首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Sirtuins are protein deacetylases regulating metabolism, stress responses, and aging processes, and they were suggested to mediate the lifespan extending effect of a low calorie diet. Sirtuin activation by the polyphenol resveratrol can mimic such lifespan extending effects and alleviate metabolic diseases. The mechanism of Sirtuin stimulation is unknown, hindering the development of improved activators. Here we show that resveratrol inhibits human Sirt3 and stimulates Sirt5, in addition to Sirt1, against fluorophore-labeled peptide substrates but also against peptides and proteins lacking the non-physiological fluorophore modification. We further present crystal structures of Sirt3 and Sirt5 in complex with fluorogenic substrate peptide and modulator. The compound acts as a top cover, closing the Sirtuin’s polypeptide binding pocket and influencing details of peptide binding by directly interacting with this substrate. Our results provide a mechanism for the direct activation of Sirtuins by small molecules and suggest that activators have to be tailored to a specific Sirtuin/substrate pair.  相似文献   

2.
Kang H  Suh JY  Jung YS  Jung JW  Kim MK  Chung JH 《Molecular cell》2011,44(2):203-213
In mammals, the Sirtuins are composed of seven Sir2 orthologs (Sirt1-7) with a conserved deacetylase core that utilizes NAD(+) as a cofactor. Interestingly, the deacetylase core of Sirt1 by itself has no catalytic activity. We found within the C-terminal domain a 25 aa sequence that is essential for Sirt1 activity (ESA). Our results indicate that the ESA region interacts with and functions as an "on switch" for the deacetylase core. The endogenous Sirt1 inhibitor DBC1, which also binds to the deacetylase core, competes with and inhibits the ESA region from interacting with the deacetylase core. We discovered an ESA mutant peptide that can bind to the deacetylase core and inhibit Sirt1 in trans. By using this mutant peptide, we were able to inhibit Sirt1 activity and to increase the chemosensitivity of androgen-refractory prostate cancer cells. Therefore, the ESA region is a potential target for development of therapies to regulate Sirt1.  相似文献   

3.
The enzymes of the Sirtuin family of nicotinamide-adenine-dinucleotide-dependent protein deacetylases are emerging key players in nuclear and cytosolic signaling, but also in mitochondrial regulation and aging. Mammalian mitochondria contain three Sirtuins, Sirt3, Sirt4, and Sirt5. Only one substrate is known for Sirt3 as well as for Sirt4, and up to now, no target for Sirt5 has been reported. Here, we describe the identification of novel substrates for the human mitochondrial Sirtuin isoforms Sirt3 and Sirt5. We show that Sirt3 can deacetylate and thereby activate a central metabolic regulator in the mitochondrial matrix, glutamate dehydrogenase. Furthermore, Sirt3 deacetylates and activates isocitrate dehydrogenase 2, an enzyme that promotes regeneration of antioxidants and catalyzes a key regulation point of the citric acid cycle. Sirt3 thus can regulate flux and anapleurosis of this central metabolic cycle. We further find that the N- and C-terminal regions of Sirt3 regulate its activity against glutamate dehydrogenase and a peptide substrate, indicating roles for these regions in substrate recognition and Sirtuin regulation. Sirt5, in contrast to Sirt3, deacetylates none of the mitochondrial matrix proteins tested. Instead, it can deacetylate cytochrome c, a protein of the mitochondrial intermembrane space with a central function in oxidative metabolism, as well as apoptosis initiation. Using a mitochondrial import assay, we find that Sirt5 can indeed be translocated into the mitochondrial intermembrane space, but also into the matrix, indicating that localization might contribute to Sirt5 regulation and substrate selection.  相似文献   

4.
SIRT1 is one of seven mammalian sirtuin (silent information regulator 2-related) proteins that harbor NAD(+)-dependent protein deacetylase activity and is implicated in multiple metabolic and age-associated pathways and disorders. The sirtuin proteins contain a central region of high sequence conservation that is required for catalytic activity, but more variable N- and C-terminal regions have been proposed to mediate protein specific activities. Here we show that the conserved catalytic core domain of SIRT1 has very low catalytic activity toward several known protein substrates, but that regions N- and C-terminal to the catalytic core potentiate catalytic efficiency by between 12- and 45-fold, with the N-terminal domain contributing predominantly to catalytic rate, relatively independent of the nature of the acetyl-lysine protein substrate, and the C-terminal domain contributing significantly to the K(m) for NAD(+). We show that the N- and C-terminal regions stimulate SIRT1 deacetylase activity intramolecularly and that the C-terminal region stably associates with the catalytic core domain to form a SIRT1 holoenzyme. We also demonstrate that the C-terminal region of SIRT1 can influence the inhibitory activity of some sirtuin inhibitors that are known to function through the catalytic core domain. Together, these studies highlight the unique properties of the SIRT1 member of the sirtuin proteins and have implications for the development of SIRT1-specific regulatory molecules.  相似文献   

5.
Esa1 is the catalytic subunit of the NuA4 histone acetylase (HAT) complex that acetylates histone H4, and it is a member of the MYST family of HAT proteins that includes the MOZ oncoprotein and the HIV-1 Tat interacting protein Tip60. Here we report the X-ray crystal structure of the HAT domain of Esa1 bound to coenzyme A and investigate the protein's catalytic mechanism. Our data reveal that Esa1 contains a central core domain harboring a putative catalytic base, and flanking domains that are implicated in histone binding. Comparisons with the Gcn5/PCAF and Hat1 proteins suggest a unified mechanism of catalysis and histone binding by HAT proteins, whereby a structurally conserved core domain mediates catalysis, and sequence variability within a structurally related N- and C-terminal scaffold determines substrate specificity.  相似文献   

6.
DEAD box proteins consist of a common helicase core formed by two globular RecA domains that are separated by a cleft. The helicase core acts as a nucleotide-dependent switch that alternates between open and closed conformations during the catalytic cycle of duplex separation, thereby providing basic helicase activity. Flanking domains can direct the helicase core to a specific RNA substrate by mediating high-affinity or high-specificity RNA binding. In addition, they may position RNA for the helicase core or may directly contribute to unwinding. While structures of different helicase cores have been determined previously, little is known about the orientation of flanking domains relative to the helicase core.YxiN is a DEAD box protein that consists of a helicase core and a C-terminal RNA binding domain (RBD) that mediates specific binding to hairpin 92 in 23S rRNA. To provide a framework for understanding the functional cooperation of the YxiN helicase core and the RBD, we mapped the orientation of the RBD in single-molecule fluorescence resonance energy transfer experiments. We present a model for the global conformation of YxiN in which the RBD lies above a slightly concave patch that is formed by flexible loops on the surface of the C-terminal RecA domain. The orientation of the RBD is different from the orientations of flanking domains in the Thermus thermophilus DEAD box protein Hera and in Saccharomyces cerevisiae Mss116p, in line with the different functions of these DEAD box proteins and of their RBDs. Interestingly, the corresponding patch on the C-terminal RecA domain that is covered by the YxiN RBD is also part of the interface between the translation factors eIF4A and eIF4G. Possibly, this region constitutes an adaptable interface that generally allows for the interaction of the helicase core with additional domains or interacting factors.  相似文献   

7.
Partch CL  Clarkson MW  Ozgür S  Lee AL  Sancar A 《Biochemistry》2005,44(10):3795-3805
Cryptochromes are blue-light photoreceptors that regulate a variety of responses such as growth and circadian rhythms in organisms ranging from bacteria to humans. Cryptochromes share a high level of sequence identity with the light-activated DNA repair enzyme photolyase. Photolyase uses energy from blue light to repair UV-induced photoproducts in DNA through cyclic electron transfer between the catalytic flavin adenine dinucleotide cofactor and the damaged DNA. Cryptochromes lack DNA repair activity, and their mechanism of signal transduction is not known. It is hypothesized that a light-dependent signaling state in cryptochromes is created as a result of an intramolecular redox reaction, resulting in conformational rearrangement and effector binding. Plant and animal cryptochromes possess 30-250 amino acid carboxy-terminal extensions beyond the photolyase-homology region that have been shown to mediate phototransduction. We analyzed the structures of C-terminal domains from an animal and a plant cryptochrome by computational, biophysical, and biochemical methods and found these domains to be intrinsically unstructured. We show that the photolyase-homology region interacts with the C-terminal domain, inducing stable tertiary structure in the C-terminal domain. Importantly, we demonstrate a light-dependent conformational change in the C-terminal domain of Arabidopsis Cry1. Collectively, these findings provide the first biochemical evidence for the proposed conformational rearrangement of cryptochromes upon light exposure.  相似文献   

8.
p53 Family members p63 and p73 are SAM domain-containing proteins.   总被引:14,自引:0,他引:14       下载免费PDF全文
Homologs of the tumor suppressor p53, called p63 and p73, have been identified. The p63 and p73 family members possess a domain structure similar to p53, but contain variable C-terminal extensions. We find that some of the C-terminal extensions contain Sterile Alpha Motif (SAM) domains. SAM domains are protein modules that are involved in protein-protein interactions. Consistent with this role, the C-terminal SAM domains of the p63 and p73 may regulate function by recruiting other protein effectors.  相似文献   

9.
Sirtuins are a family of protein deacetylases that catalyze the nicotinamide adenine dinucleotide (NAD+)-dependent removal of acetyl groups from modified lysine side chains in various proteins. Sirtuins act as metabolic sensors and influence metabolic adaptation but also many other processes such as stress response mechanisms, gene expression, and organismal aging. Mammals have seven Sirtuin isoforms, three of them – Sirt3, Sirt4, and Sirt5 – located to mitochondria, our centers of energy metabolism and apoptosis initiation. In this review, we shortly introduce the mammalian Sirtuin family, with a focus on the mitochondrial isoforms. We then discuss in detail the current knowledge on the mitochondrial isoform Sirt5. Its physiological role in metabolic regulation has recently been confirmed, whereas an additional function in apoptosis regulation remains speculative. We will discuss the biochemical properties of Sirt5 and how they might contribute to its physiological function. Furthermore, we discuss the potential use of Sirt5 as a drug target, structural features of Sirt5 and of an Sirt5/inhibitor complex as well as their differences to other Sirtuins and the current status of modulating Sirt5 activity with pharmacological compounds.  相似文献   

10.
Sirtuins: Sir2-related NAD-dependent protein deacetylases   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

11.
DEAD-box proteins utilize ATP to bind and remodel RNA and RNA-protein complexes. All DEAD-box proteins share a conserved core that consists of two RecA-like domains. The core is flanked by subfamily-specific extensions of idiosyncratic function. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest as members function during protein translation, are essential for viability, and are frequently altered in human malignancies. Here, we define the function of the subfamily-specific extensions of the human DEAD-box protein DDX3. We describe the crystal structure of the subfamily-specific core of wild-type DDX3 at 2.2 Å resolution, alone and in the presence of AMP or nonhydrolyzable ATP. These structures illustrate a unique interdomain interaction between the two ATPase domains in which the C-terminal domain clashes with the RNA-binding surface. Destabilizing this interaction accelerates RNA duplex unwinding, suggesting that it is present in solution and inhibitory for catalysis. We use this core fragment of DDX3 to test the function of two recurrent medulloblastoma variants of DDX3 and find that both inactivate the protein in vitro and in vivo. Taken together, these results redefine the structural and functional core of the DDX3 subfamily of DEAD-box proteins.  相似文献   

12.
RIM proteins play critical roles in synaptic vesicle priming and diverse forms of presynaptic plasticity. The C-terminal C2B domain is the only module that is common to all RIMs but is only distantly related to well-studied C2 domains, and its three-dimensional structure and interactions have not been characterized in detail. Using NMR spectroscopy, we now show that N- and C-terminal extensions beyond the predicted C2B domain core sequence are necessary to form a folded, stable RIM1alpha C2B domain. We also find that the isolated RIM1alpha C2B domain is not sufficient for previously described protein-protein interactions involving the RIM1alpha C-terminus, suggesting that additional sequences adjacent to the C2B domain might be required for these interactions. However, analytical ultracentrifugation shows that the RIM1alpha C2B domain forms weak dimers in solution. The crystal structure of the RIM1alpha C2B domain dimer at 1.7 A resolution reveals that it forms a beta-sandwich characteristic of C2 domains and that the unique N- and C-terminal extensions form a small subdomain that packs against the beta-sandwich and mediates dimerization. Our results provide a structural basis to understand the function of RIM C2B domains and suggest that dimerization may be a crucial aspect of RIM function.  相似文献   

13.
Hepatitis C virus (HCV) core protein plays an important role in the development of hepatic steatosis in patients with chronic HCV infection. Treatment of C57BL/6 mice infected with HCV core recombinant adenoviruses with resveratrol significantly decreased hepatic triacylglycerols (TAG) while the serum TAG level was unaffected. RT-PCR and Western blotting showed that HCV core protein attenuated the expression of Sirt1 and PPAR-α, which would be reversed by resveratrol. This was also confirmed in primary mouse hepatic cells infected with HCV core protein expressing adenovirus. Thus, resveratrol may prevent against hepatic steatosis by blocking the inhibited expression of Sirt1 and PPAR-α induced by HCV core protein.  相似文献   

14.
DNA-PKcs is a large PI3-kinase-related protein kinase (PIKK) that plays a central role in DNA double-strand break (DSB) repair via nonhomologous end joining. Using cryo-electron microscopy we have now generated an approximately 13 A three-dimensional map of DNA-PKcs, revealing the overall architecture and topology of the 4128 residue polypeptide chain and allowing location of domains. The highly conserved C-terminal PIKK catalytic domain forms a central structure from which FAT and FATC domains protrude. Conformational changes observed in these domains on DNA binding suggest that they transduce DNA-induced conformational changes to the catalytic core and regulate kinase activity. The N-terminal segments form long curved tubular-shaped domains based on helical repeats to create interacting surfaces required for macromolecular assembly. Comparison of DNA-PKcs with another PIKK DNA repair factor, ATM, defines a common architecture for this important protein family.  相似文献   

15.
16.
NAD(+)-dependent DNA ligases (LigAs) are ubiquitous in bacteria and essential for growth. LigA enzymes have a modular structure in which a central catalytic core composed of nucleotidyltransferase and oligonucleotide-binding (OB) domains is linked via a tetracysteine zinc finger to distal helix-hairpin-helix (HhH) and BRCT (BRCA1-like C-terminal) domains. The OB and HhH domains contribute prominently to the protein clamp formed by LigA around nicked duplex DNA. Here we conducted a structure-function analysis of the OB and HhH domains of Escherichia coli LigA by alanine scanning and conservative substitutions, entailing 43 mutations at 22 amino acids. We thereby identified essential functional groups in the OB domain that engage the DNA phosphodiester backbone flanking the nick (Arg(333)); penetrate the minor grove and distort the nick (Val(383) and Ile(384)); or stabilize the OB fold (Arg(379)). The essential constituents of the HhH domain include: four glycines (Gly(455), Gly(489), Gly(521), Gly(553)), which bind the phosphate backbone across the minor groove at the outer margins of the LigA-DNA interface; Arg(487), which penetrates the minor groove at the outer margin on the 3 (R)-OH side of the nick; and Arg(446), which promotes protein clamp formation via contacts to the nucleotidyltransferase domain. We find that the BRCT domain is required in its entirety for effective nick sealing and AMP-dependent supercoil relaxation.  相似文献   

17.
18.
The phosphatase activity of SH2-containing protein tyrosine phosphatase (SHP) is inhibited by its SH2 domains and C-terminal tail. In order to determine the inhibitory effects of the SH2 domains and C-terminal tail, we have expressed and purified the catalytic domains of SHP-1 and SHP-2, and the SH2 domain truncated SHP-1 and SHP-2. We have then measured their kinetic parameters using p-nitrophenyl phosphate (p-NPP) and phosphotyrosine (pY) as substrates under the same experimental conditions. The results indicate that the pH-dependent profiles of SHP-1 and SHP-2 are mainly determined by their catalytic domains. Both enzymes have maximum activity at pH 5.0. In addition, the phosphatase activity of different forms of SHP-1 and SHP-2 decreases as the salt concentration increases. Without SH2 domains, both SHP-1 and SHP-2 are no longer inhibited by their C-terminal tails. However, the C-terminal tail of SHP-1 can further prevent the salt inhibition of the phosphatase activity. Under the same experimental conditions, the catalytic domain of SHP-1 is two times more active than the catalytic domain of SHP-2.  相似文献   

19.
Sirtuins are NAD+ consuming protein deacylases involved in many cellular processes from DNA-repair to metabolism. Their contribution to age-related and metabolic diseases makes them attractive pharmaceutical targets. Few pharmacological inhibitors have been reported yet for human Sirt5 since substrates and assays for reliable testing of its activity were unavailable until recently, and most modulators of other Sirtuins were not tested against Sirt5 and therefore have only partially characterized isoform selectivities. We used here improved substrates and assays for testing of known Sirtuin inhibitors for their effects on two activities of human Sirt5, the generic Sirtuin activity deacetylation and the more pronounced Sirt5 activity desuccinylation. Our tests show that most of the compounds have no significant effect on either Sirt5 activity. The indole GW5074, however, was found to be a potent inhibitor for Sirt5’s desuccinylation activity, identifying a first pharmacological scaffold for development into Sirt5-specific inhibitors. Interestingly, the compound showed weaker effects in Sirt5 deacetylation assays and also varying potencies against different peptide sequences, indicating a substrate-specific effect of GW5074.  相似文献   

20.
In the cell, protein folding is mediated by folding catalysts and chaperones. The two functions are often linked, especially when the catalytic module forms part of a multidomain protein, as in Methanococcus jannaschii peptidyl-prolyl cis/trans isomerase FKBP26. Here, we show that FKBP26 chaperone activity requires both a 50-residue insertion in the catalytic FKBP domain, also called ‘Insert-in-Flap’ or IF domain, and an 80-residue C-terminal domain. We determined FKBP26 structures from four crystal forms and analyzed chaperone domains in light of their ability to mediate protein-protein interactions. FKBP26 is a crescent-shaped homodimer. We reason that folding proteins are bound inside the large crescent cleft, thus enabling their access to inward-facing peptidyl-prolyl cis/trans isomerase catalytic sites and ipsilateral chaperone domain surfaces. As these chaperone surfaces participate extensively in crystal lattice contacts, we speculate that the observed lattice contacts reflect a proclivity for protein associations and represent substrate interactions by FKBP26 chaperone domains. Finally, we find that FKBP26 is an exceptionally flexible molecule, suggesting a mechanism for nonspecific substrate recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号