首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
XIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-kappaB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-kappaB-stimulated production of TNFalpha that killed cells in an autocrine fashion. Inhibition of NF-kappaB reduced TNFalpha production, and blocking NF-kappaB activation or TNFalpha allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFalpha, suggesting novel uses of these compounds in treating cancer.  相似文献   

2.
During apoptosis, Smac (second mitochondria-derived activator of caspases)/DIABLO, an IAP (inhibitor of apoptosis protein)-binding protein, is released from mitochondria and potentiates apoptosis by relieving IAP inhibition of caspases. We demonstrate that exposure of MCF-7 cells to the death-inducing ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), results in rapid Smac release from mitochondria, which occurs before or in parallel with loss of cytochrome c. Smac release is inhibited by Bcl-2/Bcl-xL or by a pan-caspase inhibitor demonstrating that this event is caspase-dependent and modulated by Bcl-2 family members. Following release, Smac is rapidly degraded by the proteasome, an effect suppressed by co-treatment with a proteasome inhibitor. As the RING finger domain of XIAP possesses ubiquitin-protein ligase activity and XIAP binds tightly to mature Smac, an in vitro ubiquitination assay was performed which revealed that XIAP functions as a ubiquitin-protein ligase (E3) in the ubiquitination of Smac. Both the association of XIAP with Smac and the RING finger domain of XIAP are essential for ubiquitination, suggesting that the ubiquitin-protein ligase activity of XIAP may promote the rapid degradation of mitochondrial-released Smac. Thus, in addition to its well characterized role in inhibiting caspase activity, XIAP may also protect cells from inadvertent mitochondrial damage by targeting pro-apoptotic molecules for proteasomal degradation.  相似文献   

3.
Granzyme M (GzmM) is a chymotrypsin-like serine protease that preferentially cuts its substrates after Met or Leu. GzmM is constitutively expressed in activated innate effector natural killer (NK) cells. GzmM-induced cell death is consistent with the kinetics of cytotoxicity of NK cells. These suggest that GzmM may play an important role in innate immunity. Our previous work demonstrated that GzmM induces caspase-dependent apoptosis. However, it is unknown about how GzmM causes caspase activation. Here, we showed that the inhibitor of the apoptosis gene family member Survivin is a physiological substrate for GzmM. GzmM hydrolyzes Survivin at Leu-138 to remove the last four C-terminal residues. The truncated form (sur-TF) is more rapidly hydrolyzed through proteasome-mediated degradation. In addition, Survivin is in complex with X-linked inhibitor of apoptosis protein (XIAP) to inhibit caspase activation as an endogenous inhibitor. Survivin cleavage by GzmM abolishes the stability of the Survivin-XIAP complex and enhances XIAP hydrolysis, which amplifies caspase-9 and 3 activation of target tumor cells. The noncleavable L138A Survivin overexpression can significantly inhibit GzmM-mediated XIAP degradation, caspase activation, and GzmM- and NK cell-induced cytotoxicity. Moreover, Survivin silencing promotes XIAP degradation and enhances GzmM-induced caspase activation as well as GzmM- and NK cell-induced cytolysis of target tumor cells.  相似文献   

4.
X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases 3, 7 and 9, and mitochondrial Smac (second mitochondria-derived activator of caspase) release during apoptosis inhibits the activity of XIAP. In this study we show that cytosolic XIAP also feeds back to mitochondria to impair Smac release. We constructed a fluorescent XIAP-fusion protein by labelling NH2- and COOH-termini with Cerulean fluorescent protein (C-XIAP-C). Immunoprecipitation confirmed that C-XIAP-C retained the ability to interact with Smac and impaired extrinsically and intrinsically activated apoptosis in response to tumour necrosis factor-related apoptosis-inducing ligand/cycloheximide and staurosporine. In C-XIAP-C-expressing cells, cytochrome c release from mitochondria proceeded normally, whereas Smac release was significantly prolonged and incomplete. In addition, physiological expression of native XIAP prolonged or limited Smac release in HCT-116 colon cancer cells and primary mouse cortical neurons. The Smac-binding capacity of XIAP, but not caspase inhibition, was central for mitochondrial Smac retention, as evidenced in experiments using XIAP mutants that cannot bind to Smac or effector caspases. Similarly, the release of a Smac mutant that cannot bind to XIAP was not impaired by C-XIAP-C expression. Full Smac release could however be provoked by rapid cytosolic C-XIAP-C depletion upon digitonin-induced plasma membrane permeabilization. Our findings suggest that although mitochondria may already contain pores sufficient for cytochrome c release, elevated amounts of XIAP can selectively impair and limit the release of Smac.  相似文献   

5.
Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic beta-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-alpha-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-alpha-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-alpha-induced apoptosis; (iv) XIAP expression was induced by TNF-alpha through a nuclear factor-kappaB (NF-kappaB)-dependent pathway, and interferon (IFN)-gamma prevented such an induction in a manner independent of NF-kappaB, which presents a potential mechanism underlying cytotoxic IFN-gamma/TNF-alpha synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-alpha-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic beta-cells might play an important role in pancreatic beta-cell apoptosis and in the pathogenesis of type 1 diabetes.  相似文献   

6.
7.
X-linked IAP (XIAP) suppresses apoptosis by binding to initiator caspase-9 and effector caspases-3 and -7. Smac/DIABLO that is released from mitochondria during apoptosis can relieve its inhibitory activity. Here we investigated the role of XIAP in the previously found obstruction of chemotherapy-induced caspase-9 activation in non-small cell lung cancer (NSCLC) cells. Endogenously expressed XIAP bound active forms of both caspase-9 and caspase-3. However, downregulation of XIAP using shRNA or disruption of XIAP/caspase-9 interaction using a small molecule Smac mimic were unable to significantly induce caspase-9 activity, indicating that despite a strong binding potential of XIAP to caspase-9 it is not a major determinant in blocking caspase-9 in NSCLC cells. Although unable to revert caspase-9 blockage, the Smac mimic was able to enhance cisplatin-induced apoptosis, which was accompanied by increased caspase-3 activity. Additionally, a more detailed analysis of caspase activation in response to cisplatin indicated a reverse order of activation, whereby caspase-3 cleaved caspase-9 yielding an inactive form. Our findings indicate that the use of small molecule Smac mimic, when combined with an apoptotic trigger, may have therapeutic potential for the treatment of NSCLC.  相似文献   

8.
Upstream regulatory role for XIAP in receptor-mediated apoptosis   总被引:4,自引:0,他引:4       下载免费PDF全文
X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-x(L). Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-x(L)-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.  相似文献   

9.
The inhibitor of apoptosis proteins (IAP) are endogenous caspase inhibitors in the metazoan and characterized by the presence of baculoviral IAP repeats (BIR). X-linked IAP (XIAP) contains three BIR domains and directly inhibits effector caspases such as caspase-7 via a linker_BIR2 fragment and initiator caspases such as caspase-9 via the BIR3 domain. A mitochondrial protein Smac/DIABLO, which is released during apoptosis, antagonizes XIAP-mediated caspase inhibition by interacting directly with XIAP. Here, using glutathione S-transferase pulldown and caspase activity assay, we show that Smac is ineffective in relieving either caspase-7 or caspase-9 inhibition by XIAP domain fragments. In addition, Smac forms a ternary complex with caspase-7 and linker_BIR2, suggesting that Smac/linker_BIR2 interaction does not sterically exclude linker_BIR2/caspase-7 interaction. However, Smac is effective in removing caspase-7 and caspase-9 inhibition by XIAP fragments containing both the BIR2 and BIR3 domains. Surface plasmon resonance measurements show that Smac interacts with the BIR2 or BIR3 domain in micromolar dissociation constants. On the other hand, Smac interacts with an XIAP construct containing both BIR2 and BIR3 domains in a subnanomolar dissociation constant by the simultaneous interaction of the Smac dimer with the BIR2 and BIR3 domains of a single XIAP molecule. This 2:1 Smac/XIAP interaction not only possesses enhanced affinity but also sterically excludes XIAP/caspase-7 interaction, demonstrating the requirement of both BIR2 and BIR3 domains for Smac to relieve XIAP-mediated caspase inhibition.  相似文献   

10.
Smac/DIABLO is a mitochondrial protein that is released along with cytochrome c during apoptosis and promotes cytochrome c-dependent caspase activation by neutralizing inhibitor of apoptosis proteins (IAPs). We provide evidence that Smac/DIABLO functions at the levels of both the Apaf-1-caspase-9 apoptosome and effector caspases. The N terminus of Smac/DIABLO is absolutely required for its ability to interact with the baculovirus IAP repeat (BIR3) of XIAP and to promote cytochrome c-dependent caspase activation. However, it is less critical for its ability to interact with BIR1/BIR2 of XIAP and to promote the activity of the effector caspases. Consistent with the ability of Smac/DIABLO to function at the level of the effector caspases, expression of a cytosolic Smac/DIABLO in Type II cells allowed TRAIL to bypass Bcl-xL inhibition of death receptor-induced apoptosis. Combined, these data suggest that Smac/DIABLO plays a critical role in neutralizing IAP inhibition of the effector caspases in the death receptor pathway of Type II cells.  相似文献   

11.
During apoptosis, a key event is the release of Smac/DIABLO (an inhibitor of XIAP) and cytochrome c (Cyt-c, an activator of caspase-9) from mitochondria to cytosol. It was not clear, however, whether the releasing mechanisms of these two proteins are the same. Using a combination of single living-cell analysis and immunostaining techniques, we investigated the dynamic process of Smac and Cyt-c release during UV-induced apoptosis in HeLa cells. We found that YFP-labeled Smac and GFP-labeled Cyt-c were released from mitochondria in the same time window, which coincided with the mitochondrial membrane potential depolarization. Furthermore, using immunostaining, we found that the endogenous Smac and Cyt-c were always released together within an individual cell. Finally, when cells were pre-treated with caspase inhibitor (z-VAD-fmk) to block caspase activation, the process of Smac release, like that of Cyt-c, was not affected. This was true for both YFP-labeled Smac and endogenous Smac. These results suggest that in HeLa cells, both Smac and Cyt-c are released from mitochondria during UV-induced apoptosis through the same permeability transition mechanism, which we believe is triggered by the aggregation of Bax in the outer mitochondrial membrane to form lipid-protein complex.  相似文献   

12.
X-linked inhibitor of apoptosis protein (XIAP), the most potent member of the inhibitor of apoptosis protein (IAP) family, plays a crucial role in the regulation of apoptosis. XIAP is structurally characterized by three baculovirus IAP repeat (BIR) domains that mediate binding to and inhibition of caspases and a RING domain that confers ubiquitin ligase activity. The caspase inhibitory activity of XIAP can be eliminated by the second mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low pI (DIABLO) during apoptosis. Here we report the identification and characterization of a novel isoform of Smac/DIABLO named Smac3, which is generated by alternative splicing of exon 4. Smac3 contains an NH2-terminal mitochondrial targeting sequence required for mitochondrial targeting of Smac3 and an IAP-binding motif essential for Smac3 binding to XIAP. Smac3 is released from mitochondria into the cytosol in response to apoptotic stimuli, where it interacts with the second and third BIR domains of XIAP. Smac3 disrupts processed caspase-9 binding to XIAP, promotes caspase-3 activation, and potentiates apoptosis. Strikingly, Smac3, but not Smac/DIABLO, accelerates XIAP auto-ubiquitination and destruction. Smac3-stimulated XIAP ubiquitination is contingent upon the physical association of XIAP with Smac3 and an intact RING domain of XIAP. Smac3-accelerated XIAP destabilization is, at least in part, attributed to its ability to enhance XIAP ubiquitination. Our study demonstrates that Smac3 is functionally additive to, but independent of, Smac/DIABLO.  相似文献   

13.
We investigated the expression of XIAP (X chromosome-linked inhibitor of apoptosis protein) and Smac/DIABLO, a newly identified mitochondrial apoptogenig molecule in the hippocampus following transient global ischemia. Transient global ischemia produced by two-vessel occlusion triggers the delayed neuronal death of CA1 neurons in the hippocampus. We demonstrate that CA1 neuronal loss induced by ischemia (10 min) is preceded by a selective and marked elevation of catalytically active caspase-3 in these neurons, indicative of apoptosis. XIAP (X chromosome-linked inhibitor of apoptosis protein) is a member of the inhibitor of apoptosis (IAP) gene family that, in addition to suppressing cell death by inhibition of caspases, is involved in an increasing number of signalling cascades. The present study shows alterations in the levels of XIAP and of Smac/DIABLO (second mitochondrial activator of caspase) after cerebral ischemia. The protein levels of XIAP and the number of XIAP-positive cells were regulated by cerebral ischemia in a strictly time and region dependent manner. The largest change in XIAP-IR was observed in the CA1 sub field, which is the most vulnerable area of hippocampus. The mitochondrial expression level of Smac/DIABLO increased during reperfusion. Smac/DIABLO expression was associated with alteration of the XIAP levels and the appearance of activated form of caspase-3 within the hippocampus during reperfusion in spatial and temporal manners.  相似文献   

14.
Smac, a second mitochondria-derived activator of caspases, promotes caspase activation in the cytochrome c (cyto-c)/Apaf-1/caspase-9 pathway. Here, we show that treatment of multiple myeloma (MM) cells with dexamethasone (Dex) triggers the release of Smac from mitochondria to cytosol and activates caspase-9 without concurrent release of cyto-c and Apaf-1 oligomerization. Smac binds to XIAP (an inhibitor of apoptosis protein) and thereby, at least in part, eliminates its inhibitory effect on caspase-9. Interleukin-6, a growth factor for MM, blocks Dex-induced apoptosis and prevents release of Smac. Taken together, these findings demonstrate that Smac plays a functional role in mediating Dex-induced caspase-9 activation and apoptosis in MM cells.  相似文献   

15.
The current model for the intrinsic apoptotic pathway holds that mitochondrial activation of caspases in response to cytotoxic drugs requires both Apaf-1-induced dimerization of procaspase 9 and Smac/Diablo-mediated sequestration of inhibitors of apoptosis proteins (IAPs). Here, we showed that either pathway can independently promote caspase 9 activation in response to apoptotic stimuli. In drug-treated Apaf-1(-/-) primary myoblasts, but not fibroblasts, Smac/Diablo accumulates in the cytosol and sequesters X-linked IAP (XIAP), which is expressed at lower levels in myoblasts than in fibroblasts. Consequently, caspase 9 activation proceeds in Apaf-1(-/-) myoblasts; concomitant ablation of Apaf-1 and Smac is required to prevent caspase 9 activation and the onset of apoptosis. Conversely, in stimulated Apaf-1(-/-) fibroblasts, the ratio of XIAP to Smac/Diablo is high compared to that for myoblasts and procaspase 9 is not activated. Suppressing XIAP with exogenous Smac/Diablo or a pharmacological inhibitor can still induce caspase 9 in drug-treated Apaf-1-null fibroblasts. Thus, caspase 9 activation in response to intrinsic apoptotic stimuli can be uncoupled from Apaf-1 in vivo by XIAP antagonists.  相似文献   

16.
The four residues at the amino-terminus of mature Smac/DIABLO are an IAP binding motif (IBM). Upon exit from mitochondria, mature Smac interacts with inhibitor of apoptosis proteins (IAPs), abrogating caspase inhibition. We used the ubiquitin fusion model to express mature Smac in the cytosol. Transiently expressed mature Smac56-239 (called Smac56) and Smac60-239 (called Smac60), which lacks the IBM, interacted with X-linked inhibitor of apoptosis protein (XIAP). However, stable expression produced wild type Smac56 that failed to homodimerize, interact with XIAP, and potentiate caspase activation. Cytosolic Smac60 retained these functions. Cytosolic Smac56 apparently becomes posttranslationally modified at the dimer interface region, which obliterated the epitope for a monoclonal antibody. Cytosolic Smacδ, which has the IBM but lacks amino acids 62–105, homodimerized and weakly interacted with XIAP, but failed to potentiate apoptosis. These findings suggest that the IBM of Smac is a recognition point for a posttranslational modification(s) that blocks homodimerization and IAP interaction, and that amino acids 62–105 are required for the proapoptotic function of Smac.  相似文献   

17.
Members of the IAP (inhibitor of apoptosis) family function as anti-apoptotic proteins by binding directly to caspase-3, -7, and -9 to inhibit their activities. During apoptosis, the activities of IAPs are relieved by a second mitochondria-derived caspase activator, named Smac/DIABLO. Some IAPs have a C-terminal RING finger domain that has been identified as the essential motif for the activity of ubiquitin ligase (E3). Here we show that X-linked IAP (XIAP) mediates the polyubiquitination of caspase-9 and Smac. The large subunit of mature caspase-9 was polyubiquitinated by XIAP in vitro, while procaspase-9 was not. Furthermore, the polyubiquitinated form of caspase-9 accumulated in an XIAP-dependent manner in intact cells. The ubiquitination of caspase-9 was significantly inhibited in the presence of mature Smac, whereas XIAP was also found to promote the polyubiquitination of cytosolic Smac both in vitro and in intact cells. These ubiquitination reactions require the RING finger domain of XIAP. These findings suggest that XIAP functions as ubiquitin ligase toward mature caspase-9 and Smac to inhibit apoptosis.  相似文献   

18.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exerts potent cytotoxic activity against transformed keratinocytes, whereas primary keratinocytes are relatively resistant. In several cell types, inhibition of the proteasome sensitizes for TRAIL-induced apoptosis by interference with NF-kappaB activation. Here we describe a novel intracellular mechanism of TRAIL resistance in primary cells and how this resistance is removed by proteasome inhibitors independent of NF-kappaB in primary human keratinocytes. This sensitization was not mediated at the receptor-proximal level of TRAIL DISC formation or caspase 8 activation but further downstream. Activation of caspase 3 was critical, as it only occurred when mitochondrial apoptotic pathways were activated, as reflected by Smac/DIABLO, HtrA2, and cytochrome c release. Smac/DIABLO and HtrA2 are needed to release the X-linked inhibitor-of-apoptosis protein (XIAP)-mediated block of full caspase 3 maturation. XIAP can effectively block caspase 3 maturation and, intriguingly, is highly expressed in primary but not in transformed keratinocytes. Ectopic XIAP expression in transformed keratinocytes resulted in increased resistance to TRAIL. Our data suggest that breaking of this resistance via proteasome inhibitors, which are potential anticancer drugs, may sensitize certain primary cells to TRAIL-induced apoptosis and could thereby complicate the clinical applicability of a combination of TRAIL receptor agonists with proteasome inhibitors.  相似文献   

19.
X chromosome-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of caspase-3, -7, and -9. Smac/DIABLO, an inhibitor of XIAP, is released from mitochondria upon receiving apoptotic stimuli and binds to the BIR2 and BIR3 domains of XIAP, thereby inhibiting its caspase-inhibitory activity. Here we report that a serine protease called HtrA2/Omi is released from mitochondria and inhibits the function of XIAP by direct binding in a similar way to Smac. Moreover, when overexpressed extramitochondrially, HtrA2 induces atypical cell death, which is neither accompanied by a significant increase in caspase activity nor inhibited by caspase inhibitors, including XIAP. A catalytically inactive mutant of HtrA2, however, does not induce cell death. In short, HtrA2 is a Smac-like inhibitor of IAP activity with a serine protease-dependent cell death-inducing activity.  相似文献   

20.
A phase II study of NK cell therapy in treatment of patients with recurrent breast cancer has recently been reported. However, because of the complexities of tumor microenvironments, effective therapeutic effects have not been achieved in NK cell therapy. Radioiodine (I-131) therapy inhibits cancer growth by inducing the apoptosis and necrosis of cancer cells. Furthermore, it can modify cancer cell phenotypes and enhance the effect of immunotherapy against cancer cells. The present study showed that I-131 therapy can modulate microenvironment of breast cancer and improve the therapeutic effect by enhancing NK cell cytotoxicity to the tumor cells. The susceptibility of breast cancer cells to NK cell was increased by precedent I-131 treatment in vitro. Tumor burden in mice treated with I-131 plus NK cell was significantly lower than that in mice treated with NK cell or I-131 alone. The up-regulation of Fas, DR5 and MIC A/B on irradiated tumor cells could be the explanation for the enhancement of NK cell cytotoxicity to tumor cells. It can be applied to breast cancer patients with iodine avid metastatic lesions that are non-responsive to conventional treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号