首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A new protocol to obtain an embryogenic cell line from cultured seedling explants of Catharanthus roseus is described. In order to assess the relationship between tissue differentiation and secondary metabolite biosynthesis, the biosynthetic capabilities (alkaloid production) of an embryogenic cell line and two non-embryogenic C. roseus strains were comparatively examined. Faster cell growth rate was associated with higher alkaloid production in the embryogenic cell line. The kinetics of ajmalicine and serpentine production by the three cell lines is also reported.  相似文献   

2.
By irradiation with fluorescent light, medium-induced cell cultures of Catharanthus roseus accumulated anthocyanins and the indole alkaloid serpentine. The formation of both compounds was inhibited by phosphate and nitrogen-containing mineral salts and stimulated by high sucrose concentrations. The accumulation of serpentine was preceded by an increase and subsequent decrease of its biogenetic precursor ajmalicine, which was the predominant alkaloid of medium-induced cultures in the dark. High concentrations of serpentine or anthocyanins were observed only in a small proportion of all cells present in a medium-induced culture. The aglycones of the anthocyanins were identified as petunidin, malvidin and hirsutidin.  相似文献   

3.
Three unselected cell lines of C. roseus maintained on a growth-associated alkaloid production medium were studied over a period of 2 to 5.5 years for the stability of alkaloid production (serpentine and ajmalicine). Large fluctuations in the total alkaloid content of 20-day-old cells were found for all three cell lines at each subculture over a two-year period. Growth rates increased during prolonged subculture and one cell line became unproductive after five years culture. By selection of small autofluorescent aggregates, high alkaloid production was restored in this cell line, while the parent line was found to be unresponsive to alkaloid induction treatments. The instability in both alkaloid production and spectrum and the loss of alkaloid productivity are discussed in relation to the selection pressures present during long-term maintenance of cell suspension cultures.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - nHS n-heptane sulphonate  相似文献   

4.
Cell suspension cultures of the Madagascan Periwinkle Catharanthus roseus (L) G. Don were maintained on Gamborg's B5 medium and their growth monitored by measuring cellular fresh and dry weight, cell number and mitotic activity. Samples of cells of different ages and physiological states were subcultured onto an alkaloid production medium and their rates of growth and alkaloid accumulation measured over a period of 30–45 days. In two experiments the rate of biomass accumulation was directly related to the rate of cellular serpentine accumulation. Possible mechanisms underlying this phenomenon are discussed in relation to the properties of cells comprising the inocula.  相似文献   

5.
Summary Suspension-cultured cells of Catharanthus roseus (L.) G. Don were immobilized on glass fibre mats and cultivated in shake flasks. The highly-aggregated immobilized cells exhibited a slower growth rate and accumulated reduced levels of tryptamine and indole alkaloids, represented by catharanthine and ajmalicine, in comparison to cells in suspension. The increased total protein synthesis in immobilized cells suggests a diversion of the primary metabolic flux toward protein biosynthetic pathways and away from other growth processes. In vitro assays for the specific activity of tryptophan decarboxylase (TDC) and tryptophan synthase (TS) suggest that the decreased accumulation of tryptamine in immobilized cells was due to reduced tryptophan biosynthesis. The specific activity of TDC was similar in immobilized and suspension-cultured cells. However, the expression of TS activity in immobilized cells was reduced to less than 25% of the maximum level in suspension-cultured cells. The reduced availability of a free tryptophan pool in immobilized cells is consistent with the reduced TS activity. Reduced tryptamine accumulation, however, was not responsible for the decreased accumulation of indole alkaloids in immobilized cells. Indole alkaloid accumulation increased to a similar level in immobilized and suspension-cultured cells only after the addition of exogenous secolaganin to the culture medium. The addition of tryptophan resulted in increased accumulation of tryptamine, but had no effect on indole alkaloid levels. Reduced biosynthesis of secologanin, the monoterpenoid precursor to indole alkaloids, in immobilized cells is suggested. Immobilization does not appear to alter the activity of indole alkaloid biosynthetic enzymes in our system beyond, and including, strictosidine synthase. Offprint requests to: P. J. Facchini  相似文献   

6.
W. Noé  J. Berlin 《Planta》1985,166(4):500-504
Tryptophan decarboxylase (EC 4.2.1.27) is synthesized de-novo by Catharanthus roseus cells shortly after the cells have been transferred into culture medium in which monoterpenoid indole alkaloids are formed. The enzyme production, monitored by in-vivo labelling with [35S]methionine and immunoprecipitation, precedes the apparent maximal enzyme activity by 10–12 h. From the time course of the descending enzyme activity after induction, a half-life of 21 h for tryptophan decarboxylase in C. roseus cell suspensions is calculated. A comparison of the polyadenylated-RNA preparations from C. roseus cells indicates that mRNA activity for tryptophan decarboxylase is only detected in cells grown in the production medium. The importance of tryptophan decarboxylase induction with respect to the accumulation of th corresponding alkaloids is discussed.Abbreviation TDC tryptophan decarboxylase  相似文献   

7.
Catharanthus roseus plants produce many pharmaceutically important indole alkaloids, of which the bisindole alkaloids vinblastine and vincristine are antineoplastic medicines and the monoindole alkaloids ajmalicine and serpentine are antihypertension drugs. C. roseus cell cultures have been studied for producing these medicines or precursors catharanthine and vindoline for almost four decades but so far without a commercially successful process due to biological and technological limitations. The research thus focused on the one hand on engineering the bioreactor process on the other engineering the cell factory itself. This review mainly summarizes the progress made on biochemical engineering aspects of C. roseus cell cultures in bioreactors in the past decades and metabolic engineering of indole alkaloid production in recent years. The paper also attempts to highlight new strategies and technologies to improve alkaloid production and bioreactor performance. Perspectives of metabolic engineering to create new cell lines for large-scale production of indole alkaloids in bioreactors and effective combination of these up- and down-stream processing are presented.  相似文献   

8.
The enzyme tryptophan decarboxylase (TDC) (EC 4.1.1.28) catalyses a key step in the biosynthesis of terpenoid indole alkaloids inC. roseus by converting tryptophan into tryptamine. Hardly anytdc mRNA could be detected in hormone-independent callus and cell suspension cultures transformed by the oncogenic T-DNA ofAgrobacterium tumefaciens. Supply of tryptamine may therefore represent a limiting factor in the biosynthesis of alkaloids by such cultures. To investigate this possibility, chimaeric gene constructs, in which atdc cDNA is linked in the sense or antisense orientation to the cauliflower mosaic virus 35S promoter and terminator, were introduced inC. roseus cells by infecting seedlings with an oncogenicA. tumefaciens strain. In the resulting crown gall tumour calluses harbouring thetdc sense construct, an increased TDC protein level, TDC activity and tryptamine content but no significant increase in terpenoid indole alkaloid production were observed compared to empty-vector-transformed tumour calluses. In tumour calluses containing thetdc antisense construct, decreased levels of TDC activity were measured. Factors which might be responsible for the lack in increased terpenoid indole alkaloid production in thetdc cDNA overexpressing crown gall calluses are discussed.  相似文献   

9.
The leaves of Catharanthus roseus (L.) G. Don produce the first natural drugs used in cancer therapy – the dimeric terpenoid indole alkaloids vinblastine and vincristine. The study of C. roseus further revealed two other terpenoid indole alkaloids with important pharmacological activity: ajmalicine, used as an antihypertensive, and serpentine, used as sedative. The biosynthetic pathway of the medicinal alkaloids has been investigated in much detail and a number of steps are now well characterized at the enzyme and gene level and, recently, several regulatory genes have also been isolated and characterized. Since early studies of the biosynthesis of vinblastine, during the 1970s and 1980s, the dimerization reaction has attracted much attention due to its possible regulatory importance and potential application for the semi synthetic production of the dimeric alkaloids. After initial, inconclusive work suggesting the involvement of peroxidase-like enzymes, the search for the dimerization enzyme in leaf tissue detected a single dimerization activity credited to the single class III plant peroxidase present in the leaves of the plant – the basic isoenzyme CRPRX1. The enzyme was purified to homogeneity, the respective cDNA and genomic sequences were characterized, and a channeling mechanism was proposed for the peroxidase-mediated-vacuolar synthesis of the first dimeric alkaloid intermediate, α-3′,4′-anhydrovinblastine. On the other hand, the oxidation of ajmalicine into serpentine has been attributed to basic peroxidase isoenzymes localized in the vacuole of C. roseus cells. An overview of the work implying class III plant peroxidases in the biosynthesis of terpenoid indole alkaloids in C. roseus is presented here. Abbreviations: CRPRX1 –Catharanthus roseus peroxidase 1; DAB – diaminobenzidine; IEF – isoelectric focusing; UV – ultraviolet.  相似文献   

10.
11.
A three year old, alkaloid producing cell line of Catharanthus roseus, maintained at 25°C, was grown on 2% sucrose at various temperatures from 10° to 45°C. Growth rates were maximal at 35°C but declined rapidly above 35°C and below 25°C. Maximum serpentine yields reached a peak at between 20°C and 25°C and fell sharply above and below these temperatures, while ajmalicine showed a sharp peak of accumulation at 20°C. The variable serpentine/ajmalicine ratio at different growth temperatures suggests that lower temperatures may favour ajmalicine accumulation. Both the growth rate and the rate of alkaloid accumulation at 25°C were therefore sensitive to small changes in average culture temperature.  相似文献   

12.
Summary Tryptophan decarboxylase (TDC), the enzyme that catalyzes the decarboxylation of tryptophan to trytamine, was studied in aCatharanthus roseus transformed root culture. Its activity was evaluated through the culture cycle (36 days), along with the variations in the tryptamine pool as well as the accumulation of alkaloids. Ajmalicine and catharanthine contents in the tissues increased coordinately with an increase in TDC-specific activity after 18 days of growth. No dramatic shifts were observed for the total alkaloid and tryptamine profiles.  相似文献   

13.
Bax, a mammalian pro-apoptotic member of the Bcl-2 family, has been demonstrated to be a potential regulatory factor for plant secondary metabolite biosynthesis recently. To investigate the molecular mechanism of Bax-induced secondary metabolite biosynthesis, we determined the contents of nitric oxide (NO) of the transgenic Catharanthus roseus cells overexpressing a mouse Bax protein and checked the effects of NO specific scavenger 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO) on Bax-induced terpenoid indole alkaloid (TIA) production of the cells. The data showed that overexpression of the mouse Bax in C. roseus cells triggered NO generation of the cells. Treatment of cPITO not only inhibited the Bax-triggered NO burst but also suppressed the Bax-induced TIA production. The results indicated that the mouse Bax might activate the NO signaling in C. roseus cells and induce TIA production through the NO-dependent signal pathway in the cells. Furthermore, the activities of nitric oxide synthase (NOS) were significantly increased in the transgenic Bax cells as compared to those in the control cells, showing that the mouse Bax may induce NOS of C. roseus cells. Treatment of the transgenic Bax cells with NOS inhibitor PBITU blocked both Bax-induced NO generation and TIA production, which suggested that the mouse Bax might trigger NO generation and TIA production through NOS. However, the NOS-like activities and NO generation in the transgenic Bax cells did not match kinetically and the Bax-induced NOS-like activity was much later and lower than NO production. Moreover, the Bax-induced NO generation and TIA production were only partially inhibited by PBITU. Thus, our results suggested that the Bax-induced NO production and secondary metabolite biosynthesis in C. roseus cells was not entirely dependent on NOS or NOS-like enzymes.  相似文献   

14.
Habituated and tumorous Catharanthus roseus cells grown in the absence of hormones accumulated indole alkaloids. Total alkaloids and alkaloid pattern were the same when cells were cultured in medium without hormones or in alkaloid production medium with and without indole acetic acid. Treatment of cells with Pythium homogenate as elicitor did not increase total alkaloids or change the pattern of alkaloids produced. When either habituated or tumorous cells were grown in 1B5 medium after Gamborg et al (1968) containing 2,4-dichlorophenoxyacetic acid (2,4-D), their capacity to accumulate alkaloids decreased with time. The levels of tryptophan decarboxylase (TDC) and strictosidine synthase (SS) specific activities were constant throughout growth except when cells were exposed to 2,4-D in 1B5 medium, where enzyme activities declined in step with the decrease in alkaloid accumulation. Neither habituated nor tumorous cell suspension cultures accumulated vindoline, nor could they be induced to produce this alkaloid by any of the given treatments.NRCC No. 27514  相似文献   

15.
The effect of different plant growth regulators (PGR) and elicitor treatments on the alkaloid profile variation of Catharanthus roseus was investigated in the present study. The PGR used were paclobutrazol (PBZ), gibberellic acid (GA3) and Pseudomonas fluorescens elicitors (PF Elicitors). The estimated alkaloids were ajmalicine, catharanthine, tabersonine, serpentine and vindoline. In roots, the ajmalicine content increased significantly under all the treatments on all sampling days. In roots, the catharanthine contents increased with the age in control and growth regulator treatments, but the increase was not prominent and significant in PGR treatments when compared to controls. The serpentine contents of the plant increased with PGR treatments, but the increase was more prominent in PBZ treatments when compared to other treatments. The increase was in the order PBZ > PF Elicitors > GA3. C. roseus never showed any significant increase in tabersonine contents in the roots under GA3 treatments, but it increased significantly under PBZ and PF Elicitors when compared to control plants. The root vindoline contents increased with PBZ and PF Elicitors treatments but the decreased under GA3 treatments when compared to control plants. Our results have good significance, as these increases the secondary metabolites of this traditional medicinal plant.  相似文献   

16.
Specialized metabolites are chemically complex small molecules with a myriad of biological functions. To investigate plant-specialized metabolite biosynthesis more effectively, we developed an improved method for virus-induced gene silencing (VIGS). We designed a plasmid that incorporates fragments of both the target gene and knockdown marker gene (phytoene desaturase, PDS), which identifies tissues that have been successfully silenced in planta. To demonstrate the utility of this method, we used the terpenoid indole alkaloid (TIA) pathway in Madagascar periwinkle (Catharanthus roseus) as a model system. Catharanthus roseus is a medicinal plant well known for producing many bioactive compounds, such as vinblastine and vincristine. Our VIGS method enabled the discovery of a previously unknown biosynthetic enzyme, serpentine synthase (SS). This enzyme is a cytochrome P450 (CYP) that produces the β-carboline alkaloids serpentine and alstonine, compounds with strong blue autofluorescence and potential pharmacological activity. The discovery of this enzyme highlights the complexity of TIA biosynthesis and demonstrates the utility of this improved VIGS method for discovering unidentified metabolic enzymes in plants.

An improved virus-induced gene silencing approach led to the discovery of the alkaloid biosynthetic enzyme serpentine synthase.  相似文献   

17.
Summary Catharanthus roseus cells producing indole alkaloids were grown on surfaces of Ca-alginate beads within the interspacial volume of a packed column. Production media was circulated through the packed column in an upflow mode. Growth and indole alkaloid formation were quantified and compared with suspension culture of cells. Final alkaloid concentration and alkaloid yield obtained in the packed bed was superior to those obtained in suspension culture. This is thought to be due to improved cell-cell contact and interaction in the packed column.  相似文献   

18.
A callus strain with stable ability for vindoline synthesis was selected from many prepared Catharanthus roseus leaf calli to study the regulation of vindoline biosynthesis as well as other indole alkaloids. It was shown that light and plant growth regulators significantly influenced the biosynthesis of vindoline and other alkaloids as well as acidic and basic peroxidase activities. Light promoted vindoline and serpentine biosynthesis, and stimulated plastid development and peroxidase activity. However, 2,4-D suppressed the biosynthesis of all indole alkaloids and peroxidase activity. Our results suggest that light or plant hormones regulate vindoline, serpentine and other alkaloid biosynthesis and accumulation by influencing peroxidase activity and the differentiation status of callus cultures, especially chloroplast development. Some possible relationships between serpentine or vindoline biosynthesis and peroxidase activity are proposed.  相似文献   

19.
Summary Growth and alkaloid production of surface-immobilized C. roseus cells were studied in a 2-1 bioreactor. Media designed to maximize cell growth or alkaloid production were employed. Nitrate and carbohydrate consumption rates as well as growth rates and biomass yields of immobilized cultures were equal or somewhat lower than for cell suspension cultures. Respiration rate (O2 consumption and CO2 production rates) of immobilized C. roseus cell cultures was obtained by on-line analysis of inlet and outlet gas composition using a mass spectrometer. Respiration rate increased during the growth phase and decreased once the nitrogen or the carbon source was depleted from the medium. The respiration rate of immobilized C. roseus cells resembled rates reported in the literature for suspension cultures. Offprint requests to: Denis Rho  相似文献   

20.
The effects of terpenoid precursor feeding and elicitation by a biotic elicitor on alkaloid production of Catharanthus roseus suspension cultures were studied. After addition of secologanin, loganin or loganic acid an increase in the accumulation of ajmalicine and strictosidine and a decrease of tryptamine level was observed in non-elicited cells. Elicitation increased tryptamine accumulation in non-fed cells but it did not further increase alkaloid accumulation in precursor-fed cells. A decrease of tryptamine level was also observed, despite the induction of the tryptamine pathway after elicitation. Feeding mevalonic acid did not increase alkaloid accumulation in any studied case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号