首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serratia marcescens is a gram-negative environmental bacterium and opportunistic pathogen. S. marcescens expresses prodigiosin, a bright red and cell-associated pigment which has no known biological function for producing cells. We present here a kinetic model relating cell, ATP, and prodigiosin concentration changes for S. marcescens during cultivation in batch culture. Cells were grown in a variety of complex broth media at temperatures which either promoted or essentially prevented pigmentation. High growth rates were accompanied by large decreases in cellular prodigiosin concentration; low growth rates were associated with rapid pigmentation. Prodigiosin was induced most strongly during limited growth as the population transitioned to stationary phase, suggesting a negative effect of this pigment on biomass production. Mathematically, the combined rate of formation of biomass and bioenergy (as ATP) was shown to be equivalent to the rate of prodigiosin production. Studies with cyanide inhibition of both oxidative phosphorylation and pigment production indicated that rates of biomass and net ATP synthesis were actually higher in the presence of cyanide, further suggesting a negative regulatory role for prodigiosin in cell and energy production under aerobic growth conditions. Considered in the context of the literature, these results suggest that prodigiosin reduces ATP production by a process termed energy spilling. This process may protect the cell by limiting production of reactive oxygen compounds. Other possible functions for prodigiosin as a mediator of cell death at population stationary phase are discussed.  相似文献   

2.
Wrigley DM  Hanwella HD  Thon BL 《Anaerobe》1995,1(5):263-267
A gastroenteritis results when Clostridium perfringens is ingested in high numbers and sporulates releasing enterotoxin in the intestines. Since the organism must pass through the stomach, its ability to form spores may be affected by the acidic environment. Five strains of C. perfringens were exposed to acidic conditions and then assessed for survival and their ability to form spores. An acidic pH environment kills the bacteria over time but surviving cells are able to recover and form spores. Two of the five strains demonstrated enhanced sporulation following a 30-min exposure to a pH 2 environment. For four of the strains tested, enterotoxin concentrations were higher from acid-exposed cells than from untreated cells. Exposure to a pH 3.5 environment did not affect sporulation when compared to an untreated control. Bacteria in the stationary phase of growth were the most able to resist the acid and sporulate. The results indicate that some strains will produce more spores and enterotoxin following exposure to an acidic environment.  相似文献   

3.
Depending on the moment of cellobiose starvation, Clostridium cellulolyticum cells behave in different ways. Cells starved during the exponential phase of growth sporulate at 30%, whereas exhaustion of the carbon substrate at the beginning of growth does not provoke cell sporulation. Growth in the presence of excess cellobiose generates 3% spores. The response of C. cellulolyticum to carbon starvation involves changes in proteolytic activities; higher activities (20% protein degradation) corresponded to a higher level of sporulation; lower proteolysis (5%) was observed in cells starved during the beginning of exponential growth, when sporulation was not observed; with an excess of cellobiose, an intermediate value (10%), accompanied by a low level of sporulation, was observed in cells taken at the end of the exponential growth phase. The basal percentage of the protein breakdown in nonstarved culture was 4%. Cells lacking proteolytic activities failed to induce sporulation. High concentrations of cellobiose repressed proteolytic activities and sporulation. The onset of carbon starvation during the growth phase affected the survival response of C. cellulolyticum via the sporulation process and also via cell-cellulose interaction. Cells from the exponential growth phase were more adhesive to filter paper than cells from the stationary growth phase but less than cells from the late stationary growth phase.  相似文献   

4.
Slepecky, Ralph A. (Northwestern University, Evanston, Ill.), and John H. Law. Synthesis and degradation of poly-beta-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J. Bacteriol. 82:37-42. 1961.-The production of poly-beta-hydroxybutyrate has been followed in Bacillus megaterium, a sporulating strain, and B. megaterium strain KM, a nonsporulating strain, by an improved assay procedure and by the use of C(14)-acetate.The production of polymer in the KM strain follows the growth curve very slowly and reaches a peak at the time the cells are entering the stationary phase of growth. Slow utilization of polymer follows.When the sporulating strain is grown under conditions favorable for polymer production, no spores are formed; polymer production and utilization follow kinetics similar to those observed with asporogenous strains.When the sporulating strain is grown under conditions unfavorable for polymer production but favorable for sporulation, less polymer is produced and peak production occurs during the log phase of growth. Rapid utilization of the polymer precedes sporulation.If the medium is made favorable for polymer production by the addition of glucose and acetate and vigorous aeration conditions are used, sporulation can be obtained after good polymer production and subsequent utilization.  相似文献   

5.
To clarify the role that respiration, the mitochondrial genome, and interactions of mitochondria and nucleus play on sporulation and to improve the sporogenic ability of several baker's yeasts, an investigation of the effects of different media and culture conditions on baker's yeast sporulation was undertaken. When standard protocols were followed, the sporulation frequency varied between 20 and 60% and the frequency of four-spore asci varied between 1 and 6%. Different presporulation and sporulation media, the use of solid versus liquid media, and incubation at 22 versus 30 degrees C were checked, and the cells were collected from presporulation media in either exponential or stationary phase. Best results, yielding sporulation and four-spore ascus formation frequencies up to 97 and 60%, respectively, were obtained by collection of the cells in exponential phase from liquid presporulation medium with 10% glucose and transfer of them to sporulation medium with 0.5% potassium acetate at 22 degrees C. Under these conditions, the most important factor was the growth phase (exponential versus stationary) at which cells from presporulation medium were collected. Changes in sporulation frequencies were also measured after transfer of mitochondria from different sources to baker's yeasts. When mitochondria from laboratory, baker's, and wine yeasts were transferred to baker's and laboratory petite strains, sporulation and four-spore ascus formation frequencies dropped dramatically either to no sporulation at all or to less than 50% in both parameters. This transfer also resulted in an increase in the frequency of petite mutant formation but yielded similar growth and respiration rates in glycerol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Gene expression in Bacillus subtilis from late exponential to stationary phase was monitored by DNA microarrays with samples taken from the culture in LB broth with glucose supplement to prevent sporulation. Three major patterns of gene expression as revealed in this study were consistent to the expression profiling of PerR/Spx regulons and three major sigma factors—SigA, SigB, and SigW. Expression of most SigA-dependent house-keeping genes was significantly decreased and remained at low levels in the stationary phase. The sigB gene and additional genes of the SigB regulon for stress response exhibited a distinct pattern of transient induction with a peak in transition phase. The majority of induced genes after cessation of SigB-dependent surge were subjected to regulation by SigW, PerR, and Spx in response to oxidative stress. No induction of spo0A and skfA regulons supports the suppression of sporulation and cannibalism processes in the stationary phase by glucose supplement. In summary, these results depicted complicated strategies by cells to adapt changes from the fast growing exponential phase toward the stationary phase. The absence of programed cell death and sporulation greatly facilitated data analysis and the identification of distinct expression patterns in the stationary phase of growth in B. subtilis.  相似文献   

7.
Correlation between gramidicin C biosynthesis and sporulation in the process of Bac. brevis var. G.B. cultivation under various aeration conditions was studied. It was shown that biosynthesis of gramicidin C was characteristic of the young cells and its level was the highest during the culture active growth. The time of the sporulating forms appearance depended on the aeration rate which defined the quantitative composition of the population during the phase of the culture active growth and the stationary phase. Under the optimal aeration conditions the spore formation started during the phase of the culture active growth after some decrease in the maximum level of the cell productivity with respect to the antibiotic. When the aeration rate was increased the spore formation was shifted to later periods of the culture development, i.e. the stationary phase and the phase of the cell autolysis, the gap between the highest levels of gramicidin C buosynthesis and the beginning of sporulation being increased. Under certain aeration conditions the spore formation was not observed, while gramicidin C was synthesized. A conclusion has been made that there is no correlation between gramacidine C biosynthesis and sporualtion in Bacillus brevis var. G.B.  相似文献   

8.
The effect of altered tyrosyl-tRNAs on the developmental process of sporulation was examined. Mutations in eight independent loci resulting in tyrosine-inserting nonsense suppressor were tested for their effects on sporulation. Different levels of inhibition were found ranging from SUP3-omicron, which caused the greatest reduction of sporulation (7-17% of wild type), to SUP11-omicron which caused no reduction in sporulation. Since the SUP3-omicron mutation exhibited the greatest effect, it was studied in detail. Although SUP3-omicron is a dominant nonsense suppressor, its effect on sporulation is recessive. Expression of the sporulation deficiency is dependent upon the stage of transfer from glucose growth medium (i.e., log, early stationary, etc.) to sporulation medium. SUP3-omicron/SUP3-omicron diploid cells transferred from log or early stationary phase are capable of sporulation, whereas cells transferred after early stationary phase (i.e., after adaptation to respiration) exhibit poor sporulative ability. Sporulation events were examined under restrictive conditions to observe those events completed by SUP3-omicron/SUP3-omicron diploids. The early events of sporulation occur in these cells. Later events are completed by progressively fewer cells. Premeiotic DNA synthesis occurred in approximately 40% of the cells, nuclear segregation occurred in 20%, and finally, only 2% formed asci. The fact that fewer late-sporulation events occur under restrictive conditions can be explained by increased efficiency of suppression.  相似文献   

9.
We studied the biosynthesis of Bacillus intermedius glutamyl endopeptidase in the recombinant Bacillus subtilis strain AJ73 delta58.21 during the stationary growth phase. We optimized the composition of the culture medium to favor effective enzyme production during the stationary growth phase, and found that the nutritional requirements for glutamyl endopeptidase synthesis were different in the stationary phase and growth retardation phase. Proteinase accumulation was activated by complex organic substrates (casein and gelatin). During final stages of the culture growth, the enzyme production was stimulated by Ca2+, Mn2+, and Co2+ and inhibited by Zn2+, Fe2+, and Cu2+. The synthesis of glutamyl endopeptidase in the late stationary phase was not inhibited by glucose, unlike that in the trophophase during proliferation. We conclude that the regulatory mechanisms of proteinase synthesis during vegetative growth and sporulation are different.  相似文献   

10.
Cell-bound alkaline phosphatase ofBacillus cereus was produced during vegetative growth and sporulation in a complex medium. Addition of glucose repressed the sporulation process and the amount of enzyme synthesized increased. The time course of alkaline phosphatase production is very similar in both sporulating and non-sporulating cells. Irrespective of sporulation, alkaline phosphatase level shows a peak of activity in the exponential phase, and another in the stationary phase of growth. This preliminary data indicates differences betweenB. cereus, andB. subtilis in alkaline phosphatase characteristics.  相似文献   

11.
A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.  相似文献   

12.
Bacillus subtilis Marburg was found to produce an appreciable amount of an antibiotic in a synthetic medium. Antibiotic activity was produced in parallel with cell growth, and production stopped at the end of exponential growth. When the synthetic medium was supplemented with a small amount of Casamino acids, however, antibiotic was made only at the end of growth and in lesser amounts. The ability of cells to produce the antibiotic increased when stringent (rel+ = wild-type) cells underwent a partial stringent response. These conditions also initiated extensive sporulation. An isogenic relaxed (rel) strain produced little antibiotic activity, which decreased under partial amino acid deprivation. In rel+ cells, the addition of a low concentration of chloramphenicol, which reduces ppGpp synthesis, also reduced antibiotic synthesis in both normal and amino acid-starved bacteria, without appreciably affecting their growth rate. Guanosine starvation of a gua mutant initiated sporulation, but decreased antibiotic production. The results show that the stringent response initiates both sporulation (differentiation) and antibiotic production (secondary metabolism), but by different mechanisms. It appears that sporulation results from a decrease of GTP, whereas antibiotic synthesis results from a different effect of the stringent response.  相似文献   

13.
14.
Massive sporulation of Bacillus subtilis normally begins when carbon, nitrogen or phosphorus sources able to support rapid growth are no longer available. Sporulation can also be induced in exponentially growing cultures, in the presence of rapidly utilizable ammonia, glucose and phosphate if growth is partially but not completely inhibited either by inhibitors of nucleotide synthesis (hadacidin, decoyinine or 6-azauracil) or by purine deprivation in purine and especially in guanine auxotrophs. All these conditions allowing sporulation result in a decrease in the intracellular concentration of guanosine di- and triphosphates and usually uridine di- and triphosphates while other nucleotides decrease in some but increase in other cases. A decrease of uracil nucleotides alone, in a uracil auxotroph, does not produce massive sporulation. Our results demonstrate that the partial reduction of a guanine nucleotide, probably relative to some other compound, suffices to initiate sporulation. This reduction may always play a decisive role in the initiation of sporulation, as we have observed it under all conditions so far known to produce massive sporulation.  相似文献   

15.
16.
17.
AIMS: To study the mechanism of production of brown pigments from tyrosine in the yeast Yarrowia lipolytica. METHODS AND RESULTS: Pigment formation was followed during growth in tyrosine medium, and the presence of the pigment precursor in the medium was assessed by evaluating pigment formation after removing the cells at different times of incubation. It was observed that the pigment precursor accumulated outside the cells during the exponential phase of growth, but pigment formation only occurred during the stationary phase of growth and resulted from the oxidation of the precursor. Pigment formation was repressed by glucose and L-glutamine, and promoted by lactic acid, L-asparagine and glycine. Spectra of 1H and 13C-NMR revealed that the brown pigment was derived from tyrosine and was a polymer composed of a core of aromatic residues. CONCLUSION: The results indicate that pigments result from the extracellular accumulation and auto-oxidation of an intermediate of tyrosine catabolism. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the mechanism of pigment production from tyrosine in a yeast species.  相似文献   

18.
19.
Thirty-nine strains from the genus Monascus were cultivated aerobically to study the relation between nitrogen nutrition and sporulation and pigment production. The effects of yeast extract, nitrate, ammonium, and ammonium nitrate have been compared. During cultivation the pHs of the different media are not the same, resulting in the formation of different coloured pigments. When the source of nitrogen is yeast extract or nitrate the pH is around 6.5 and red pigments are formed, whereas with ammonium or ammonium nitrate the pH is around 2.5 and the pigments are orange. It is proposed that only the orange pigments, monascorubrin and rubropunctatin, are produced biosynthetically and that the other pigments are formed from these by chemical transformations depending on the cultural conditions. The presence of organic nitrogen is optimal for growth and unfavourable for pigment production. Reduced growth and best pigment formation occurs with the three other nitrogen sources. Nitrate stimulates conidiation and sexual reproduction, while ammonium is inhibitory. Pigment production is better when conidiation is reduced. A mechanism is proposed for the control of sporulation and pigment production.  相似文献   

20.
M. Reddy  J. Gowrishankar 《Genetics》1997,147(3):991-1001
A genetic strategy was designed to examine the occurrence of mutations in stationary-phase populations. In this strategy, a parental population of cells is able to survive under both permissive and restrictive conditions whereas mutants at a particular target locus exhibit a conditional-lethal phenotype. Thus, by growing the population to stationary phase under restrictive conditions and then shifting it to permissive conditions, mutations that had arisen in stationary phase can be studied without confounding effects caused by the occurrence of similar mutations during growth of the population. In two different applications of this strategy, we have studied the reversion to Lac(+) in stationary phase of several Lac(-) mutations in Escherichia coli. Our results indicate that a variety of spontaneous point mutations and deletions, particularly those that are sensitive to the mechanisms of replication slippage (for their generation) and methyl-directed mismatch repair (for their correction), can arise in nondividing populations of cells within a colony. The frequency of their occurrence was also elevated in mutS strains, which are defective in such mismatch repair. These data have relevance to the ongoing debate on adaptive or directed mutations in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号