首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

Background

Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping.

Methodology/Principal Findings

We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F2 (RC-F2) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F2 populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL.

Conclusions/Significance

This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol content and composition.  相似文献   

2.
3.
4.

Background

Flooding significantly reduces the growth and grain yield of soybean plants. Proteomic and biochemical techniques were used to determine whether the function of cotyledon and root is altered in soybean under flooding stress.

Results

Two-day-old soybean plants were flooded for 2 days, after which the proteins from root and cotyledon were extracted for proteomic analysis. In response to flooding stress, the abundance of 73 and 28 proteins was significantly altered in the root and cotyledon, respectively. The accumulation of only one protein, 70 kDa heat shock protein (HSP70) (Glyma17g08020.1), increased in both organs following flooding. The ratio of protein abundance of HSP70 and biophoton emission in the cotyledon was higher than those detected in the root under flooding stress. Computed tomography and elemental analyses revealed that flooding stress decreases the number of calcium oxalate crystal the cotyledon, indicating calcium ion was elevated in the cotyledon under flooding stress.

Conclusion

These results suggest that calcium might play one role through HSP70 in the cotyledon under flooding stress.  相似文献   

5.
6.

Background

The terminal organelle is a complex structure involved in many aspects of the biology of mycoplasmas such as cell adherence, motility or cell division. Mycoplasma genitalium cells display a single terminal organelle and duplicate this structure prior to cytokinesis in a coordinated manner with the cell division process. Despite the significance of the terminal organelle in mycoplasma virulence, little is known about the mechanisms governing its duplication.

Methodology/Principal Findings

In this study we describe the isolation of a mutant, named T192, with a transposon insertion close to the 3′ end of the mg192 gene encoding for P110 adhesin. This mutant shows a truncated P110, low levels of P140 and P110 adhesins, a large number of non-motile cells and a high frequency of new terminal organelle formation. Further analyses revealed that the high rates of new terminal organelle formation in T192 cells are a direct consequence of the reduced levels of P110 and P140 rather than to the expression of a truncated P110. Consistently, the phenotype of the T192 mutant was successfully complemented by the reintroduction of the mg192 WT allele which restored the levels of P110 and P140 to those of the WT strain. Quantification of DAPI-stained DNA also showed that the increase in the number of terminal organelles in T192 cells is not accompanied by a higher DNA content, indicating that terminal organelle duplication does not trigger DNA replication in mycoplasmas.

Conclusions/Significance

Our results demonstrate the existence of a mechanism regulating terminal organelle duplication in M. genitalium and strongly suggest the implication of P110 and P140 adhesins in this mechanism.  相似文献   

7.
利用荧光染料尼罗红染色和激光扫描共聚焦显微观察技术,建立了油菜油体观察或生物体内中性脂类物质定性鉴定的研究体系。对高油品种宁油14号、宁油18号、ZH-088和低油品种ZL-366、NjY008、Westar共6个甘蓝型油菜品种子叶贮藏细胞内的油体进行了观察。研究发现:油菜种子成熟过程中,油体从着色不明显的小颗粒,逐渐发育形成着色清晰的球状大油体。种子成熟干燥后,油体间很少发生聚合。在成熟干燥的种子中,油体集中分布于子叶贮藏细胞中央,呈椭圆形或不规则形状,较少为圆形。通过研究种子内油体与含油量的关系,发现高油品种组与低油品种组之间在单个子叶贮藏细胞内油体数量和截面积之和存在明显差异,而在高油品种组内或低油品种组内的差异不明显。结果显示,油菜种子细胞中油体的数量和总面积与含油量之间存在正相关,可作为高油分材料的选择依据。  相似文献   

8.
甘蓝型油菜油体数量及面积之和与含油量的相关性   总被引:2,自引:0,他引:2  
利用荧光染料尼罗红染色和激光扫描共聚焦显微观察技术, 建立了油菜油体观察或生物体内中性脂类物质定性鉴定的研究体系。对高油品种宁油14号、宁油18号、ZH-088和低油品种ZL-366、NjY008、Westar共6个甘蓝型油菜品种子叶 贮藏细胞内的油体进行了观察。研究发现: 油菜种子成熟过程中, 油体从着色不明显的小颗粒, 逐渐发育形成着色清晰的球状大油体。种子成熟干燥后, 油体间很少发生聚合。在成熟干燥的种子中, 油体集中分布于子叶贮藏细胞中央, 呈椭圆形或不规则形状, 较少为圆形。通过研究种子内油体与含油量的关系, 发现高油品种组与低油品种组之间在单个子叶贮藏细胞内油体数量和截面积之和存在明显差异, 而在高油品种组内或低油品种组内的差异不明显。结果显示, 油菜种子细胞中油体的数量和总面积与含油量之间存在正相关, 可作为高油分材料的选择依据。  相似文献   

9.

Background

Introgression populations are used to make the genetic variation of unadapted germplasm or wild relatives of crops available for plant breeding. They consist of introgression lines that carry small chromosome segments from an exotic donor in the genetic background of an elite line. The goal of our study was to investigate the detection of favorable donor chromosome segments in introgression lines with statistical methods developed for genome-wide prediction.

Results

Computer simulations showed that genome-wide prediction employing heteroscedastic marker variances had a greater power and a lower false positive rate compared with homoscedastic marker variances when the phenotypic difference between the donor and recipient lines was controlled by few genes. The simulations helped to interpret the analyses of glycosinolate and linolenic acid content in a rapeseed introgression population and plant height in a rye introgression population. These analyses support the superiority of genome-wide prediction approaches that use heteroscedastic marker variances.

Conclusions

We conclude that genome-wide prediction methods in combination with permutation tests can be employed for analysis of introgression populations. They are particularly useful when introgression lines carry several donor segments or when the donor segments of different introgression lines are overlapping.  相似文献   

10.

Background

The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity.

Methodology/Principal Findings

We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species.

Conclusions/Significance

Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.  相似文献   

11.
Ding G  Zhao Z  Liao Y  Hu Y  Shi L  Long Y  Xu F 《Annals of botany》2012,109(4):747-759

Background and Aims

One of the key targets of breeding programmes in rapeseed (Brassica napus) is to develop high-yield varieties. However, the lack of available phosphorus (P) in soils seriously limits rapeseed production. The aim of this study was to dissect the genetic control of seed yield and yield-related traits in B. napus grown with contrasting P supplies.

Methods

Two-year field trials were conducted at one site with normal and low P treatments using a population of 124 recombinant inbred lines derived from a cross between ‘B104-2’ and ‘Eyou Changjia’. Seed yield, seed weight, seed number, pod number, plant height, branch number and P efficiency coefficient (PEC) were investigated. Quantitative trait locus (QTL) analysis was performed by composite interval mapping.

Key Results

The phenotypic values of most of the tested traits were reduced under the low P conditions. In total, 74 putative QTLs were identified, contributing 7·3–25·4 % of the phenotypic variation. Of these QTLs, 16 (21·6 %) were detected in two seasons and in the mean value of two seasons, and eight QTLs for two traits were conserved across P levels. Low-P-specific QTLs were clustered on chromosomes A1, A6 and A8. By comparative mapping between Arabidopsis and B. napus, 161 orthologues of 146 genes involved in Arabidopsis P homeostasis and/or yield-related trait control were associated with 45 QTLs corresponding to 23 chromosomal regions. Four gene-based markers developed from genes involved in Arabidopsis P homeostasis were mapped to QTL intervals.

Conclusions

Different genetic determinants were involved in controlling seed yield and yield-related traits in B. napus under normal and low P conditions. The QTLs detected under reduced P supply may provide useful information for improving the seed yield of B. napus in soils with low P availability in marker-assisted selection.  相似文献   

12.

Background

Crop improvement always involves selection of specific alleles at genes controlling traits of agronomic importance, likely resulting in detectable signatures of selection within the genome of modern soybean (Glycine max L. Merr.). The identification of these signatures of selection is meaningful from the perspective of evolutionary biology and for uncovering the genetic architecture of agronomic traits.

Results

To this end, two populations of soybean, consisting of 342 landraces and 1062 improved lines, were genotyped with the SoySNP50K Illumina BeadChip containing 52,041 single nucleotide polymorphisms (SNPs), and systematically phenotyped for 9 agronomic traits. A cross-population composite likelihood ratio (XP-CLR) method was used to screen the signals of selective sweeps. A total of 125 candidate selection regions were identified, many of which harbored genes potentially involved in crop improvement. To further investigate whether these candidate regions were in fact enriched for genes affected by selection, genome-wide association studies (GWAS) were conducted on 7 selection traits targeted in soybean breeding (grain yield, plant height, lodging, maturity date, seed coat color, seed protein and oil content) and 2 non-selection traits (pubescence and flower color). Major genomic regions associated with selection traits overlapped with candidate selection regions, whereas no overlap of this kind occurred for the non-selection traits, suggesting that the selection sweeps identified are associated with traits of agronomic importance. Multiple novel loci and refined map locations of known loci related to these traits were also identified.

Conclusions

These findings illustrate that comparative genomic analyses, especially when combined with GWAS, are a promising approach to dissect the genetic architecture of complex traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1872-y) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background and Aims

Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes.

Methods

A new batch of B. rapa–B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow''s carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used.

Key Results

The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups.

Conclusions

A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker-assisted selection and breeding for yellow seeds.  相似文献   

14.
15.

Background

Thiamine (vitamin B1) is an essential molecule for all life forms because thiamine diphosphate (ThDP) is an indispensable cofactor for oxidative energy metabolism. The less abundant thiamine monophosphate (ThMP), thiamine triphosphate (ThTP) and adenosine thiamine triphosphate (AThTP), present in many organisms, may have still unidentified physiological functions. Diseases linked to thiamine deficiency (polyneuritis, Wernicke-Korsakoff syndrome) remain frequent among alcohol abusers and other risk populations. This is the first comprehensive study on the distribution of thiamine derivatives in human biopsies, body fluids and cell lines.

Methodology and Principal Findings

Thiamine derivatives were determined by HPLC. In human tissues, the total thiamine content is lower than in other animal species. ThDP is the major thiamine compound and tissue levels decrease at high age. In semen, ThDP content correlates with the concentration of spermatozoa but not with their motility. The proportion of ThTP is higher in humans than in rodents, probably because of a lower 25-kDa ThTPase activity. The expression and activity of this enzyme seems to correlate with the degree of cell differentiation. ThTP was present in nearly all brain and muscle samples and in ∼60% of other tissue samples, in particular fetal tissue and cultured cells. A low ([ThTP]+[ThMP])/([Thiamine]+[ThMP]) ratio was found in cardiovascular tissues of patients with cardiac insufficiency. AThTP was detected only sporadically in adult tissues but was found more consistently in fetal tissues and cell lines.

Conclusions and Significance

The high sensitivity of humans to thiamine deficiency is probably linked to low circulating thiamine concentrations and low ThDP tissue contents. ThTP levels are relatively high in many human tissues, as a result of low expression of the 25-kDa ThTPase. Another novel finding is the presence of ThTP and AThTP in poorly differentiated fast-growing cells, suggesting a hitherto unsuspected link between these compounds and cell division or differentiation.  相似文献   

16.
17.
18.

Background

Carcinoma of the esophagus has a high case fatality ratio and is now the 6th most common cause of cancer deaths in the world. We previously conducted a study to profile the expression of miRNAs in esophageal adenocarcinoma (EAC) pre and post induction therapy. Of the miRNAs differentially expressed post induction chemoradiation, miR-145, a known tumor suppressor miRNA, was upregulated 8-fold following induction therapy, however, its expression was associated with shorter disease-free survival. This unexpected result was explored in this current study.

Methods

In order to study the role of miR-145 in EAC, miRNA-145 was overexpressed in 3 EAC cell lines (OE33, FLO-1, SK-GT-4) and one ESCC cell line (KYSE-410). After validation of the expression of miR-145, hallmarks of cancer such as cell proliferation, resistance to chemotherapy drugs or anoikis, and cell invasion were analyzed.

Results

There were no differences in cell proliferation and 5 FU resistance between miR145 cell lines and the control cell lines. miR-145 expression also had no effect on cisplatin resistance in two of three cell lines (OE33 and FLO-1), but miR-145 appeared to protect SK-GT-4 cells against cisplatin treatment. However, there was a significant difference in cell invasion, cell adhesion and resistance to anoikis. All three EAC miR-145 cell lines invaded more than their respective controls. Similarly, OE33 and SK-GT-4 miR-145 cell lines were able to survive longer in a suspension state.

Discussion

While expression of miR-145 in ESCC stopped proliferation and invasion, expression of miR-145 in EAC cells enhanced invasion and anoikis resistance. Although more work is required to understand how miR-145 conveys these effects, expression of miR-145 appears to promote EAC progression by enhancing invasion and protection against anoikis, which could in turn facilitate distant metastasis.  相似文献   

19.

Background

Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) have critical roles in human health and development with studies indicating that deficiencies in these fatty acids can increase the risk or severity of cardiovascular and inflammatory diseases in particular. These fatty acids are predominantly sourced from fish and algal oils, but it is widely recognised that there is an urgent need for an alternative and sustainable source of EPA and DHA. Since the earliest demonstrations of ω3 LC-PUFA engineering there has been good progress in engineering the C20 EPA with seed fatty acid levels similar to that observed in bulk fish oil (∼18%), although undesirable ω6 PUFA levels have also remained high.

Methodology/Principal Findings

The transgenic seed production of the particularly important C22 DHA has been problematic with many attempts resulting in the accumulation of EPA/DPA, but only a few percent of DHA. This study describes the production of up to 15% of the C22 fatty acid DHA in Arabidopsis thaliana seed oil with a high ω3/ω6 ratio. This was achieved using a transgenic pathway to increase the C18 ALA which was then converted to DHA by a microalgal Δ6-desaturase pathway.

Conclusions/Significance

The amount of DHA described in this study exceeds the 12% level at which DHA is generally found in bulk fish oil. This is a breakthrough in the development of sustainable alternative sources of DHA as this technology should be applicable in oilseed crops. One hectare of a Brassica napus crop containing 12% DHA in seed oil would produce as much DHA as approximately 10,000 fish.  相似文献   

20.

Background and Aims

Imbibition of Japanese soybean (Glycine max) cultivars was studied using micro-magnetic resonance imaging (MRI) in order to elucidate the mechanism of soaking injury and the protective role of the seed coat.

Methods

Time-lapse images during water uptake were acquired by the single-point imaging (SPI) method at 15-min intervals, for 20 h in the dry seed with seed coat, and for 2 h in seeds with the seed coat removed. The technique visualized water migration within the testa and demonstrated the distortion associated with cotyledon swelling during the very early stages of water uptake.

Key Results

Water soon appeared in the testa and went around the dorsal surface of the seed from near the raphe, then migrated to the hilum region. An obvious protrusion was noted when water reached the hypocotyl and the radicle, followed by swelling of the cotyledons. A convex area was observed around the raphe with the enlargement of the seed. Water was always incorporated into the cotyledons from the abaxial surfaces, leading to swelling and generating a large air space between the adaxial surfaces. Water uptake greatly slowed, and the internal structures, veins and oil-accumulating tissues in the cotyledons developed after the seed stopped expanding. When the testa was removed from the dry seeds before imbibition, the cotyledons were severely damaged within 1·5 h of water uptake.

Conclusions

The activation of the water channel seemed unnecessary for water entry into soybean seeds, and the testa rapidly swelled with steeping in water. However, the testa did not regulate the water incorporation in itself, but rather the rate at which water encountered the hypocotyl, the radicle, and the cotyledons through the inner layer of the seed coat, and thus prevented the destruction of the seed tissues at the beginning of imbibition.Key words: Dry seeds, Glycine max, MRI, seed coat, soaking injury, soybean, testa, role of inner layer of seed coat, water uptake  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号