首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthrax is common disease between human and animals caused by Bacillus anthracis. The cell binding domain of protective antigen (PAD4) and the binding domain of lethal factor (LFD1) have high immunogenicity potential and always were considered as a vaccine candidate against anthrax. The aims of this study are cloning and expressing of PAD4 and LFD1 in Escherichia coli, purification of the recombinant proteins and determination of their immunogenicity through evaluating of the relative produced polyclonal antibodies in mice. PAD4 and LFD1 genes were cloned in pET28a(+) vector and expressed in E. coli Bl21(DE3)PlysS. Expression and purification of the two recombinant proteins were confirmed by SDS-PAGE and Western blotting techniques. The PAD4 and LFD1 were purified using Ni+-NTA affinity chromatography (95–98 %), yielding 37.5 and 45 mg/l of culture, respectively. The antigens were injected three times into mice and production of relative antibodies was evaluated by ELISA test. The results showed that both PAD4 and LFD1 are immunogenic, but LFD1 has higher potential to stimulate Murine immune system. With regard to the high level of LFD1 and PAD4 expression and also significant increment in produced polyclonal antibodies, these recombinant proteins can be considered as a recombinant vaccine candidate against anthrax.  相似文献   

2.
The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y .?pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B.?anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y.?pestis.  相似文献   

3.
Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2) type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ). The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats.  相似文献   

4.
Antibodies to Bacillus anthracis protective antigen (PA) and to the lethal factor (LF) of B. anthracis exotoxin in the blood sera of anthrax patients and of subjects with a history of the disease, as well as of persons immunized with STI live vaccine, were studied by the heterogeneous enzyme immunoassay. In 1-6 years after convalescence the levels of anti-PA and anti-LF antibodies (at 75% and 96% detection rates respectively) were higher than on weeks 1-4 from the onset of the disease. In persons having had anthrax antibodies belonged mainly to IgG, and the anti-LF antibody level was higher than the anti-PA antibody level. In persons immunized with STI vaccine the detection rate of antibodies somewhat increased in 2-7 months after immunization, reaching, on the average, 72%, the antibody levels after primary immunization and regular annual booster immunization being similar. In 1-2 years after primary (booster) immunization the isolation rate of antibodies decreases to 21%. Specific features of postinfectious and postvaccinal immunity to anthrax and problems of retrospective diagnosis of this disease are discussed.  相似文献   

5.
Extracellular antigen 1 (EA1), a major component of the Bacillus anthracis surface layer (S-layer), was used as a fusion partner for the expression of heterologous antigen. A recombinant B. anthracis strain was constructed by integrating a translational fusion harboring the DNA fragments encoding the cell wall–targeting domain of the S-layer protein EA1 and the 20-kDa N-terminal fragment of anthrax protective antigen (PA20) into the chromosome. A thermosensitive plasmid expressing Cre recombinase was introduced at a permissive temperature to remove the antibiotic marker. Cre recombinase action at the loxP sites excised the spectinomycin resistance cassette. The final derivative strains were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, Western blot analysis, and immunofluorescence analysis. PA20 was successfully expressed on the S-layer of the recombinant antibiotic marker-free strain. Guinea pigs were immunized with the attenuated recombinant B. anthracis strain, and the bacilli elicited a humoral response to PA20. This antibiotic marker-free strain and the correlative experiment method may have potential applications for the generation of a live attenuated anthrax vaccine.  相似文献   

6.
Two vaccine strains of Bacillus anthracis were monitored in a 10-liter fermentor to compare growth patterns and toxin production. Under identical conditions, the Sterne strain produced all three components of anthrax toxin, whereas strain V770 produced only the protective antigen.  相似文献   

7.
Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses. Unlike the case with infection, the predominant toxin-specific antibody response of those immunized with the US anthrax vaccine absorbed and UK anthrax vaccine precipitated licensed anthrax vaccines was directed against PA. We observed that the LF-specific human antibodies were, like anti-PA antibodies, able to neutralize toxin activity, suggesting the possibility that they may contribute to protection. We conclude that an antibody response to LF might be a more sensitive diagnostic marker of anthrax than to PA. The ability of human LF-specific antibodies to neutralize toxin activity supports the possible inclusion of LF in future anthrax vaccines.  相似文献   

8.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

9.
We and other authors have recently shown that the pattern of the immune response to components of anthrax, the Bacillus anthracis lethal toxin, is complex. In addition to the neutralizing antibodies, the antitoxin antibody pool contains antibodies enhancing the toxin lethal action. We mapped the epitopes in the protective antigen that are responsible for the induction of both antibody types. In this study, we obtained new data on the cytotoxicity of the B. anthracis lethal toxin toward the J774 A.1 cell line in the presence of monoclonal antibodies to various domains of the protective antigen and the lethal factor. The role of the Fc fragment of immunoglobulins in enhancing the lethal toxin action was shown. These results may serve as a basis for the development of a new generation vaccine for anthrax.  相似文献   

10.
Anthrax is caused by the spore‐forming bacterium Bacillus anthracis, which has been used as a weapon for bioterrorism. Although current vaccines are effective, they involve prolonged dose regimens and often cause adverse reactions. High rates of mortality associated with anthrax have made the development of an improved vaccine a top priority. To identify novel vaccine candidates, we applied an immunoproteomics approach. Using sera from convalescent guinea pigs or from human patients with anthrax, we identified 34 immunogenic proteins from the virulent B. anthracis H9401. To evaluate vaccine candidates, six were expressed as recombinant proteins and tested in vivo. Two proteins, rGBAA_0345 (alkyl hydroperoxide reductase subunit C) and rGBAA_3990 (malonyl CoA‐acyl carrier protein transacylase), have afforded guinea pigs partial protection from a subsequent virulent‐spore challenge. Moreover, combined vaccination with rGBAA_0345 and rPA (protective antigen) exhibited an enhanced ability to protect against anthrax mortality. Finally, we demonstrated that GBAA_0345 localizes to anthrax spores and bacilli. Our results indicate that rGBAA_0345 may be a potential component of a multivalent anthrax vaccine, as it enhances the efficacy of rPA vaccination. This is the first time that sera from patients with anthrax have been used to interrogate the proteome of virulent B. anthracis vegetative cells.  相似文献   

11.
The biological attack conducted through the US postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain US Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine’s reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies.  相似文献   

12.
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.  相似文献   

13.
Neonates suffer unduly from infections and also respond suboptimally to most commonly used vaccines. However, a CD8 T cell response can be elicited in neonates if the Ag is introduced into the cytoplasm of APCs. Listeria monocytogenes (Lm) targets the cytoplasm of APC and is a strong CD8 and CD4 Th1-promoting vaccine vehicle in adult mice. We hypothesized that an attenuated strain of Lm would be safe and induce long-lasting protective immunity, even in neonates. We found that neonatal mice immunized only once with the attenuated strain DeltaactA-Lm developed robust primary and secondary CD8 and CD4 Th1 responses and were fully protected from lethal challenge with virulent wild-type Lm without the need for a booster immunization. Furthermore, DeltaactA-Lm expressing a heterologous recombinant Ag induced a strong CD8 and Th1 memory response to that Ag. Based on these data, we propose that DeltaactA-Lm or derivatives thereof might serve as a vaccine vehicle for neonatal immunization.  相似文献   

14.
A new generation anthrax vaccine is expected to target not only the anthrax protective antigen (PA) protein, but also other virulent factors of Bacillus anthracis. It is also expected to be amenable for rapid mass immunization of a large number of people. This study aimed to address these needs by designing a prototypic triantigen nasal anthrax vaccine candidate that contained a truncated PA (rPA63), the anthrax lethal factor (LF), and the capsular poly-gamma-D-glutamic acid (gammaDPGA) as the antigens and a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytodylic acid (poly(I:C)) as the adjuvant. This study identified the optimal dose of nasal poly(I:C) in mice, demonstrated that nasal immunization of mice with the LF was capable of inducing functional anti-LF antibodies (Abs), and showed that nasal immunization of mice with the prototypic triantigen vaccine candidate induced strong immune responses against all three antigens. The immune responses protected macrophages against an anthrax lethal toxin challenge in vitro and enabled the immunized mice to survive a lethal dose of anthrax lethal toxin challenge in vivo. The anti-PGA Abs were shown to have complement-mediated bacteriolytic activity. After further optimization, this triantigen nasal vaccine candidate is expected to become one of the newer generation anthrax vaccines.  相似文献   

15.
In this study filarial recombinant protein or DNA vaccine constructs encoding BmALT-2 and BmVAH as single or as cocktail antigens were evaluated. Male jirds were immunized intramuscularly with DNA vaccine constructs or were immunized intraperitoneally with protein vaccine. The single and bicistronic DNA constructs induced substantial interferon-γ responses in spleen cells; antigen-specific responses were higher following immunization with the bicistronic cocktail construct and evoked a significant protective response of 57% in jirds challenged with Brugia malayi that was similar in the antibody-dependent cellular cytotoxicity (ADCC) assay and micropore chamber experiment. The cocktail protein vaccines induced a mixture of IgG2a (Th1) and IgG1 (Th2) responses with 80% protective response when challenged with B. malayi infective larvae. However, the single protein vaccine rALT-2 induced Th2 (IgG1/IgG3) with a 70% protective response and rVAH induced Th1 (IgG2a) with a lower proliferative response with 60% protection following challenge with B. malayi infective larvae. These results suggest that filarial cocktail protein vaccines are able to elicit substantial immune and protective responses when compared with single antigen vaccination in suitably vaccinated jirds.  相似文献   

16.
The global Zika virus (ZIKV) outbreak and its link to foetal and newborn microcephaly and severe neurological complications in adults call for the urgent development of ZIKV vaccines. In response, we developed a subunit vaccine based on the ZIKV envelope (E) protein and investigated its immunogenicity in mice. Transient expression of ZIKV E (zE) resulted in its rapid accumulation in leaves of Nicotiana benthamiana plants. Biochemical analysis revealed that plant‐produced ZIKV E (PzE) exhibited specific binding to a panel of monoclonal antibodies that recognize various zE conformational epitopes. Furthermore, PzE can be purified to >90% homogeneity with a one‐step Ni2+ affinity chromatography process. PzE are found to be highly immunogenic, as two doses of PzE elicited both potent zE‐specific antibody and cellular immune responses in mice. The delivery of PzE with alum induced a mixed Th1/Th2 immune response, as the antigen‐specific IgG isotypes were a mixture of high levels of IgG1/IgG2c and splenocyte cultures from immunized mice secreted significant levels of IFN‐gamma, IL‐4 and IL‐6. Most importantly, the titres of zE‐specific and neutralizing antibodies exceeded the threshold that correlates with protective immunity against multiple strains of ZIKV. Thus, our results demonstrated the feasibility of plant‐produced ZIKV protein antigen as effective, safe and affordable vaccines against ZIKV.  相似文献   

17.
目的评价PorA、PorB和Class4对流感裂解疫苗的免疫增强作用,从中挑选出最有效的流感黏膜佐剂,为发展流感黏膜疫苗提供理论基础。方法流感三价裂解抗原按比例与PorA、PorB和Class4非共价结合,滴鼻免疫Balb/c小鼠3次,采取间接ELISA检测血清特异性IgG抗体及抗体亚型,检测鼻咽、肺、小肠和阴道冲洗液中IgA效价,采用血凝抑制试验检测血清中HAI效价。结果PorB重组蛋白佐剂组较无佐剂的流感裂解抗原组在提高小鼠早期免疫应答的同时诱导较强的系统免疫应答和黏膜免疫应答;PorA组也有黏膜佐剂的功能,但和无佐剂的流感裂解抗原组相比,差异无统计学意义。结论在蛋白体的三分子中,以PorB为佐剂的流感黏膜疫苗不仅提高了抗原的系统免疫应答,而且诱导了较强的小鼠呼吸道、生殖道的局部黏膜免疫应答,为流感黏膜疫苗的研制奠定了理论基础。  相似文献   

18.
Protections against Fasciola gigantica infection in mice immunized with the individual and combined cathepsin L1H and cathepsin B3 vaccines were assessed. The vaccines comprised recombinant (r) pro-proteins of cathepsin L1H and B3 (rproFgCatL1H and rproFgCatB3) and combined proteins which were expressed in Pichia pastoris. The experimental trials were performed in ICR mice (n = 10 per group) by subcutaneous injection with 50 μg of the recombinant proteins combined with Alum or Freund's adjuvants. At two weeks after the third immunization, mice were infected with 15 F. gigantica metacercariae per mouse by oral route. The percents of protection of rproFgCatL1H, rproFgCatB3 and combined vaccines against F. gigantica were approximately 58.8 to 75.0% when compared with adjuvant-infected control. These protective effects were similar among groups receiving vaccines with Alum or Freund's adjuvants. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th1 and Th2 immune responses, it was found that both Th1 and Th2 humoral immune responses were significantly increased in vaccinated groups compared with the control groups, with higher levels of IgG1 (Th2) than IgG2a (Th1). Mice in vaccinated groups showed reduction in liver pathological lesions when compared with control groups. This study indicates that the combined rproFgCatB3 and rproFgCatL1H vaccine had a high protective potential than a single a vaccine, with Alum and Freund's adjuvants showing similar level of protection. These results can serve as guidelines for the testing of this F. gigantica vaccine in larger economic animals.  相似文献   

19.
The virulence of Bacillus anthracis is critically dependent on the cytotoxic components of the anthrax toxin, lethal factor (LF) and edema factor (EF). LF and EF gain entry into host cells through interactions with the protective antigen (PA), which binds to host cellular receptors such as CMG2. Antibodies that neutralize PA have been shown to confer protection in animal models and are undergoing intense clinical development. A murine monoclonal antibody, 14B7, has been reported to interact with domain 4 of PA (PAD4) and block its binding to CMG2. More recently, the 14B7 antibody was used as the platform for the selection of very high affinity, single-chain antibodies that have tremendous potential as a combination anthrax prophylactic and treatment. Here, we report the high-resolution X-ray structures of three high-affinity, single-chain antibodies in the 14B7 family; 14B7 and two high-affinity variants 1H and M18. In addition, we present the first neutralizing antibody-PA structure, M18 in complex with PAD4 at 3.8 Å resolution. These structures provide insights into the mechanism of neutralization, and the effect of various mutations on antibody affinity, and enable a comparison between the binding of the M18 antibody and CMG2 with PAD4.  相似文献   

20.
The protective antigen (PA) of Bacillus anthracis (B. anthracis) is a potent immunogen and a candidate subunit vaccine. To address the question whether antibodies raised against PA following injection of pcDNA3.1+PA plasmid, encoding PA, can protect against virulent B. anthracis two different regimens of PA based vaccines (DNA and live spore) were used. The groups of BALB/c mice that received live spores of the Sterne strain, naked pcDNA3.1 and naked pcDNA3.1+PA were compared to control groups. All groups were injected three times with 30-day intervals. Two weeks after the last immunization, all mice were subjected to challenge with a pathogenic strain of B. anthracis (C2). Blood samples were taken before each injection and challenge. Evaluation of the sera by ELISA method showed that DNA immunization using pcDNA3.1+PA plasmid resulted in an antibody profile representative of a mixed Th1 and Th2 response, with a skewing to a Th1 response. The group which received the naked pcDNA3.1+PA had a survival rate of >80%. This challenge assay revealed that antibodies raised following DNA vaccination against PA can confer strong protection, and resistance against virulent species of B. anthracis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号