共查询到20条相似文献,搜索用时 0 毫秒
1.
Eps15 Is Recruited to the Plasma Membrane upon Epidermal Growth Factor Receptor Activation and Localizes to Components of the Endocytic Pathway during Receptor Internalization 总被引:4,自引:2,他引:4 下载免费PDF全文
Maria Rosaria Torrisi Lavinia Vittoria Lotti Francesca Belleudi Roberto Gradini Anna Elisabetta Salcini Stefano Confalonieri Pier Giuseppe Pelicci Pier Paolo Di Fiore 《Molecular biology of the cell》1999,10(2):417-434
Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential role for eps15 in receptor-mediated endocytosis. In this study we show that, upon activation of the EGFR kinase, eps15 undergoes dramatic relocalization consisting of 1) initial relocalization to the plasma membrane and 2) subsequent colocalization with the EGFR in various intracellular compartments of the endocytic pathway, with the notable exclusion of coated vesicles. Relocalization of eps15 is independent of its binding to the EGFR or of binding of the receptor to AP-2. Furthermore, eps15 appears to undergo tyrosine phosphorylation both at the plasma membrane and in a nocodazole-sensitive compartment, suggesting sustained phosphorylation in endocytic compartments. Our results are consistent with a model in which eps15 undergoes cycles of association:dissociation with membranes and suggest multiple roles for this protein in the endocytic pathway. 相似文献
2.
4.
5.
Protein kinase C and protein kinase D are potently activated by agonist-evoked increases in diacylglycerol. Using live cell-imaging probes for kinase activity, we have shown that both kinases are robustly activated at the Golgi following stimulation of Gq-coupled receptor signaling pathways, displaying activation signatures at the Golgi that are distinct from those at the plasma membrane. Here we report that Ca2+ is the mediator that allows signals received at the plasma membrane to activate these two protein kinases at the Golgi. Specifically, using fluorescence resonance energy transfer-based reporters to image diacylglycerol production, we show that Ca2+ is necessary and sufficient to elevate diacylglycerol levels at the Golgi. First, raising intracellular Ca2+ by treating cells with thapsigargin induces diacylglycerol production at the Golgi. Second, chelation of intracellular Ca2+ prevents UTP-stimulated increases in diacylglycerol at the Golgi. Thus, agonist-evoked increases in intracellular Ca2+ cause increases in Golgi diacylglycerol, allowing this intracellular membrane to serve as a platform for signaling by protein kinases C and D. 相似文献
6.
Background
In early vertebrate development, embryonic tissues modulate cell adhesiveness and acto-myosin contractility to correctly orchestrate the complex processes of gastrulation. E-cadherin (E-cadh) is the earliest expressed cadherin and is needed in the mesendodermal progenitors for efficient migration [1], [2]. Regulatory mechanisms involving directed E-cadh trafficking have been invoked downstream of Wnt11/5 signaling [3]. This non-canonical Wnt pathway regulates RhoA-ROK/DAAM1 to control the acto-myosin network. However, in this context nothing is known of the intracellular signals that participate in the correct localization of E-cadh, other than a need for Rab5c signaling [3].Methodology/Principal Findings
By studying loss of Chp induced by morpholino-oligonucleotide injection in zebrafish, we find that the vertebrate atypical Rho-GTPase Chp is essential for the proper disposition of cells in the early embryo. The underlying defect is not leading edge F-actin assembly (prominent in the cells of the envelope layer), but rather the failure to localize E-cadh and β-catenin at the adherens junctions. Loss of Chp results in delayed epiboly that can be rescued by mRNA co-injection, and phenocopies zebrafish E-cadh mutants [4], [5]. This new signaling pathway involves activation of an effector kinase PAK, and involvement of the adaptor PAK-interacting exchange factor PIX. Loss of signaling by any of the three components results in similar underlying defects, which is most prominent in the epithelial-like envelope layer.Conclusions/Significance
Our current study uncovers a developmental pathway involving Chp/PAK/PIX signaling, which helps co-ordinate E-cadh disposition to promote proper cell adhesiveness, and coordinate movements of the three major cell layers in epiboly. Our data shows that without Chp signaling, E-cadh shifts to intracellular vesicles rather than the adhesive contacts needed for directed cell movement. These events may mirror the requirement for PAK2 signaling essential for the proper formation of the blood-brain barrier [6], [7]. 相似文献7.
8.
9.
大鼠脑突触质膜糖皮质激素受体的纯化 总被引:1,自引:0,他引:1
本文利用抗大鼠肝细胞内糖皮质激素受体的单克隆抗体制备的免疫亲和层析柱,将大鼠脑突触质膜糖皮质激素受体纯化了约1150倍,SDS聚丙烯酰胺簿层梯度凝胶电泳显示,在约67kD处有一较明显的染色条带。 相似文献
10.
Eishin Yaoita Hiroko Nishimura Masaaki Nameta Yutaka Yoshida Hiroki Takimoto Hidehiko Fujinaka Hiroshi Kawachi Sameh Magdeldin Ying Zhang Bo Xu Tomizo Oyama Fujio Nakamura Tadashi Yamamoto 《The journal of histochemistry and cytochemistry》2016,64(1):67-76
Nephrin, a major intercellular junction (ICJ) molecule of mammalian podocytes in the renal glomerulus, is absent in the avian genome. We hypothesized that birds use ICJ molecules other than nephrin in their podocytes. Therefore, in the present study, we examined the possible involvement of adherens junction (AJ) proteins in the ICJs of avian podocytes. We found the AJ proteins N-cadherin and α- and β-catenins in podocytes of quail and chickens but not in those of rats, pigs or humans. The AJ proteins were prominent in avian glomerulus-rich fractions in immunoblot analyses, and in immunofluorescence microscopy analyses, they were localized along glomerular capillary walls appearing in at least two staining patterns: weakly diffuse and distinctly granular. Immunoelectron microscopy demonstrated that the significant accumulation of immunogold particles for the AJ proteins were especially evident in avian slit diaphragms and AJs. Furthermore, N-cadherin was found to be expressed in all nephron cells in the early developmental stage but became confined to podocytes during maturation. These results indicate that avian slit diaphragms clearly express AJ proteins as compared with that in the mammal—where AJ proteins are suppressed to an extremely low level—and that avian podocytes are interconnected by AJs per se in addition to slit diaphragms. 相似文献
11.
Gustaf E. Rydell Henri‐François Renard Maria‐Daniela Garcia‐Castillo Florent Dingli Damarys Loew Christophe Lamaze Winfried Römer Ludger Johannes 《Traffic (Copenhagen, Denmark)》2014,15(7):772-787
Several exogenous and endogenous cargo proteins are internalized independently of clathrin, including the bacterial Shiga toxin. The mechanisms underlying early steps of clathrin‐independent uptake remain largely unknown. In this study, we have designed a protocol to obtain gradient fractions containing Shiga toxin internalization intermediates. Using stable isotope labeling with amino acids in cell culture (SILAC) and quantitative mass spectrometry, Rab12 was found in association with these very early uptake carriers. The localization of the GTPase on Shiga toxin‐induced plasma membrane invaginations was shown by fluorescence microscopy in cells transfected with GFP‐Rab12. Furthermore, using a quantitative biochemical assay, it was found that the amount of receptor‐binding B‐subunit of Shiga toxin reaching the trans‐Golgi/TGN membranes was decreased in Rab12‐depleted cells, and that cells were partially protected against intoxication by Shiga‐like toxin 1 under these conditions. These findings demonstrate the functional importance of Rab12 for retrograde toxin trafficking. Among several other intracellular transport pathways, only the steady‐state localizations of TGN46 and cation‐independent mannose‐6‐phosphate receptor were affected. These data thus strongly suggest that Rab12 functions in the retrograde transport route. 相似文献
12.
Lidiya Orlichenko Shaun G. Weller Hong Cao Eugene W. Krueger Muyiwa Awoniyi Galina Beznoussenko Roberto Buccione Mark A. McNiven 《Molecular biology of the cell》2009,20(19):4140-4152
Remodeling of cell–cell contacts through the internalization of adherens junction proteins is an important event during both normal development and the process of tumor cell metastasis. Here we show that the integrity of tumor cell–cell contacts is disrupted after epidermal growth factor (EGF) stimulation through caveolae-mediated endocytosis of the adherens junction protein E-cadherin. Caveolin-1 and E-cadherin closely associated at cell borders and in internalized structures upon stimulation with EGF. Furthermore, preventing caveolae assembly through reduction of caveolin-1 protein or expression of a caveolin-1 tyrosine phospho-mutant resulted in the accumulation of E-cadherin at cell borders and the formation of tightly adherent cells. Most striking was the fact that exogenous expression of caveolin-1 in tumor cells that contain tight, well-defined, borders resulted in a dramatic dispersal of these cells. Together, these findings provide new insights into how cells might disassemble cell–cell contacts to help mediate the remodeling of adherens junctions, and tumor cell metastasis and invasion. 相似文献
13.
14.
Baby G. Tholanikunnel Kusumam Joseph Karthikeyan Kandasamy Aleksander Baldys John R. Raymond Louis M. Luttrell Paul J. McDermott Daniel J. Fernandes 《The Journal of biological chemistry》2010,285(44):33816-33825
β2-Adrenergic receptors (β2-AR) are low abundance, integral membrane proteins that mediate the effects of catecholamines at the cell surface. Whereas the processes governing desensitization of activated β2-ARs and their subsequent removal from the cell surface have been characterized in considerable detail, little is known about the mechanisms controlling trafficking of neo-synthesized receptors to the cell surface. Since the discovery of the signal peptide, the targeting of the integral membrane proteins to plasma membrane has been thought to be determined by structural features of the amino acid sequence alone. Here we report that localization of translationally silenced β2-AR mRNA to the peripheral cytoplasmic regions is critical for receptor localization to the plasma membrane. β2-AR mRNA is recognized by the nucleocytoplasmic shuttling RNA-binding protein HuR, which silences translational initiation while chaperoning the mRNA-protein complex to the cell periphery. When HuR expression is down-regulated, β2-AR mRNA translation is initiated prematurely in perinuclear polyribosomes, leading to overproduction of receptors but defective trafficking to the plasma membrane. Our results underscore the importance of the spatiotemporal relationship between β2-AR mRNA localization, translation, and trafficking to the plasma membrane, and establish a novel mechanism whereby G protein-coupled receptor (GPCR) responsiveness is regulated by RNA-based signals. 相似文献
15.
Yun Li Brittany D. Roy Wei Wang Lifeng Zhang Stephen B. Sampson Da-Ting Lin 《Journal of visualized experiments : JoVE》2012,(69)
A better understanding of the mechanisms governing receptor trafficking between the plasma membrane (PM) and intracellular compartments requires an experimental approach with excellent spatial and temporal resolutions. Moreover, such an approach must also have the ability to distinguish receptors localized on the PM from those in intracellular compartments. Most importantly, detecting receptors in a single vesicle requires outstanding detection sensitivity, since each vesicle carries only a small number of receptors. Standard approaches for examining receptor trafficking include surface biotinylation followed by biochemical detection, which lacks both the necessary spatial and temporal resolutions; and fluorescence microscopy examination of immunolabeled surface receptors, which requires chemical fixation of cells and therefore lacks sufficient temporal resolution1-6 . To overcome these limitations, we and others have developed and employed a new strategy that enables visualization of the dynamic insertion of receptors into the PM with excellent spatial and temporal resolutions 7-17 . The approach includes tagging of a pH-sensitive GFP, the superecliptic pHluorin 18, to the N-terminal extracellular domain of the receptors. Superecliptic pHluorin has the unique property of being fluorescent at neutral pH and non-fluorescent at acidic pH (pH < 6.0). Therefore, the tagged receptors are non-fluorescent when within the acidic lumen of intracellular trafficking vesicles or endosomal compartments, and they become readily visualized only when exposed to the extracellular neutral pH environment, on the outer surface of the PM. Our strategy consequently allows us to distinguish PM surface receptors from those within intracellular trafficking vesicles. To attain sufficient spatial and temporal resolutions, as well as the sensitivity required to study dynamic trafficking of receptors, we employed total internal reflection fluorescent microscopy (TIRFM), which enabled us to achieve the optimal spatial resolution of optical imaging (~170 nm), the temporal resolution of video-rate microscopy (30 frames/sec), and the sensitivity to detect fluorescence of a single GFP molecule. By imaging pHluorin-tagged receptors under TIRFM, we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This imaging approach can potentially be applied to any membrane protein with an extracellular domain that could be labeled with superecliptic pHluorin, and will allow dissection of the key detailed mechanisms governing insertion of different membrane proteins (receptors, ion channels, transporters, etc.) to the PM. 相似文献
16.
The characteristics of fusicoccin binding were investigated in microsomes from 24-h-old radish (Raphanus sativus L.) seedlings. The time course of fusicoccin binding depended on fusicoccin concentration: equilibrium was reached much faster at 10 nanomolar fusicoccin than at 0.3 nanomolar fusicoccin. Scatchard analysis of equilibrium binding as a function of fusicoccin concentration indicated a single class of receptor sites with a Kd of 1.8 nanomolar and a site density of 6.3 picomoles per milligram protein. Similar values (Kd 1.7 nanomolar and site density 7 picomoles per milligram protein) were obtained from the analysis of the dependence of equilibrium binding on membrane concentration at fixed fusicoccin concentrations. Fusicoccin binding comigrated with the plasma membrane H+-ATPase in an equilibrium sucrose density gradient: both activities formed a sharp peak (1.18 grams per milliliter) clearly distinct from that of markers of other membranes which all peaked at lower densities. The saturation profiles of fusicoccin binding and of fusicoccin-induced activation of the plasma membrane H+-ATPase, measured under identical conditions, were similar, supporting the view that fusicoccin-induced activation of the plasma membrane H+-ATPase is mediated by fusicoccin binding to its plasma membrane receptor. 相似文献
17.
Maria P. Gavilan Marina Arjona Angel Zurbano Etienne Formstecher Juan R. Martinez-Morales Michel Bornens Rosa M. Rios 《PLoS biology》2015,13(3)
Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis. 相似文献
18.
19.
Maria Ida De Michelis Franca Rasi-Caldogno Maria Chiara Pugliarello C. Olivari 《Plant biology (Stuttgart, Germany)》1991,104(4):265-271
The effect of fusicoccin (FC) on the activity of the PM H+-ATPase was investigated in a plasma membrane (PM) fraction from radish seedlings purified by the phase-partitioning procedure. FC stimulated the PM H+-ATPase activity by up to 100 %; the effect was essentially on Vmax with only a slight decrease of the apparent KM of the enzyme for ATP. FC-induced stimulation of the PM H+-ATPase was evident within the first minute and maximal within five minutes of membrane treatment with the toxin indicating that transmission of the signal from the activated receptor to the PM H+-ATPase is very rapid. Both FC-induced stimulation of the PM H+-ATPase and FC binding to its receptor decreased dramatically upon incubation of the membranes in ATPase assay medium at 33 °C in the absence of FC, due to the lability of the free FC receptor. FC-induced stimulation of the PM H+-ATPase was strongly pH dependent: absolute increase of activity was maximal at pH 7, while percent stimulation increased with the increase of pH up to pH 7.5; FC binding was scarcely influenced by pH in the pH range investigated. Taken as a whole, these results indicate that FC binding is a condition necessary, but not sufficient, for FC-induced stimulation of the PM H+-ATPase. 相似文献
20.