首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Maillard reaction in vivo entails alteration of proteins or free amino acids by non-enzymatic glycation or glycoxidation. The resulting modifications are called advanced glycation end products (AGEs) and play a prominent role in various pathologies, including normoglycemic uremia. Recently, we established a new class of lysine amide modifications in vitro. Now, human plasma levels of the novel amide-AGEs N(6)-acetyl lysine, N(6)-formyl lysine, N(6)-lactoyl lysine, and N(6)-glycerinyl lysine were determined by means of LC-MS/MS. They were significantly higher in uremic patients undergoing hemodialysis than in healthy subjects. Model reactions with N(1)-t-butoxycarbonyl-lysine under physiological conditions confirmed 1-deoxy-d-erythro-hexo-2,3-diulose as an immediate precursor. Because formation of N(6)-formyl lysine from glucose responded considerably to the presence of oxygen, glucosone was identified as another precursor. Comparison of the in vivo results with the model experiments enabled us to elucidate possible formation pathways linked to Maillard chemistry. The results strongly suggest a major participation of non-enzymatic Maillard mechanisms on amide-AGE formation pathways in vivo, which, in the case of N(6)-acetyl lysine, parallels enzymatic processes.  相似文献   

2.
Glycation or the Maillard reaction in proteins forms advanced glycation end products (AGEs) that contribute to age- and diabetes-associated changes in tissues. Dideoxyosones, which are formed by the long-range carbonyl shift of the Amadori product, are newly discovered intermediates in the process of AGE formation in proteins. They react with o-phenylenediamine (OPD) to produce quinoxalines. We developed a monoclonal antibody against 2-methylquinoxaline-6-carboxylate coupled to keyhole limpet hemocyanin. The antibody reacted strongly with ribose and fructose (+OPD)-modified RNase A and weakly with glucose and ascorbate (+OPD)-modified RNase A. Reaction with substituted quinoxalines indicated that this antibody favored the 2-methyl group on the quinoxaline ring. We used high performance liquid chromatography to isolate and purify three antibody-reactive products from a reaction mixture of N alpha-hippuryl-L-lysine+ribose+OPD. The two most reactive products were identified as diastereoisomers of N1-benzoylglycyl-N6-(2-hydroxy-3-quinoxalin-2-ylpropyl)lysine and the other less reactive product as N1-benzoylglycyl-N6-[2-hydroxy-2-(3-methylquinoxalin-2-yl)ethyl]lysine. Our study confirms that dideoxyosone intermediates form during glycation and offers a new tool for the study of this important pathway in diabetes and aging.  相似文献   

3.
During aging, human lens proteins undergo several post-translational modifications, one of which is glycation. This process leads to the formation of advanced glycation end products (AGEs) which accumulate with time possibly leading to the formation of cataract. alphaB-Crystallin, a predominant protein in the lens, is a member of the small heat shock proteins (sHSPs) which are a ubiquitous class of molecular chaperones that interact with partially denatured proteins to prevent aggregation. This chaperone function is considered to be vital for the maintenance of lens transparency and in the prevention of cataract. In the present study, we introduced an analog of the advanced glycation end product, OP-lysine, at the 90th position of a mutated human alphaB-crystallin (K90C) by covalent modification of the cysteine residue with N-(2-bromoethyl)-3-oxidopyridinium hydrobromide. The AGE-modified K90C-alphaB-crystallin is termed as K90C-OP. We compared the structural and functional properties of K90C-OP with the original K90C mutant, with K90C chemically modified back to a lysine analog (K90C-AE), and with wild-type human alphaB-crystallin. Modified K90C-OP showed decreased intrinsic tryptophan fluorescence and bis-ANS binding without significant alterations in either the secondary, tertiary, or quaternary structure. K90C-OP, however, exhibited a reduced efficiency in the chaperoning ability with alcohol dehydrogenase, insulin, and citrate synthase as substrates compared to the other alpha-crystallin proteins. Therefore, introduction of a single AGE near the chaperone site of human alphaB-crystallin can alter the chaperoning ability of the protein with only minor changes in the local environment of the protein.  相似文献   

4.
Reaction of protein amino groups with glucose (the Maillard reaction) leads from early stage products such as Schiff base and Amadori products to advanced glycation end products (AGE), structures implicated in diabetic complications and the aging process. We have prepared the polyclonal anti-AGE antibody and the monoclonal anti-AGE antibody against AGE-bovine serum albumin and made an immunochemical approach to characterize AGE structures. Both polyclonal and monoclonal antibodies reacted with AGE-proteins such as AGE-bovine serum albumin, AGE-human serum albumin, and AGE-hemoglobin but not with unmodified counterparts. Treatments of these AGE-proteins with borohydride had no effect on the immunoreactivity. Moreover, fructosyl-epsilon-caproic acid, a synthetic Amadori compound, did not serve as an antigen, indicating that these antibodies were specific for AGE products but not for early stage products of the Maillard reaction. In addition, these antibodies were also able to recognize AGE products prepared either from alpha-tosyl-1-lysine, alpha-tosyl-1-lysine methyl ester, monoaminocarboxylic acid such as epsilon-aminocaproic acid, gamma-amino-n-butyric acid, and beta-alanine. Thus, these results strongly suggest the presence of a common structure in AGE preparations, regardless of whether AGE products are generated from proteins, amino acids, or monoaminocarboxylic acids.  相似文献   

5.
α,β-Unsaturated aldehydes generated during lipid peroxidation, such as 4-oxoalkenals and 4-hydroxyalkenals, can give rise to protein degeneration in a variety of pathological states. Although the covalent modification of proteins by these end products has been well studied, the reactivity of unstable intermediates possessing a hydroperoxy group, such as 4-hydroperoxy-2-nonenal (HPNE), with protein has received little attention. We have now established a unique protein modification in which the 4-hydroperoxy group of HPNE is involved in the formation of structurally unusual lysine adducts. In addition, we showed that one of the HPNE-specific lysine adducts constitutes the epitope of a monoclonal antibody raised against the HPNE-modified protein. Upon incubation with bovine serum albumin, HPNE preferentially reacted with the lysine residues. By employing N(α)-benzoylglycyl-lysine, we detected two major products containing one HPNE molecule per peptide. Based on the chemical and spectroscopic evidence, the products were identified to be the N(α)-benzoylglycyl derivatives of N(ε)-4-hydroxynonanoic acid-lysine and N(ε)-4-hydroxy-(2Z)-nonenoyllysine, both of which are suggested to be formed through mechanisms in which the initial HPNE-lysine adducts undergo Baeyer-Villiger-like reactions proceeding through an intramolecular oxidation catalyzed by the hydroperoxy group. On the other hand, using an HPNE-modified protein as the immunogen, we raised a monoclonal antibody against the HPNE-modified protein and identified one of the HPNE-specific lysine adducts, N(ε)-4-hydroxynonanoic acid-lysine, as an intrinsic epitope of the monoclonal antibody. Furthermore, we demonstrated that the HPNE-specific epitopes were produced not only in the oxidized low density lipoprotein in vitro but also in the atherosclerotic lesions. These results indicated that HPNE is not just an intermediate but also a reactive molecule that could covalently modify proteins in biological systems.  相似文献   

6.
Advanced glycation end products (AGEs) contribute to changes in protein conformation, loss of function, and irreversible crosslinking. Using a library of dipeptides on cellulose membranes (SPOT library), we have developed an approach to systematically assay the relative reactivities of amino acid side chains and the N-terminal amino group to sugars and protein-AGEs. The sugars react preferentially with cysteine or tryptophan when both the alpha-amino group and the side chains are free. In peptides with blocked N-terminus and free side chains, cysteine, lysine, and histidine were preferred. Crosslinking of protein-AGEs to dipeptides with free side chains and blocked N termini occurred preferentially to arginine and tryptophan. Dipeptide SPOT libraries are excellent tools for comparing individual reactivities of amino acids for nonenzymatic modifications, and could be extended to other chemically reactive molecules.  相似文献   

7.
The Maillard reaction, or nonenzymatic browning, proceeds in vivo, and the resulting protein modifications (advanced glycation end products) have been associated with various pathologies. Despite intensive research only very few structures have been established in vivo. We report here for the first time N(6)-[2-[(5-amino-5-carboxypentyl)amino]-2-oxoethyl]lysine (GOLA) and N(6)-glycoloyllysine (GALA) as prototypes for novel amide protein modifications produced by reducing sugars. Their identity was confirmed by independent synthesis and coupled liquid chromatography/mass spectrometry. Model reactions with N(alpha)-t-butoxycarbonyl-lysine showed that glyoxal and glycolaldehyde are immediate precursors, and reaction pathways are directly linked to N(epsilon)-carboxymethyllysine via glyoxal-imine structures. GOLA, the amide cross-link, and 1,3-bis(5-amino-5-carboxypentyl)imidazolium salt (GOLD), the imidazolium cross-link, share a common intermediate. The ratio of GOLA to GOLD is greater when glyoxal levels are low at constant lysine concentrations. GOLA and GALA formation from the Amadori product of glucose and lysine depends directly upon oxidation. With the advanced glycation end product inhibitors aminoguanidine and pyridoxamine we were able to dissect oxidative fragmentation of the Amadori product as a second mechanism of GOLA formation exactly coinciding with N(epsilon)-carboxymethyllysine synthesis. In contrast, the formation of GALA appears to depend solely upon glyoxal-imines. After enzymatic hydrolysis GOLA was found at 66 pmol/mg of brunescent lens protein. This suggests amide protein modifications as important markers of pathophysiological processes.  相似文献   

8.
Glycolaldehyde (GA) is formed from serine by action of myeloperoxidase and reacts with proteins to form several products. Prominent among them is N(epsilon)-(carboxymethyl)lysine (CML), which is also known as one of the advanced glycation end products. Because CML is formed from a wide range of precursors, we have attempted to identify unique structures characteristic of the reaction of GA with protein. To this end, monoclonal (GA5 and 1A12) and polyclonal (non-CML-GA) antibodies specific for GA-modified proteins were prepared. These antibodies specifically reacted with GA-modified and with hypochlorous acid-modified BSA, but not with BSA modified by other aldehydes, indicating that the epitope of these antibodies could be a specific marker for myeloperoxidase-induced protein modification. By HPLC purification from GA-modified N(alpha)-(carbobenzyloxy)-l-lysine, GA5-reactive compound was isolated, and its chemical structure was characterized as 3-hydroxy-4-hydroxymethyl-1-(5-amino-5-carboxypentyl) pyridinium cation. This compound named as GA-pyridine was recognized both by 1A12 and non-CML-GA, indicating that GA-pyridine is an important antigenic structure in GA-modified proteins. Immunohistochemical studies with GA5 demonstrated the accumulation of GA-pyridine in the cytoplasm of foam cells and extracellularly in the central region of atheroma in human atherosclerotic lesions. These results suggest that myeloperoxidase-mediated protein modification via GA may contribute to atherogenesis.  相似文献   

9.
N epsilon-(Carboxymethyl)lysine (CML) has been identified as a product of oxidation of fructoselysine (FL) in glycated (nonenzymatically glycosylated) proteins in vitro and has also been detected in human tissues and urine [Ahmed et al. (1986) J. Biol. Chem. 261, 4889-4894]. In this study, we compare the amounts of CML and FL in normal human lens proteins, aged 0-79 years, using specific and sensitive assays based on selected ion monitoring gas chromatography-mass spectrometry. Our results indicate that the lens content of FL increases significantly between infancy and about age 5 but that there is only a slight, statistically insignificant increase in FL between age 5 and 80 (mean +/- SD = 1.4 +/- 0.4 mmol of FL/mol of Lys). In contrast, the lens content of the oxidation product, CML, increased linearly with age, ranging from trace levels at infancy up to 8 mmol of CML/mol of lysine at age 79. The ratio of CML to FL also increased linearly from 0.5 to 5 mol of CML/mol of FL between age 1 and 79, respectively. These results indicate that CML, rather than FL, is the major product of glycation detectable in adult human lens protein. The age-dependent accumulation of CML in lens protein indicates that products of both glycation and oxidation accumulate in the lens with age, while the constant rate of accumulation of CML in lens with age argues against an age-dependent decline in free radical defense mechanisms in this tissue.  相似文献   

10.
Acrolein, a representative carcinogenic aldehyde that could be ubiquitously generated in biological systems under oxidative stress, shows facile reactivity with the epsilon-amino group of lysine to form N(epsilon)-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) as the major product (Uchida, K., Kanematsu, M., Morimitsu, Y., Osawa, T., Noguchi, N., and Niki, E. (1998) J. Biol. Chem. 273, 16058-16066). In the present study, we determined the electrophilic potential of FDP-lysine and established a novel mechanism of protein thiolation in which the FDP-lysine generated in the acrolein-modified protein reacts with sulfhydryl groups to form thioether adducts. When a sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase, was incubated with acrolein-modified bovine serum albumin in sodium phosphate buffer (pH 7.2) at 37 degrees C, a significant loss of sulfhydryl groups, which was accompanied by the loss of enzyme activity and the formation of high molecular mass protein species (>200 kDa), was observed. The FDP-lysine adduct generated in the acrolein-modified protein was suggested to represent a thiol-reactive electrophile based on the following observations. (i) N(alpha)-acetyl-FDP-lysine, prepared from the reaction of N(alpha)-acetyl lysine with acrolein, was covalently bound to glyceraldehyde-3-phosphate dehydrogenase. (ii) The FDP-lysine derivative reacted with glutathione to form a GSH conjugate. (iii) The acrolein-modified bovine serum albumin significantly reacted with GSH to form a glutathiolated protein. Furthermore, the observation that the glutathiolated acrolein-modified protein showed decreased immunoreactivity with an anti-FDP-lysine monoclonal antibody suggested that the FDP-lysine residues in the acrolein-modified protein served as the binding site of GSH. These data suggest that thiolation of the protein-bound acrolein may be involved in redox alteration under oxidative stress, whereby oxidative stress generates the increased production of acrolein and its protein adducts that further potentiate oxidative stress via the depletion of GSH in the cells.  相似文献   

11.
Immunological strategies for the detection of N(epsilon)-(carboxymethyl)lysine (CML), one of the major antigenic structures of advanced glycation end products (AGE), are widely applied to demonstrate the contribution of CML to the pathogeneses of diabetic complications and atherosclerosis. Recent studies have indicated that methylglyoxal (MG), which is generated intracellularly through the Embden-Meyerhof and polyol pathways, reacts with proteins to form MG-derived AGE structures such as N(epsilon)-(carboxyethyl)lysine (CEL). In order to accurately measure the CML contents of the proteins by means of an immunochemical method, we prepared CML-specific antibodies since conventionally prepared polyclonal anti-CML antibody and monoclonal anti-CML antibody (6D12) cross-reacted with CEL. To prepare polyclonal CML-specific antibody, CML-keyhole limpet hemocyanin (CML-KLH) were immunized with rabbit and CEL-reactive antibody was removed by CEL-conjugated affinity chromatography. Monoclonal antibody specific for CML (CMS-10) was obtained by immunization with CML-KLH, followed by successive screening according to CML-bovine serum albumin (CML-BSA)-positive but CEL-BSA-negative criteria. Both polyclonal CML-specific antibody and CMS-10 significantly reacted with CML-proteins but not with CEL-proteins. It is likely therefore that these antibodies can recognize the difference of one methyl group between CML and CEL. Moreover, CMS-10 significantly reacted with BSA modified with several aldehydes and its reactivity was highly correlated with the CML content, which was determined by high performance liquid chromatography, whereas 6D12 showed a low correlation. These results indicate that CMS-10 can be used to determine the CML contents of modified proteins in a more specific way.  相似文献   

12.
N epsilon-(Carboxymethyl)lysine (CML) is formed on oxidative cleavage of carbohydrate adducts to lysine residues in glycated proteins in vitro [Ahmed et al. (1988) J. Biol. Chem. 263, 8816-8821; Dunn et al. (1990) Biochemistry 29, 10964-10970]. We have shown that, in human lens proteins in vivo, the concentration of fructose-lysine (FL), the Amadori adduct of glucose to lysine, is constant with age, while the concentration of the oxidation product, CML, increases significantly with age [Dunn et al. (1989) Biochemistry 28, 9464-9468]. In this work we extend our studies to the analysis of human skin collagen. The extent of glycation of insoluble skin collagen was greater than that of lens proteins (4-6 mmol of FL/mol of lysine in collagen versus 1-2 mmol of FL/mol of lysine in lens proteins), consistent with the lower concentration of glucose in lens, compared to plasma. In contrast to lens, there was a slight but significant age-dependent increase in glycation of skin collagen, 33% between ages 20 and 80. As in lens protein, CML, present at only trace levels in neonatal collagen, increased significantly with age, although the amount of CML in collagen at 80 years of age, approximately 1.5 mmol of CML/mol of lysine, was less than that found in lens protein, approximately 7 mmol of CML/mol of lysine. The concentration of N epsilon-(carboxymethyl)hydroxylysine (CMhL), the product of oxidation of glycated hydroxylysine, also increased with age in collagen, in parallel with the increase in CML, from trace levels at infancy to approximately 5 mmol of CMhL/mol of hydroxylysine at age 80.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To systematically evaluate the modification of lens proteins by aldose and dicarbonyl sugars during the glycation process, the sugar-dependent incorporation of Lys and Arg, SDS–PAGE profile, amino acid analysis, and fluorophore formation (excitation 370 nm/emission 440 nm) were determined. Reaction mixtures with glycolaldehyde, glyceraldehyde, threose and 3-deoxythreosone showed the greatest extent of Lys crosslinking and fluorescence formation. An increase in fluorescence intensity, but a decrease in Lys and Arg crosslinking, was found with glyoxal, methylglyoxal, hydroxypyruvaldehyde and threosone. In addition glyoxal, methylglyoxal and hydroxypyruvaldehyde caused the specific loss of Arg residues in lens proteins. Reaction mixtures with xylose, xylosone, glucose, glucosone and 3-deoxyglucosone exhibited the least protein modifications; however, incubation with 3-deoxyxylosone resulted in extensive loss of Lys and Arg residues, a higher extent of Lys or Arg crosslinking and significant fluorophore formation. Each sugar exhibited unique characteristics in the modification of lens proteins by glycation. To validly compare the protein modifications occurring during glycation reactions, a systematic approach was employed to evaluate the potential role of aldose and dicarbonyl sugars in protein modification.  相似文献   

14.
Proteins can be chemically modified by sugars by glycation, or the Maillard reaction. The Maillard reaction produces irreversible adducts on proteins that are collectively known as advanced glycation end products, or AGEs. Recent studies indicate that several alpha-dicarbonyl compounds, including glyoxal (GXL), are precursors of AGEs in vivo. We developed antibodies against a GXL-modified protein (GXL-AGE) and purified a mixture of GXL-AGE-specific antibodies by chromatography on GXL-modified bovine serum albumin (BSA-GXL) coupled to EAH-Sepharose. This preparation was then processed on a human serum albumin-carboxymethyllysine (HSA-CML)-NHS-Sepharose to remove CML-specific antibodies. We used the resulting purified antibody in a competitive ELISA to probe GXL-AGEs in vitro and in vivo. We found increasingly greater antibody binding with increasing concentrations of GXL-modified BSA, but the antibody failed to react with either free CML or protein-bound CML. Incubation experiments with BSA revealed that glyceraldehyde, ribose and threose could be precursors of GXL-AGEs as well. Experiments in which GXL was incubated with N-alpha-acetyl amino acids showed that the antibody reacts mostly with lysine modifications. The GXL-derived lysine-lysine crosslinking structure, GOLD was found to be one of the antigenic epitopes for the antibody. Analysis of human plasma proteins revealed significantly higher levels of GXL-AGE antigens in type II diabetic subjects compared with normal controls (P<0.0001). We also found GXL-AGEs in human lens proteins. Bovine aortic endothelial cells cultured for 7 days with 30 mM glucose did not accumulate intracellular GXL-AGEs. These studies underscore the importance of GXL for extracellular AGE formation (except in lens where it is likely to be formed intracellularly) and suggest that changes associated with age and diabetes might be prevented by alteration of GXL-AGE formation.  相似文献   

15.
Nonenzymatic modification of proteins is one of the key pathogenic factors in diabetic complications. Uncovering the mechanisms of protein damage caused by glucose is fundamental to understanding this pathogenesis and in the development of new therapies. We investigated whether the mechanism involving reactive oxygen species can propagate protein damage in glycation reactions beyond the classical modifications of lysine and arginine residues. We have demonstrated that glucose can cause specific oxidative modification of tryptophan residues in lysozyme and inhibit lysozyme activity. Furthermore, modification of tryptophan residues was also induced by purified albumin-Amadori, a ribose-derived model glycation intermediate. The AGE inhibitor pyridoxamine (PM) prevented the tryptophan modification, whereas another AGE inhibitor and strong carbonyl scavenger, aminoguanidine, was ineffective. PM specifically inhibited generation of hydroxyl radical from albumin-Amadori and protected tryptophan from oxidation by hydroxyl radical species. We conclude that oxidative degradation of either glucose or the protein-Amadori intermediate causes oxidative modification of protein tryptophan residues via hydroxyl radical and can affect protein function under physiologically relevant conditions. This oxidative stress-induced structural and functional protein damage can be ameliorated by PM via sequestration of catalytic metal ions and scavenging of hydroxyl radical, a mechanism that may contribute to the reported therapeutic effects of PM in the complications of diabetes.  相似文献   

16.
The autoxidation of ascorbic acid (ASA) leads to the formation of compounds which are capable of glycating and crosslinking proteins in vitro. When the soluble crystallins from bovine lens were incubated with ASA in the presence of sodium cyanoborohydride, a single major adduct was observed, whose appearance correlated with the loss of lysine. When polylysine was reacted with equivalent amounts of ASA under the same conditions, this product represented half of the total lysine content after four weeks of incubation at 37 degrees C. This adduct was isolated and identified as N epsilon-(carboxymethyl)lysine (CML) by TLC, GC/MS and amino acid analysis. Several oxidation products of ASA were each reacted with polylysine in the presence of sodium cyanoborohydride to identify the reactive species. CML was the major adduct formed with either ASA and dehydroascorbic acid (DHA). Markedly diminished amounts were seen with L-2,3-diketogulonic acid (DKG), and L-threose, while no CML was formed with L-threo-pentos-2-ulose (L-xylosone). In the absence of sodium cyanoborohydride the yield of CML was similar with each of the ASA autoxidation products and required oxygen. Reactions with [1-14C]ASA gave rise to [14C]CML, but only with NaCNBH3 present. At least two routes of CML formation appear to be operating depending upon whether NaCNBH3 is present to reduce the putative Schiff base formed between lysine and DHA.  相似文献   

17.
Aquilina JA  Carver JA  Truscott RJ 《Biochemistry》2000,39(51):16176-16184
3-Hydroxykynurenine (3OHKyn) is present in the mammalian lens as a UV filter and is formed from kynurenine in the tryptophan metabolic pathway. 3OHKyn is a readily autoxidized o-aminophenol which binds to proteins in vitro. The lens, particularly its central region, the nucleus, becomes increasingly oxidized with age. Under such conditions, the oxidation products of 3OHKyn may bind to lens proteins and contribute to nuclear cataract formation. The purpose of this study was to determine the structures of in vitro reaction products of 3OHKyn with model peptides as a general model for 3OHKyn modification of proteins. 3OHKyn was incubated with the dipeptide glycylglycine (GG) and the tetrapeptide tuftsin (sequence TKPR) under oxidizing conditions, and the reaction products were characterized by a variety of spectroscopic techniques. The major 3OHKyn-GG reaction product involves formation of a benzimidazole moiety between the GG N-terminus and the oxidized amino and/or phenol groups of 3OHKyn. In contrast, tuftsin, which has an N-terminal threonine, forms predominantly a cross-linked dimer with oxidized 3OHKyn. This product is analogous in structure to the dimeric reaction product, quinilinobenzoxamine, formed between oxidized 3OHKyn and glycyllysine [Aquilina, J. A., et al. (1999) Biochemistry 38, 11455-11464], which contains a benzoxazole moiety. The identification of a tuftsin dimer suggests that 3OHKyn can react with any peptide having a free alpha-amino group, via a general side chain elimination mechanism. The identification of both benzimidazole and benzoxazole adducts in peptides with a free N-terminus suggests that peptide amino groups can react initially at either the aromatic amino or hydroxyl group of oxidized 3OHKyn. The proportion of each adduct may change, however, depending on the amino acid sequence at the N-terminus.  相似文献   

18.
Proteins are subject of posttranslational modification by sugars and their degradation products in vivo. The process is often referred as glycation. L-Dehydroascorbic acid (DHA), an oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. A new product of modification of lysine epsilon -amino group by DHA was discovered as a result of the interaction between Boc-Lys and dehydroascorbic acid. The chromatographic and spectral analyses revealed that the structure of the product was 1-(5-ammonio-5-carboxypentyl)-3-oxido-4-(hydroxymethyl)pyridinium. The same compound was isolated from DHA modified calf lens protein after hydrolysis and chromatographic separation. The study confirmed that L-erythrulose is an important intermediate of modification of proteins by DHA. The structure of the reported product and in vitro experiments suggested that L-erythrulose could further transform to L-threose, L-erythrose and glycolaldehyde under conditions similar to physiological. The present study revealed that the modification of epsilon -amino groups of lysine residues by DHA is a complex process and could involve a number of reactive carbonyl species.  相似文献   

19.
Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p < 0.05). In water-insoluble proteins, only 3-deoxythreosone and threosone were detected, whereby the level of 3-deoxythreosone was ~20 times higher than the level of threosone. The identification of 3-deoxythreosone as the major degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo.  相似文献   

20.
Streptococcus pneumoniae group 9 includes four capsular polysaccharide types: 9A, 9L, 9N and 9V. We have generated four mouse monoclonal antibodies against group 9 polysaccharide using heat-treated S. pneumoniae strains of different capsular polysaccharides types as immunogens. The specificities of the monoclonal antibodies were determined by ELISA using capsular polysaccharide directly coated to the wells as antigens and by dot blotting with heat-treated bacteria. Two groups of monoclonal antibodies were found. The first group included two monoclonal antibodies which were found to be capsular type specific. The second group was monoclonal antibodies that bound to epitopes shared by two or three pneumococcal group 9 types. The monoclonal antibody 204,A-4 (IgM) was found to be specific for S. pneumoniae type 9N. The binding of the type 9V specific monoclonal antibody 206,F-5 (IgG1) was found to be dependent upon O-acetyl groups. Monoclonal antibody 205,F-3 (IgM) reacted also with type 9V, but was found to cross-react with types 9A and 9L. The binding of this monoclonal antibody to polysaccharide 9V was not dependent upon O-acetyl moieties. The fourth monoclonal antibody (214,G-5, isotype IgM) did not show any correlation between reactivity with isolated polysaccharides and dot blotting with relevant bacteria. The monoclonal antibody reacted with polysaccharides 9A and 9L in ELISA, but not with the homologous bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号