首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Context

Severe bacterial infections are not considered as a leading cause of death in young children in sub-Saharan Africa. The worldwide emergence of extended-spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E) could change the paradigm, especially in neonates who are at high risk of developing healthcare-associated infections.

Objective

To evaluate the epidemiology and the burden of ESBL-E bloodstream infections (BSI).

Methods

A case-case-control study was conducted in patients admitted in a pediatric hospital during two consecutive years. Cases were patients with Enterobacteriaceae BSI and included ESBL-positive (cases 1) and ESBL-negative BSI (cases 2). Controls were patients with no BSI. Multivariate analysis using a stepwise logistic regression was performed to identify risk factors for ESBL acquisition and for fatal outcomes. A multistate model was used to estimate the excess length of hospital stay (LOS) attributable to ESBL production while accounting for time of infection. Cox proportional hazards models were performed to assess the independent effect of ESBL-positive and negative BSI on LOS.

Results

The incidence rate of ESBL-E BSI was of 1.52 cases/1000 patient-days (95% CI: 1.2–5.6 cases per 1000 patient-days). Multivariate analysis showed that independent risk factors for ESBL-BSI acquisition were related to underlying comorbidities (sickle cell disease OR = 3.1 (95%CI: 2.3–4.9), malnutrition OR = 2.0 (95%CI: 1.7–2.6)) and invasive procedures (mechanical ventilation OR = 3.5 (95%CI: 2.7–5.3)). Neonates were also identified to be at risk for ESBL-E BSI. Inadequate initial antibiotic therapy was more frequent in ESBL-positive BSI than ESBL-negative BSI (94.2% versus 5.7%, p<0.0001). ESBL-positive BSI was associated with higher case-fatality rate than ESBL-negative BSI (54.8% versus 15.4%, p<0.001). Multistate modelling indicated an excess LOS attributable to ESBL production of 4.3 days. The adjusted end-of-LOS hazard ratio for ESBL-positive BSI was 0.07 (95%CI, 0.04–0.12).

Conclusion

Control of ESBL-E spread is an emergency in pediatric populations and could be achieved with simple cost-effective measures such as hand hygiene, proper management of excreta and better stewardship of antibiotic use, especially for empirical therapy.  相似文献   

2.
Sixty extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from rivers and lakes in Switzerland were screened for individual strains additionally exhibiting a reduced quinolone susceptibility phenotype. Totally, 42 such isolates were found and further characterized for their molecular (fluoro)quinolone resistance mechanisms. PCR and sequence analysis were performed to identify chromosomal mutations in the quinolone resistance-determining regions (QRDR) of gyrA, gyrB, parC and parE and to describe the occurrence of the following plasmid-mediated quinolone resistance genes: qepA, aac-6′-Ib-cr, qnrA, qnrB, qnrC, qnrD and qnrS. The contribution of efflux pumps to the resistance phenotype of selected strains was further determined by the broth microdilution method in the presence and absence of the efflux pump inhibitor phe-arg-β-naphthylamide (PAβN). Almost all strains, except two isolates, showed at least one mutation in the QRDR of gyrA. Ten strains showed only one mutation in gyrA, whereas thirty isolates exhibited up to four mutations in the QRDR of gyrA, parC and/or parE. No mutations were detected in gyrB. Most frequently the amino-acid substitution Ser83→Leu was detected in GyrA followed by Asp87→Asn in GyrA, Ser80→Ile in ParC, Glu84→Val in ParC and Ser458→Ala in ParE. Plasmid-mediated quinolone resistance mechanisms were found in twenty isolates bearing QnrS1 (4/20), AAC-6′-Ib-cr (15/20) and QepA (1/20) determinants, respectively. No qnrA, qnrB, qnrC and qnrD were found. In the presence of PAβN, the MICs of nalidixic acid were decreased 4- to 32-fold. (Fluoro) quinolone resistance is due to various mechanisms frequently associated with ESBL-production in E. coli from surface waters in Switzerland.  相似文献   

3.
Antibiotic resistance is considered a major threat to global health and is affected by many factors, of which antibiotic use is probably one of the more important. Other factors include hygiene, crowding and travel. The rapid resistance spread in Gram-negative bacteria, in particular extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (ESBL-E), is a global challenge, leading to increased mortality, morbidity and health systems costs worldwide. Knowledge about resistance in commensal flora is limited, including in China. Our aim was to establish the faecal carriage rates of ESBL-E and find its association with known and suspected risk factors in rural residents of all ages in three socio-economically different counties in the Shandong Province, China. Faecal samples and risk-factor information (questionnaire) were collected in 2012. ESBL-E carriage was screened using ChromID ESBL agar. Risk factors were analysed using standard statistical methods. Data from 1000 individuals from three counties and in total 18 villages showed a high and varying level of ESBL-E carriage. Overall, 42% were ESBL-E carriers. At county level the carriage rates were 49%, 45% and 31%, respectively, and when comparing individual villages (n = 18) the rate varied from 22% to 64%. The high level of ESBL-E carriage among rural residents in China is an indication of an exploding global challenge in the years to come as resistance spreads among bacteria and travels around the world with the movement of people and freight. A high carriage rate of ESBL-E increases the risk of infection with multi-resistant bacteria, and thus the need for usage of last resort antibiotics, such as carbapenems and colistin, in the treatment of common infections.  相似文献   

4.

Objectives

Plasmid-mediated AmpC beta-lactamase-producing (pAmpC) Enterobacteriaceae are increasing worldwide, difficult to identify and often confounded with extended-spectrum beta-lactamase (ESBL) producers. The low prevalence precludes routine universal admission screening. Therefore, we evaluated potential risk factors for carriage of pAmpC-producing Enterobacteriaceae that would allow targeted screening to improve yield and reduce cost.

Patients and methods

We performed a case control study at a tertiary care center from 1/2006 to 12/2010. Cases were adult patients in whom pAmpC-producing Enterobacteriaceae were isolated; controls were chosen among carriers of ESBL-producing Enterobacteriaceae. Both infected and colonized patients were included.

Results

Over five years, we identified 40 pAmpC producers in 39 patients among 16,247 screened consecutive isolates of Enterobacteriaceae. The pAmpC prevalence was low (0.25%), but more than 30% of pAmpC carriers received incorrect empirical antibiotic treatment. When compared with 39 ESBL controls, pAmpC carriage was associated with clinically confirmed infections in 74% (versus 51%) (p=0.035), mainly of the urinary tract, previous antibiotic exposure in 63% (versus 36%) (p=0.035) and carriage of a nasogastric tube in 23% (versus 0%) (p=0.002). In the multivariate regression analysis only clinically confirmed infections remained significantly associated with pAmpC carriage (OR 1.44 (95%CI 1.15-2.57)). No other clinical and blood test-associated risk factor allowed discrimination of pAmpC-carrying patients from ESBL controls. The type of acquisition – nosocomial versus community-acquired – was also non-informative for resistance type, as 46% of pAmpC- and 44% of ESBL-producing Enterobacteriaceae were community-acquired.

Conclusions

This study could not identify a clinical profile that would allow targeted screening for pAmpC-producing Enterobacteriaceae when compared to ESBL carriers. Because empiric antimicrobial therapy was inappropriate in more than 30%, rapid identification of pAmpC carriers is needed. New microbiological methods are therefore required to simplify rapid and reliable detection of pAmpC carriers.  相似文献   

5.
In the Netherlands, extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli bacteria are highly prevalent in poultry, and chicken meat has been implicated as a source of ESBL-producing E. coli present in the human population. The current study describes the isolation of ESBL-producing E. coli from house flies and blow flies caught at two poultry farms, offering a potential alternative route of transmission of ESBL-producing E. coli from poultry to humans. Overall, 87 flies were analyzed in 19 pools. ESBL-producing E. coli bacteria were detected in two fly pools (10.5%): a pool of three blow flies from a broiler farm and a pool of eight house flies from a laying-hen farm. From each positive fly pool, six isolates were characterized and compared with isolates obtained from manure (n = 53) sampled at both farms and rinse water (n = 10) from the broiler farm. Among six fly isolates from the broiler farm, four different types were detected with respect to phylogenetic group, sequence type (ST), and ESBL genotype: A0/ST3519/SHV-12, A1/ST10/SHV-12, A1/ST58/SHV-12, and B1/ST448/CTX-M-1. These types, as well as six additional types, were also present in manure and/or rinse water at the same farm. At the laying-hen farm, all fly and manure isolates were identical, carrying blaTEM-52 in an A1/ST48 genetic background. The data imply that flies acquire ESBL-producing E. coli at poultry farms, warranting further evaluation of the contribution of flies to dissemination of ESBL-producing E. coli in the community.  相似文献   

6.
The emergence of multidrug-resistant Enterobacteriaceae strains producing carbapenemases, such as NDM-1, has become a major public health issue due to a high dissemination capacity and limited treatment options. Here we describe the draft genome of three NDM-1-producing isolates: Providencia rettgeri (CCBH11880), Enterobacter hormaechei subsp. oharae (CCBH10892) and Klebsiella pneumoniae (CCBH13327), isolated in Brazil. Besides blaNDM-1, resistance genes to aminoglycosides [aadA1, aadA2, aac(6’)-Ib-cr] and quinolones (qnrA1, qnrB4) were observed which contributed to the multidrug resistance profile. The element ISAba125 was found associated to the blaNDM-1 gene in all strains.  相似文献   

7.
Horizontal gene transfer is a key step in the evolution of Enterobacteriaceae. By acquiring virulence determinants of foreign origin, commensals can evolve into pathogens. In Enterobacteriaceae, horizontal transfer of these virulence determinants is largely dependent on transfer by plasmids, phages, genomic islands (GIs) and genomic modules (GMs). The High Pathogenicity Island (HPI) is a GI encoding virulence genes that can be transferred between different Enterobacteriaceae. We investigated the HPI because it was present in an Enterobacter hormaechei outbreak strain (EHOS). Genome sequence analysis showed that the EHOS contained an integration site for mobile elements and harbored two GIs and three putative GMs, including a new variant of the HPI (HPI-ICEEh1). We demonstrate, for the first time, that combinatorial transfers of GIs and GMs between Enterobacter cloacae complex isolates must have occurred. Furthermore, the excision and circularization of several combinations of the GIs and GMs was demonstrated. Because of its flexibility, the multiple integration site of mobile DNA can be considered an integration hotspot (IHS) that increases the genomic plasticity of the bacterium. Multiple combinatorial transfers of diverse combinations of the HPI and other genomic elements among Enterobacteriaceae may accelerate the generation of new pathogenic strains.  相似文献   

8.
9.
Common histidine-to-aspartate (His-to-Asp) phosphorelay signaling systems involve three types of signaling components: a sensor His-kinase, a response regulator, and a histidine-containing phosphotransfer (HPt) protein. In the fission yeast Schizosaccharomyces pombe, two response regulators, Mcs4 and Prr1, have been identified, and it was shown that they are involved in signal transduction in stress responses. Furthermore, Mcs4 and Prr1 appear to be involved in mitotic cellcycle control and meiosis, respectively. Recently we have identified Spy1 (also known as Mpr1), which encodes an HPt phosphotransmitter, and reported that Spy1, together with Mcs4, plays a role in cell cycle regulation. In this study, we identified and characterized three genes encoding histidine kinase, named Phk1, Phk2, and Phk3 (S. pombe histidine kinase) (also referred as Mak2, Mak3, and Mak1, respectively). Deletion of individual kinase genes has no apparent phenotypes but multiple deletion of these kinases showed the same phenotype of Spy1 (Mpr1)-deficient cells, indicating precocious entry into M phase. These results indicated that three histidine kinases that work upstream of the HPt-transmitter, Spy1 (Mpr1), have a redundant function in cell cycle control.  相似文献   

10.
A simple, rapid, and inexpensive method for evaluation of host-parasite interactions, based on monoxenic cultures, is described. Axenic root explants of Glycine max (L.) Merr., cultured on a holidic agar medium, were inoculated with axenic second-stage larvae of Heterodera glycines Ichinohe, Race 3. A clear separation of susceptible and resistant cultivars, based on numbers of mature female nematodes present after 3 wk at 25 C, was observed. The method described should aid researchers in the evaluation of the host response to infection by H. glycines.  相似文献   

11.
目的:以增强型绿色荧光蛋白(EGFP)作为报告基因,用流式细胞术筛选高表达EGFP的细胞,从而获得外源基因高效表达细胞株。方法:构建在EGFPC端编码区融合新霉素(neomycin)抗性基因的融合基因EGFP-Neomycin,将其插入pcDNA3.1(+)载体,构建EGFP-Neomycin融合基因表达载体pcDNAEN,转染CHO-K1细胞,G418加压筛选和倒置荧光显微镜观察证实所表达的EGFP-Neomycin融合蛋白具有新霉素抗性和激发EGFP荧光双功能;将编码组织型纤溶酶原激活剂(tPA)的cDNA插入pcDNAEN中CMV启动子下游,构建表达tPA的表达载体pcDNAEN/tPA。结果:流式细胞术分析和tPA纤维蛋白溶解活性测定表明,pcDNAEN/tPA转染CHO-K1细胞的EGFP相对荧光强度(RFT)的自然对数值与tPA表达水平呈明显的直线相关关系,相关系数为0.983;比较部分未经流式细胞仪分选的pcDNAEN/tPA转染阳性细胞克隆和RFT分布在100~1000的pcDNAEN/tPA转染阳性细胞克隆的tPA表达水平,经流式细胞术分选获得的细胞克隆的tPA平均表达水平和最高表达水平分别是未经分选获得的细胞克隆的3.9倍和4.1倍。结论:构建的EGFP-Neomycin融合基因具有双功能,建立了利用流式细胞术筛选外源基因高效表达物细胞株的方法。  相似文献   

12.
产生物表面活性剂菌种的一种快速筛选模型*   总被引:22,自引:0,他引:22  
利用生物表面活性剂具有溶血性和在产生过程中能使蓝色凝胶平板变色等特性,建立了产生物表面活性剂菌种的快速筛选模型。模型用于从采自油田和炼厂的土样和水样中筛选生物表面活性剂产生菌,选出12株能产生物表面活性剂的微生物,其中1株糖脂产量为6.5g/L,产生的糖脂配成0.5%水溶液,能在25%将水的表面张力从71.3mN/m降到30.5mN/m。  相似文献   

13.
利用溴甲酚紫染色法和发酵测酶活的方法,从土壤中筛选出一株酯酶高产菌株ZM1。对ZM1进行形态特征及5.8SrDNA基因两侧的内转录间隙进行序列分析推测该菌株为灰绿犁头霉(Absidia glauca Hagem)。经过紫外诱变处理,得到1株正突变株ZMM1,在适合条件下,酶活达到58.76U/mL,比出发菌株提高了104.3%。传代实验表明ZMM1具有良好的遗传稳定性。  相似文献   

14.
15.
一株产纤维素酶细菌的筛选鉴定   总被引:2,自引:1,他引:2  
目的:从青贮饲料中分离筛选产纤维素酶的细菌。方法:用刚果红染色法和羧甲基纤维素酶活力测定法对分离所得的细菌进行筛选。结果:筛选到1株产纤维素酶能力较强的菌株,编号为ws-6。对该菌进行形态观察、生理生化鉴定和16S rDNA序列测定,鉴定为地衣芽孢杆菌(Bacillus licheniformis)。结论:该菌最适生长pH 5.0—7.0,最适生长温度35℃,产CMC酶活力达2.55U/mL。  相似文献   

16.
产植酸酶菌株的筛选及产酶条件的研究   总被引:11,自引:0,他引:11  
通过初筛和复筛,得到一株产植酸酶较高的黑曲霉AN00101菌株,并对该菌种的产酶条件进行了研究.结果表明:配制加水量为35%的麸皮固体培养基,在37℃培养114h,用3%CaCl2进行提取,每g固体发酵物酶活高达1.3×104IU.经L9(34)正交实验表明,硫酸铵和硫酸镁对产酶有显著的促进作用,适宜添加量分别为4%和0.3%.  相似文献   

17.
It is known that solid tumors recruit new blood vessels to support tumor growth, but the molecular diversity of receptors in tumor angiogenic vessels might also be used clinically to develop better targeted therapy. In vivo phage display was used to identify peptides that specifically target tumor blood vessels. Several novel peptides were identified as being able to recognize tumor vasculature but not normal blood vessels in severe combined immunodeficiency (SCID) mice bearing human tumors. These tumor-homing peptides also bound to blood vessels in surgical specimens of various human cancers. The peptide-linked liposomes containing fluorescent substance were capable of translocating across the plasma membrane through endocytosis. With the conjugation of peptides and liposomal doxorubicin, the targeted drug delivery systems enhanced the therapeutic efficacy of the chemotherapeutic agent against human cancer xenografts by decreasing tumor angiogenesis and increasing cancer cell apoptosis. Furthermore, the peptide-mediated targeting liposomes improved the pharmacokinetics and pharmacodynamics of the drug they delivered compared with nontargeting liposomes or free drugs. Our results indicate that the tumor-homing peptides can be used specifically target tumor vasculature and have the potential to improve the systemic treatment of patients with solid tumors.One of the primary goals of a cancer treatment regimen is to deliver sufficient amounts of a drug to targeted tumors while minimizing damage to normal tissues. Most chemotherapeutic but cytotoxic agents enter the normal tissues in the body indiscriminately without much preference for tumor sites. The dose reaching the tumor may be as little as 5–10% of the dose accumulating in normal organs (1). One reason is that interstitial fluid pressure in solid tumors is higher than in normal tissues, which leads to decreased transcapillary transport of chemotherapy or anticancer antibodies into tumor tissues (24). Cancer cells are therefore exposed to a less than effective concentration of the drug than normal cells, whereas the rest of the body must be subjected to increased toxicity and decreased effectiveness. This phenomenon often limits the dose of anti-cancer drugs that can be given to a patient without severe harm, resulting in incomplete tumor response, early disease relapse, and drug resistance.The development of drug delivery systems represents the ongoing effort to improve the selectivity and efficacy of antineoplastic drugs. Compared with conventional administration methods for chemotherapeutic agents, lipid- or polymer-based nanomedicines have the advantage of improving the pharmacological and therapeutic properties of cytotoxic drugs (5, 6). Most small molecule chemotherapeutic agents have a large volume of distribution upon intravenous administration (7) and a narrow therapeutic window because of severe toxicity to normal tissues. By encapsulating drugs in drug delivery particles, such as liposomes, the volume of distribution is significantly reduced, and the concentration of drug within the tumor is increased (8).The coupling of polyethylene glycol (PEG)2 to liposomes (PEGylated liposomes), which have a longer half-life in the blood (911), is regarded as having great potential in a drug delivery system. For example, PEGylated liposome-encapsulated doxorubicin has been reported to significantly improve the therapeutic index of doxorubicin in preclinical (10, 12, 13) and clinical studies (1416). Many of these drug delivery systems have entered the clinic and have been shown to improve the pharmacokinetics and pharmacodynamics of the drugs they deliver (6).The growth of solid tumors is dependent on their capacity to induce the growth of blood vessels to supply them with oxygen and nutrients. However, the blood vessels of tumors present specific characteristics not observed in normal tissues, including extensive angiogenesis, leaky vascular architecture, impaired lymphatic drainage, and increased expression of permeability mediators on the cell surface (17, 18). These characteristics might be used to develop antiangiogenic target therapy for cancer. The hyperpermeability of tumor vasculature, for example, is a key factor for the success of liposome-delivered chemotherapy agents. The angiogenic tumor vasculature is estimated to have an average pore size of 100–600 nm (19). These pores are significantly larger than the gaps found in normal endothelium, which are typically <6 nm wide (8). After intravenous administration, liposomes with diameters of ∼65–75 nm (2022) are small enough to passively infiltrate tumor endothelium but large enough to be excluded from normal endothelium. In solid tumors, the permeability of the tissue vasculature increases to the point that particulate liposomes can extravasate and localize in the tissue interstitial space (19). In addition, tumor tissues frequently lack effective lymphatic drainage (3), which promotes liposome retention. The combination of these factors leads to an accumulation of the drug delivering liposome within the tumor. This passive targeting phenomenon has been called the “enhanced permeability and retention effect” (23, 24).The use of liposomes for passive targeting has some disadvantages. Normal organ uptake of liposomes leads to accumulation of the encapsulated drug in mononuclear phagocytic system cells in the liver, spleen, and bone marrow, which may be toxic to these tissues. With the increased circulation time and confinement of the particulate liposomes, hematological toxicities, such as neutropenia, thrombocytopenia, and leucopenia, have also appeared (25, 26). Ongoing research aims to enhance the tumor site-specific action of the liposomes by attaching them to ligands that target tumor cell (21, 27) and tumor vasculature (20, 28) surface molecules. These liposomes are called active or ligand-mediated targeting liposomes.Combinatorial libraries displayed on phage have been used successfully to discover cell surface-binding peptides and have thus become an excellent means of identifying tumor specific targeting ligands. Phage-displayed peptide libraries have been used to identify B-cell epitopes (2931). They can also be used to search for disease-specific antigen mimics (32, 33) and identify tumor cells (21, 34) and tumor vasculature-specific peptides (35). Screening phage display libraries against specific target tissues is therefore a fast, direct method for identifying peptide sequences that might be used for drug targeting or gene delivery. By combining a drug delivery system with tumor-specific peptides, it is possible that targeting liposome can deliver as many as several thousand anticancer drug molecules to tumor cells via only a few targeting ligand molecules.In this in vivo study, we developed a method capable of selecting peptides that home to tumor tissues. We identified several targeting peptides able to bind specifically to tumor vasculature in surgical specimens of human cancer and xenografts. Coupling these peptides with a liposome containing the anti-cancer drug doxorubicin (Lipo-Dox; LD) enhanced the efficacy of the drug against several types of human cancer xenografts in SCID mice. Our results indicate that these targeting peptides can potentially play an important role in the development of more effective drug delivery systems.  相似文献   

18.
从不同来源的生物样品中分离到产果胶酶菌株,采用刚果红染色法和十六烷基三甲基溴化铵沉淀法进行初筛,通过摇瓶发酵试验进行复筛,最终获得2株果胶酶活力较高的细菌G16和G25,其酶活力分别达到6.37万U/mL和6.84万U/mL。  相似文献   

19.
20.

Objectives

If the Chlamydia trachomatis (CT) bacterial load is higher in high-risk populations than in the general population, this negatively affects the efficacy of CT screening incentives. In the largest retrospective study to date, we investigated the CT load in specimens collected from 2 cohorts: (1) attendants of a sexually transmitted infection (STI)-clinic and (2) participants of the Dutch population-based screening (PBS).

Methods

CT load was determined using quantitative PCR in CT-positive male urine and female cervicovaginal swabs. CT loads were converted into tertiles. Using multinominal logistic regression, independent association of cohort, symptoms, risk behaviour and human cell count on load were assessed.

Results

CT loads were determined in 889 CT-positives from PBS (n = 529; 71.8% female) and STI-clinics (n = 360; 61.7% female). In men, STI-clinic-cohort, human cell count and urethral discharge were positively associated with CT load. In women, PBS-cohort and cell count were positively associated with CT load. Both cohorts had the same range in CT load.

Conclusions

The general population has a similar range of bacterial CT load as a high-risk population, but a different distribution for cohort and gender, highlighting the relevance of population-based CT-screening. When CT loads are similar, possibly the chances of transmission and sequelae are too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号