididymal fat was also observed with HFD feeding (71%; P = 0.006) but neither TNF-α nor IL-6 was altered. Perirenal and subcutaneous adipose tissue showed no signs of inflammation in HFD mice. The current results implicate gut dysfunction, and attendant inflammation of contiguous adipose, as salient features of the metabolic dysregulation of diet-induced obesity.  相似文献   

19.
Asthma is a common chronic inflammatory disease in the airways with wide prevalence, and it is thought to be caused by the combinational factors in environment and genetics. A large body of studies has suggested that cell immunity played a vital role in regulating the airway hyperreactivity (AHR) and inflammation. Therefore, we here developed a mouse model of asthma by microinjecting the pronucleus with a vector spontaneously coding human IL10 and TGFB1 gene to explore the possible interaction between these two potent molecules during asthma progression. From the total 35 newborn mice, we successfully obtained 3 founders expressing exogenous genes. In the transgenic mice, we observed profoundly enhanced expression of IL10 and TGFB1. In the condition of ovalbumin challenge, transgenic mice displayed a 1.9-fold higher MCh50 score than wild-type counterparts, indicating reminiscent AHR. Meanwhile, a three-fold decrease of cell counts in bronchoalveolar lavage fluid (BALF) was recorded as well. These results suggested that IL10 and TGFB1 cooperatively protected the respiratory system in response to antigenic stimulus. To interrogate the respective behaviors of the two genes, we quantified the expression of downstream genes in IL10 signaling or TGFB1 signaling. We observed that the examined genes in IL10 signaling were significantly repressed, especially IL5, which showed 5.4-fold decreased expression. Most genes were not altered in TGFB1 signaling, and the production of endogenous TGFB1 was significantly inhibited. These evidences collectively proved that the activation of IL0 and TGFB1 protected the host from antigen-induced asthma, possibly through IL10 signaling. This study shed some light on the modulations of IL10 and TGFB1, and related networks to asthma progression.  相似文献   

20.
This paper contains observations and experiments which collectively demonstrate a requirement for cell-cell interactions among limb bud mesenchyme cells during chondrogenic differentiation. Limb bud cells isolated from brachypodismH (bpH) and wild-type mouse embyros between Thieler stage 16–17 and midstage 21 were compared with respect to their abilities to undergo chondrogenic differentiation in high-density micromass cultures. Nodules formed by dissociated Day 12 (stage 20) bpH limb bud cells have been reported previously to be abnormally reduced in size and number, and delayed in formation. We corroborate these results, but find that bpH cultures prepared from earlier-stage limb buds (between stages 16–17 and early stage 21) are progressively more like wild-type cultures. Stage 16–17 bpH cultures at 72 hr actually contain normal numbers of and size nodules, while stage 18 bpH cultures are intermediate between stages 16–17 and stage 21 in nodule formation. On the other hand, we also find that the initial rate of aggregate formation is normal even in bpH cultures prepared from stage 20 cultures in which nodule formation is not normal. Preparation of cultures composed primarily of early stage 21 bpH limb bud cells mixed with small quantities (e.g., 5%) of stage 16–17 wild-type limb bud cells showed significant increases in cartilage nodule formation over control cultures composed only of early stage 21 bpH cells. Greater proportions of wild-type cells obtained from embryos older than stages 16–17 were required for the same degree of normalization, supporting the hypothesis that a specific cell type, whose proportion decreases normally in the limb bud over time, is required to increase in vitro chondrogenesis by bpH cells. Additionally, cultures containing stage 23 chick limb cells and early stage 21 bpH cells at a ratio of 1:20 contained wild-type levels of nodules per square millimeter of culture. Thus, bpH cells appear to respond to chondrogenic inductive signals from normal limb mesenchyme cells. In order to test for the ability of bpH limb bud mesenchyme to induce chondrogenesis, stage 16–17 bpH and wild-type limb bud cells, which form identical numbers of aggregates and nodules in culture, were each mixed with early stage 21 bpH cells at ratios of 1:20, 1:10, and 1:3. Although low proportions of wild-type stage 17 cells significantly increased the number of aggregates and nodules in these mixed cultures, low proportions of bpH stage 16–17 cells did not. It is, therefore, concluded that the primary defect of the bpH mutation is likely to reside in the reduced ability of a specific mesenchyme cell subpopulation to provide an inductive stimulus for chondrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号