首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postnatal maturation of the rat heart is characterized by major changes in the mechanism of excitation-contraction (E-C) coupling. In the neonate, the t tubules and sarcoplasmic reticulum (SR) are not fully developed yet. Consequently, Ca(2+)-induced Ca(2+) release (CICR) does not play a central role in E-C coupling. In the neonate, most of the Ca(2+) that triggers contraction comes through the sarcolemma. In this work, we defined the contribution of the sarcolemmal Ca(2+) entry and the Ca(2+) released from the SR to the Ca(2+) transient during the first 3 wk of postnatal development. To this end, intracellular Ca(2+) transients were measured in whole hearts from neonate rats by using the pulsed local field fluorescence technique. To estimate the contribution of each Ca(2+) flux to the global intracellular Ca(2+) transient, different pharmacological agents were used. Ryanodine was applied to evaluate ryanodine receptor-mediated Ca(2+) release from the SR, nifedipine for dihydropyridine-sensitive L-type Ca(2+) current, Ni(2+) for the current resulting from the reverse-mode Na(+)/Ca(2+) exchange, and mibefradil for the T-type Ca(2+) current. Our results showed that the relative contribution of each Ca(2+) flux changes considerably during the first 3 wk of postnatal development. Early after birth (1-5 days), the sarcolemmal Ca(2+) flux predominates, whereas at 3 wk of age, CICR from the SR is the most important. This transition may reflect the progressive development of the t tube-SR units characteristic of mature myocytes. We have hence directly defined in the whole beating heart the developmental changes of E-C coupling previously evaluated in single (acutely isolated or cultured) cells and multicellular preparations.  相似文献   

2.
3.
Skeletal muscle excitation-contraction (E-C)(1) coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)(2) Ca(2+) release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca(2+), due to depolarization-initiated SR Ca(2+) release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or 'high resistance gap' techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca(2+) signalling properties of mouse skeletal muscle membranes are being investigated.  相似文献   

4.
Hypertension is a major risk factor for developing cardiac hypertrophy and heart failure. Previous studies show that hypertrophied and failing hearts display alterations in excitation-contraction (E-C) coupling. However, it is unclear whether remodeling of the E-C coupling system occurs before or after heart disease development. We hypothesized that hypertension might cause changes in the E-C coupling system that, in turn, induce hypertrophy. Here we tested this hypothesis by utilizing the progressive development of hypertensive heart disease in the spontaneously hypertensive rat (SHR) to identify a window period when SHR had just developed hypertension but had not yet developed hypertrophy. We found the following major changes in cardiac E-C coupling during this window period. 1) Using echocardiography and hemodynamics measurements, we found a decrease of left ventricular ejection fraction and cardiac output after the onset of hypertension. 2) Studies in isolated ventricular myocytes showed that myocardial contraction was also enhanced at the same time. 3) The action potential became prolonged. 4) The E-C coupling gain was increased. 5) The systolic Ca(2+) transient was augmented. These data show that profound changes in E-C coupling already occur at the onset of hypertension and precede hypertrophy development. Prolonged action potential and increased E-C coupling gain synergistically increase the Ca(2+) transient. Functionally, augmented Ca(2+) transient causes enhancement of myocardial contraction that can partially compensate for the greater workload to maintain cardiac output. The increased Ca(2+) signaling cascade as a molecular mechanism linking hypertension to cardiac hypertrophy development is also discussed.  相似文献   

5.
The intracellular calcium ([Ca2+]i) transient in adult rat heart cells was examined using the fluorescent calcium indicator fluo-3 and a laser scanning confocal microscope. We find that the electrically evoked [Ca2+]i transient does not rise at a uniform rate at all points within the cell during the [Ca2+]i transient. These spatial non-uniformities in [Ca2+]i are observed immediately upon depolarization and largely disappear by the time the peak of the [Ca2+]i transient occurs. Importantly, some of the spatial non-uniformity in [Ca2+]i varies randomly in location from beat to beat. Analysis of the spatial character of the non-uniformities suggests that they arise from the stochastic nature of the activation of SR calcium-release channels. The non-uniformities in [Ca2+]i are markedly enhanced by low concentrations of Cd2+, suggesting that activation of L-type calcium channels is the primary source of activator calcium for the calcium transient. In addition, the pattern of calcium release in these conditions was very similar to the spontaneous calcium sparks that are observed under resting conditions and which are due to spontaneous calcium release from the SR. The spatial non-uniformity in the evoked [Ca2+]i transient under normal conditions can be explained by the temporal and spatial summation of a large number of calcium sparks whose activation is a stochastic process. The results are discussed with respect to a stochastic local control model for excitation-contraction (E-C) coupling, and it is proposed that the fundamental unit of E-C coupling consists of one dihydropyridine receptor activating a small group of ryanodine receptors (possibly four) in a square packing model.  相似文献   

6.
In cardiac muscle, excitation-contraction (E-C) coupling is determined by the ability of the sarcoplasmic reticulum (SR) to store and release Ca(2+). It has been hypothesized that the Ca(2+) sequestration and release mechanisms might be functionally linked to optimize the E-C coupling process. To explore the relationships between the loading status of the SR and functional state of the Ca(2+) release mechanism, we examined the effects of changes in SR Ca(2+) content on spontaneous Ca(2+) sparks in saponin-permeabilized and patch-clamped rat ventricular myocytes. SR Ca(2+) content was manipulated by pharmacologically altering the capacities of either Ca(2+) uptake or leak. Ca(2+) sparks were recorded using a confocal microscope and Fluo-3 and were quantified considering missed events. SR Ca(2+) content was assessed by application of caffeine. Exposure of permeabilized cells to anti-phospholamban antibodies elevated the SR Ca(2+) content and increased the frequency of sparks. Suppression of the SR Ca(2+) pump by thapsigargin lowered [Ca(2+)](SR) and reduced the frequency of sparks. The ryanodine receptor (RyR) blockers tetracaine and Mg(2+) transiently suppressed the frequency of sparks. Upon washout of the drugs, sparking activity transiently overshot control levels. Low doses of caffeine transiently potentiated sparking activity upon application and transiently depressed the sparks upon removal. In patch-clamped cardiac myocytes, exposure to caffeine produced only a transient increase in the probability of sparks induced by depolarization. We interpret these results in terms of a novel dynamic control scheme for SR Ca(2+) cycling. A central element of this scheme is a luminal Ca(2+) sensor that links the functional activity of RyRs to the loading state of the SR, allowing cells to auto-regulate the size and functional state of their SR Ca(2+) pool. These results are important for understanding the regulation of intracellular Ca(2+) release and contractility in cardiac muscle.  相似文献   

7.
H Takeshima  S Komazaki  K Hirose  M Nishi  T Noda    M Iino 《The EMBO journal》1998,17(12):3309-3316
The ryanodine receptor type 2 (RyR-2) functions as a Ca2+-induced Ca2+ release (CICR) channel on intracellular Ca2+ stores and is distributed in most excitable cells with the exception of skeletal muscle cells. RyR-2 is abundantly expressed in cardiac muscle cells and is thought to mediate Ca2+ release triggered by Ca2+ influx through the voltage-gated Ca2+ channel to constitute the cardiac type of excitation-contraction (E-C) coupling. Here we report on mutant mice lacking RyR-2. The mutant mice died at approximately embryonic day (E) 10 with morphological abnormalities in the heart tube. Prior to embryonic death, large vacuolate sarcoplasmic reticulum (SR) and structurally abnormal mitochondria began to develop in the mutant cardiac myocytes, and the vacuolate SR appeared to contain high concentrations of Ca2+. Fluorometric Ca2+ measurements showed that a Ca2+ transient evoked by caffeine, an activator of RyRs, was abolished in the mutant cardiac myocytes. However, both mutant and control hearts showed spontaneous rhythmic contractions at E9.5. Moreover, treatment with ryanodine, which locks RyR channels in their open state, did not exert a major effect on spontaneous Ca2+ transients in control cardiac myocytes at E9.5-11.5. These results suggest no essential contribution of the RyR-2 to E-C coupling in cardiac myocytes during early embryonic stages. Our results from the mutant mice indicate that the major role of RyR-2 is not in E-C coupling as the CICR channel in embryonic cardiac myocytes but it is absolutely required for cellular Ca2+ homeostasis most probably as a major Ca2+ leak channel to maintain the developing SR.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is a common genetic disease resulting from mutations in the dystrophin gene. The lack of dystrophin function as a cytoskeletal protein leads to abnormal intracellular Ca(2+) homeostasis, the actual source and functional consequences of which remain obscure. The mdx mouse, a mouse model of DMD, revealed alterations in contractile properties that are likely due to defective Ca(2+) handling. However, the exact mechanisms of the Ca(2+) handling defect are unclear. We performed suppressive subtractive hybridization to isolate differentially expressed genes between 5-month-old mdx and control mice. We observed a decrease in muscle A-kinase anchoring protein (mAKAP) in the mdx hearts. We noticed not only down-regulation of mAKAP mRNA but also decreased mRNA level of the molecules involved in Ca(2+) handling and excitation-contraction (E-C) coupling in the sarcoplasmic reticulum (SR), the cardiac ryanodine receptor, and the sarcoplasmic reticulum Ca(2+) ATPase. Therefore, dystrophin deficiency may cause an impairment of SR Ca(2+) homeostasis and E-C coupling in mdx hearts, in part, by decreased gene expression of molecules involved in SR Ca(2+) handling.  相似文献   

9.
The role of ryanodine receptor (RyR) in cardiac excitation-contraction (E-C) coupling in newborns (NB) is not completely understood. To determine whether RyR functional properties change during development, we evaluated cellular distribution and functionality of sarcoplasmic reticulum (SR) in NB rats. Sarcomeric arrangement of immunostained SR Ca(2+)-ATPase (SERCA2a) and the presence of sizeable caffeine-induced Ca2+ transients demonstrated that functional SR exists in NB. E-C coupling properties were then defined in NB and compared with those in adult rats (AD). Ca2+ transients in NB reflected predominantly sarcolemmal Ca2+ entry, whereas the RyR-mediated component was approximately 13%. Finally, the RyR density and functional properties at the single-channel level in NB were compared with those in AD. Ligand binding assays revealed that in NB, RyR density can be up to 36% of that found in AD, suggesting that some RyRs do not contribute to the Ca2+ transient. To test the hypothesis that RyR functional properties change during development, we incorporated single RyRs into lipid bilayers. Our results show that permeation and gating kinetics of NB RyRs are identical to those of AD. Also, endogenous ligands had similar effects on NB and AD RyRs: sigmoidal Ca2+ dependence, stronger Mg(2+)-induced inhibition at low cytoplasmic Ca2+ concentrations, comparable ATP-activating potency, and caffeine sensitivity. These observations indicate that NB rat heart contains fully functional RyRs and that the smaller contribution of RyR-mediated Ca2+ release to the intracellular Ca2+ transient in NB is not due to different single RyR channel properties or to the absence of functional intracellular Ca2+ stores.  相似文献   

10.
L-type Ca(2+) channel-mediated, Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the mature mammalian myocardium but is thought to be absent in the fetal and newborn mammalian myocardium. Furthermore, the characteristics and contributors of E-C coupling at the earliest developmental stages are poorly understood. In this study, we measured [(3)H](+)PN200-110 dihydropyridine binding capacity, functionality and expression of the L-type Ca(2+) channel, and cytosolic [Ca(2+)] ([Ca(2+)](i)) at various developmental stages (3, 6, 10, 20, and 56 days old) to characterize ontogenetic changes in E-C coupling. We found that 1) the whole cell L-type Ca(2+) channel peak current (I(Ca)) density increased slightly in parallel with cell growth, but the current-voltage relationship, the steady-state activation, and the maximum DHP binding and binding affinity did not exhibit significant developmental changes; 2) sarcoplasmic reticulum Ca(2+) dependence of inactivation rates of L-type Ca(2+) channel and peak of I(Ca) density were only observed after 10 days of age, which temporally coincides with transverse (T)-tubule formation; 3) the relationship between [Ca(2+)](i) and voltage changed from a linear relationship at the earliest developmental stages to a "bell-shaped" relationship at the later developmental stages, presumably corresponding to a switch from reverse-mode Na/Ca exchange-dependent to I(Ca)-dependent E-C coupling; and 4) the expression of two different splice variants of Ca(V)1.2, IVS3A and IVS3B, switched from predominantly IVS3A at the earliest stages to IVS3B at the later developmental stages. Our data suggest that whereas the density of functional dihydropyridine receptors (DHPRs) increases only slightly during ontogeny, the enhancement of functional coupling between DHPR and ryanodine receptor is dramatic between the second and third weeks after birth. Furthermore, we found that the differential expression of splice variants during development temporally correlated with the appearance of I(Ca)-dependent E-C coupling and T-tubule formation.  相似文献   

11.
The relationship between the molecular composition and organization of the triad junction and the development of excitation-contraction (E-C) coupling was investigated in cultured skeletal muscle. Action potential-induced calcium transients develop concomitantly with the first expression of the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR), which are colocalized in clusters from the time of their earliest appearance. These DHPR/RyR clusters correspond to junctional domains of the transverse tubules (T-tubules) and sarcoplasmic reticulum (SR), respectively. Thus, at first contact T-tubules and SR form molecularly and structurally specialized membrane domains that support E-C coupling. The earliest T-tubule/SR junctions show structural characteristics of mature triads but are diverse in conformation and typically are formed before the extensive development of myofibrils. Whereas the initial formation of T-tubule/SR junctions is independent of association with myofibrils, the reorganization into proper triads occurs as junctions become associated with the border between the A band and the I band of the sarcomere. This final step in triad formation manifests itself in an increased density and uniformity of junctions in the cytoplasm, which in turn results in increased calcium release and reuptake rates.  相似文献   

12.
Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes   总被引:2,自引:0,他引:2  
It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d myocytes) than when mediated by I(Ca) ( approximately 3.0 for 56d myocytes). We conclude that the lower-efficiency NCX-mediated CICR is a predominant mode of CICR in the earliest developmental stages that gradually decreases as the more efficient L-type Ca(2+) channel-mediated CICR increases in prominence with ontogeny.  相似文献   

13.
In skeletal muscle excitation-contraction (E-C) coupling, the depolarization signal is converted from the intracellular Ca2+ store into Ca2+ release by functional coupling between the cell surface voltage sensor and the Ca2+ release channel on the sarcoplasmic reticulum (SR). The signal conversion occurs in the junctional membrane complex known as the triad junction, where the invaginated plasma membrane called the transverse-tubule (T-tubule) is pinched from both sides by SR membranes. Previous studies have suggested that junctophilins (JPs) contribute to the formation of the junctional membrane complexes by spanning the intracellular store membrane and interacting with the plasma membrane (PM) in excitable cells. Of the three JP subtypes, both type 1 (JP-1) and type 2 (JP-2) are abundantly expressed in skeletal muscle. To examine the physiological role of JP-1 in skeletal muscle, we generated mutant mice lacking JP-1. The JP-1 knockout mice showed no milk suckling and died shortly after birth. Ultrastructural analysis demonstrated that triad junctions were reduced in number, and that the SR was often structurally abnormal in the skeletal muscles of the mutant mice. The mutant muscle developed less contractile force (evoked by low-frequency electrical stimuli) and showed abnormal sensitivities to extracellular Ca2+. Our results indicate that JP-1 contributes to the construction of triad junctions and that it is essential for the efficiency of signal conversion during E-C coupling in skeletal muscle.  相似文献   

14.
Recent physiological studies on the cardiovascular performance of tunas suggest that the elevated heart rates of these fish may rely on increased use of intracellular sarcoplasmic reticulum (SR) Ca2+ stores. In this study, we compare the cellular cardiac performance in endothermic tunas (bluefin, albacore, yellowfin) and their ectothermic sister taxa (mackerel) in response to acute temperature change. The cardiac sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) plays a major role during cardiac excitation-contraction (E-C) coupling, transporting Ca2+ from the cytosol into the lumen of the SR and thus promoting the relaxation of the muscle. Measurements of oxalate-supported Ca2+ uptake in SR-enriched ventricular vesicles indicated that tunas were capable of sustaining a rate of Ca2+ uptake that was significantly higher than the mackerel. Among tunas, the cold-tolerant bluefin had the highest rates of SR Ca2+ uptake and ATPase activity. The differences among Ca2+ uptake and ATP hydrolysis rates do not seem to result from intrinsic differences between the SERCA2 present in the different tunas, as shown by their similar temperature sensitivities and similar values for activation energy. Western blots reveal that increased SERCA2 protein content is associated with the higher Ca2+ uptake and ATPase activities seen in bluefin ventricles compared with albacore, yellowfin, and mackerel. We hypothesize that a key step in the evolution of high heart rate and high metabolic rate in tunas is increased activity of the SERCA2 enzyme. We also suggest that high levels of SERCA2 in bluefin tuna hearts may be important for retaining cardiac function at cold temperatures.  相似文献   

15.
T-tubules in mammalian ventricular myocytes constitute an elaborate system for coupling membrane depolarization with intracellular Ca(2+) signaling to control cardiac contraction. Deletion of t-tubules (detubulation) has been reported in heart diseases, although the complex nature of the cardiac excitation-contraction (E-C) coupling process makes it difficult to experimentally establish causal relationships between detubulation and cardiac dysfunction. Alternatively, numerical simulations incorporating the t-tubule system have been proposed to elucidate its functional role. However, the majority of models treat the subcellular spaces as lumped compartments, and are thus unable to dissect the impact of morphological changes in t-tubules. We developed a 3D finite element model of cardiomyocytes in which subcellular components including t-tubules, myofibrils, sarcoplasmic reticulum, and mitochondria were modeled and realistically arranged. Based on this framework, physiological E-C coupling was simulated by simultaneously solving the reaction-diffusion equation and the mechanical equilibrium for the mathematical models of electrophysiology and contraction distributed among these subcellular components. We then examined the effect of detubulation in this model by comparing with and without the t-tubule system. This model reproduced the Ca(2+) transients and contraction observed in experimental studies, including the response to beta-adrenergic stimulation, and provided detailed information beyond the limits of experimental approaches. In particular, the analysis of sarcomere dynamics revealed that the asynchronous contraction caused by a large detubulated region can lead to impairment of myocyte contractile efficiency. These data clearly demonstrate the importance of the t-tubule system for the maintenance of contractile function.  相似文献   

16.
Dystrophin is absent in muscle fibers of patients with Duchenne muscular dystrophy (DMD) and in muscle fibers from the mdx mouse, an animal model of DMD. Disrupted excitation-contraction (E-C) coupling has been postulated to be a functional consequence of the lack of dystrophin, although the evidence for this is not entirely clear. We used mechanically skinned fibers (with a sealed transverse tubular system) prepared from fast extensor digitorum longus muscles of wild-type control and dystrophic mdx mice to test the hypothesis that dystrophin deficiency would affect the depolarization-induced contractile response (DICR) and sarcoplasmic reticulum (SR) function. DICR was similar in muscle fibers from mdx and control mice, indicating normal voltage regulation of Ca2+ release. Nevertheless, rundown of DICR (<50% of initial) was reached more rapidly in fibers from mdx than control mice [control: 32 +/- 5 depolarizations (n = 14 fibers) vs. mdx: 18 +/- 1 depolarizations (n = 7) before rundown, P < 0.05]. The repriming rate for DICRs was decreased in fibers from mdx mice, with lower submaximal DICR observed after 5, 10, and 20 s of repriming compared with fibers from control mice (P < 0.05). SR Ca2+ reloading was not different in fibers from control and mdx mice, and no difference was observed in SR Ca2+ leak. Caffeine (2-7 mM)-induced contraction was diminished in fibers from mdx mice compared with control (P < 0.05), indicating depressed SR Ca2+ release channel activity. Our findings indicate that fast fibers from mdx mice exhibit some impairment in the events mediating E-C coupling and SR Ca2+ release channel activity.  相似文献   

17.
《The Journal of cell biology》1993,123(5):1161-1174
Excitation-contraction (E-C) coupling is thought to involve close interactions between the calcium release channel (ryanodine receptor; RyR) of the sarcoplasmic reticulum (SR) and the dihydropyridine receptor (DHPR) alpha 1 subunit in the T-tubule membrane. Triadin, a 95- kD protein isolated from heavy SR, binds both the RyR and DHPR and may thus participate in E-C coupling or in interactions responsible for the formation of SR/T-tubule junctions. Immunofluorescence labeling of normal mouse myotubes shows that the RyR and triadin co-aggregate with the DHPR in punctate clusters upon formation of functional junctions. Dysgenic myotubes with a deficiency in the alpha 1 subunit of the DHPR show reduced expression and clustering of RyR and triadin; however, both proteins are still capable of forming clusters and attaining mature cross-striated distributions. Thus, the molecular organization of the RyR and triadin in the terminal cisternae of SR as well as its association with the T-tubules are independent of interactions with the DHPR alpha 1 subunit. Analysis of calcium transients in dysgenic myotubes with fluorescent calcium indicators reveals spontaneous and caffeine-induced calcium release from intracellular stores similar to those of normal muscle; however, depolarization-induced calcium release is absent. Thus, characteristic calcium release properties of the RyR do not require interactions with the DHPR; neither do they require the normal organization of the RyR in the terminal SR cisternae. In hybrids of dysgenic myotubes fused with normal cells, both action potential- induced calcium transients and the normal clustered organization of the RyR are restored in regions expressing the DHPR alpha 1 subunit.  相似文献   

18.
Muscular dysgenesis (mdg) in mice causes the failure of excitation-contraction (E-C) coupling in skeletal muscle. Cultured dysgenic muscle fails to contract upon depolarization, lacks typical muscle ultrastructure, including normal triads, and lacks functional voltage-dependent slow calcium channels. We show that normal rodent fibroblasts and 3T3 fibroblasts "rescue" dysgenic myotubes, reestablishing contractions (i.e., E-C coupling), normal ultrastructure, and functional slow calcium channels. These results support the finding that the expression of the slow calcium channel is affected in the mdg mutation and that this protein is essential for E-C coupling. Additionally, fibroblast rescue provides a system for examining the mechanisms of heterotypic cellular influence on cell function.  相似文献   

19.
Although L-type Ca2+ channels have been shown to play a central role in cardiac excitation-contraction (E-C) coupling, little is known about the role of T-type Ca2+ channels in this process. We used the amphotericin B perforated patch method to study the possible role of T-type Ca2+ current in E-C coupling in isolated canine Purkinje myocytes where both Ca2+ currents are large. T-type Ca2+ current was separated from L-type Ca2+ current using protocols employing the different voltage dependencies of the channel types and their different sensitivities to pharmacological blockade. We showed that Ca2+ admitted through either T- or L-type Ca2+ channels is capable of initiating contraction and that the contractions depended on Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR). The contractions, however, had different properties. Those initiated by Ca2+ entry through T-type Ca2+ channels had a longer delay to the onset of shortening, slower rates of shortening and relaxation, lower peak shortening, and longer time to peak shortening. These differences were present even when L-type Ca2+ current amplitude, or charge entry, was less than that of T-type Ca2+ current, suggesting that Ca2+ entry through the T-type Ca2+ channel is a less effective signal transduction mechanism to the SR than is Ca2+ entry through the L-type Ca2+ channel. We conclude that under our experimental conditions in cardiac Purkinje cells Ca2+ entry through the T-type Ca2+ channel can activate cell contraction. However, Ca2+ entry through the L-type Ca2+ channel is a more effective signal transduction mechanism. Our findings support the concept that different structural relationships exist between these channel types and the SR Ca2+ release mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号