首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colored light modifies the relative concentration of chlorophyll-forms of the diatom Phaeodactylum tricornutum compared to white-light control. No change in the ratio carotenoids/chlorophylls was observed after 4 days exposure to green light (max: 530 nm), blue light (max: 470 nm) or red light ( > 650 nm) of same intensity.However, the absorption spectra were modified, the content in Ca 684, Ca 690, Ca 699 forms increased in red and green light cultures and photosynthetic unit size of PS II decreased by 30% in green and blue light cultures.Fluorescence emission and fluorescence excitation spectra according to the Butler and Kitajima method (1975) were carried out for each culture. Ca 669 form was predominant in the two photosystems. The newly appeared far red forms fluoresce at 715 nm like PS I forms.We conclude that these new forms originated in a rearrangement of PS II forms. They do not transmit excitation energy to reaction center of PS I and are disconnected from the other chlorophyll-forms of the photosynthetic antennae.Abbreviations ABS absorption - Ca chlorophyll-complex - chla chlorophyll a - chl c chlorophyll c - chl t total chlorophylls - D.C.M.U. 3-(3, 4 dichlorophenyl) 1-diméthyl-urea - dv division - F fluorescence - PS I and PS II photosystem I and photosystem II  相似文献   

2.
血清蛋白与4,5-二溴荧光素相互作用及其分析应用的研究   总被引:2,自引:0,他引:2  
在 0 .10mol/mL的醋酸溶液中 ,4,5 二溴荧光素能与血清蛋白形成稳定的复合物 ,最大吸收波长 482nm ,与试剂比较 ,红移了 12nm。据此建立了测定血清蛋白的方法 ,用于BSA和HSA的测定 ,分别在 2~ 14mg·L-1有线性关系 ,表观摩尔吸光系数分别为 3.12× 10 5L·mol-1·cm-1和 3.2 7× 10 5L·mol-1·cm-1。应用该法测定了人血清样品总蛋白含量 ,结果令人满意。  相似文献   

3.
A limiting factor for photosynthetic organisms is their light-harvesting efficiency, that is the efficiency of their conversion of light energy to chemical energy. Small modifications or variations of chlorophylls allow photosynthetic organisms to harvest sunlight at different wavelengths. Oxygenic photosynthetic organisms usually utilize only the visible portion of the solar spectrum. The cyanobacterium Acaryochloris marina carries out oxygenic photosynthesis but contains mostly chlorophyll d and only traces of chlorophyll a. Chlorophyll d provides a potential selective advantage because it enables Acaryochloris to use infrared light (700-750 nm) that is not absorbed by chlorophyll a. Recently, an even more red-shifted chlorophyll termed chlorophyll f has been reported. Here, we discuss using modified chlorophylls to extend the spectral region of light that drives photosynthetic organisms.  相似文献   

4.
The kinetics of the absorbance changes of chlorophyll alphaI (P-700) and plastoquinone induced by xenon flashes of saturating intensity were studied in spinach chloroplasts. 1. The total amount of chlorophyll alphaI is compared with that amount being reduced via the rate-limiting step between the light reactions. This is based on the amplitudes of the absorbance changes of chlorophyll alphaI after chemical reduction and after a group of flashes following far-red preillumination. It is concluded that only 75% of chlorophyll alphaI is coupled to chlorophyll alphaII via linear electron transport and that the remaining 25% is functionally isolated. 2. A ratio of 0.85 for coupled chlorophyll alphaI to chlorophyll alphaII is estimated from the time course of the absorbance changes of plastoquinone and chlorophyll alphaI in two independent ways. 3. The oxygen yield per flash is used to calculate the difference extinction coefficient of chlorophyll alphaI at the maximum of the red absorbance band in spinach chloroplasts: delta xi703 = (6.7 +/- 0.7)-10(4) M-1-cm-1. The assumption of a quantitative electron transfer from water via plastoquinone to coupled chlorophyll alphaI is supported by the same extinction coefficient reported by Hiyama and Ke for Photosystem I particles. The location and function of the different chlorophylls alphaI is discussed in detail.  相似文献   

5.
The effect of light intensity (16 h white light and 8 h dark) during growth of pea plants at 20°C on the chlorophyll composition and on the relative distribution of chlorophyll amongst the various chlorophyll-protein of pea thylakoids was studied. The chl a/chl b ratios increased from 2.1 to 3.2 as light intensity during growth varied from 10 to 840 Em-2 s-1. This function can be described by two straight lines intersecting at a transition point of approximately 200 Em-2 s-1. Similar discontinuities in the responses were observed in the changes in the relative distribution of chlorophyll amongst the various chlorophyll-protein complexes. This demonstrates that the chl a/chl b ratio of the various thylakoids is a good indicator of changes in the relative distribution of chlorophyll. As the chl a/chl b ratio decreased, the amount of chlorophyll associated with photosystem I complexes decreased, that with photosystem II core reaction centre complex was halved, and that with the main chl a/b-proteins of the light-harvesting complex was markedly increased.Abbreviations chl chlorophyll - PS photosystem - SDS sodium dodecyl sulphate - Tricine N-tris (hydroxymethyl) methylglycine  相似文献   

6.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740(+)-P740) and (F(A/B)(-)-F(A/B)) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740(+)A(1)(-)-P740A(1)) and ((3)P740-P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A(1)(-)), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450+/-10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000+/-4000 M(-1) cm(-1) at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1 : to approximately 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

7.
8.
Preparation of a minimum PSII core complex from spinach is described, containing four Mn per reaction center (RC) and exhibiting high O2 evolving activity [approximately 4000 micromol of O2 (mg of chl)(-1) x h(-1)]. The complex consists of the CP47 and CP43 chlorophyll binding proteins, the RC D1/D2 pair, the cytochrome b559 subunits, and the Mn-stabilizing psbO (33 kDa) protein, all present in the same stoichiometric amounts found in the parent PSII membranes. Several small subunits are also present. The cyt b559 content is 1.0 per RC in core complexes and PSII membranes. The total chlorophyll content is 32 chl a and <1 chl b per RC, the lowest yet reported for any active PSII preparation. The core complex exhibits the characteristic EPR signals seen in the S2 state of higher plant PSII. A procedure for preparing low-temperature samples of very high optical quality is developed, allowing detailed optical studies in the S1 and S2 states of the system to be made. Optical absorption, CD, and MCD spectra reveal unprecedented detail, including a prominent, well-resolved feature at 683.5 nm (14630 cm(-1)) with a weaker partner at 187 cm(-1) to higher energy. On the basis of band intensity, CD, and MCD arguments, these features are identified as the exciton split components of P680 in an intact, active reaction center special pair. Comparisons are made with solubilized D1/D2/cyt b559 material and cyanobacterial PSII.  相似文献   

9.
We have probed the absorption changes due to an externally applied electric field (Stark effect) of Photosystem I (PSI) core complexes from the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus and Spirulina platensis. The results reveal that the so-called C719 chlorophylls in S. elongatus and S. platensis are characterized by very large polarizability differences between the ground and electronically excited states (with Tr(Deltaalpha) values up to about 1000 A(3) f(-2)) and by moderately high change in permanent dipole moments (with average Deltamu values between 2 and 3 D f(-1)). The C740 chlorophylls in S. platensis and, in particular, the C708 chlorophylls in all three species give rise to smaller Stark shifts, which are, however, still significantly larger than those found before for monomeric chlorophyll. The results confirm the hypothesis that these states originate from strongly coupled chlorophyll a molecules. The absorption and Stark spectra of the beta-carotene molecules are almost identical in all complexes and suggest similar or slightly higher values for Tr(Deltaalpha) and Deltamu than for those of beta-carotene in solution. Oxidation of P700 did not significantly change the Stark response of the carotenes and the red antenna states C719 and C740, but revealed in all PSI complexes changes around 700-705 and 690-693 nm, which we attribute to the change in permanent dipole moments of reduced P700 and the chlorophylls responsible for the strong absorption band at 690 nm with oxidized P700, respectively.  相似文献   

10.
Soret-excited resonance Raman (RR) spectra of the spinach cytochrome b6f complex (cyt b6f) are reported for the oxidized, native, ascorbate-reduced, and dithionite-reduced forms. Using excitations at 441.6, 413.1, and 406.7 nm, RR contributions of chlorophyll a, beta-carotene, the c-type heme of cytochrome f, and the b-type hemes of cytochrome b6 of the b6f complex were identified and the data compared to those previously obtained for the Rhodospirillum rubrum bc1 complex [Le Moigne, C., Schoepp, B., Othman, S., Verméglio, A., and Desbois, A. (1999) Biochemistry 38, 1066-1076]. RR bands arising from the b(6)f-associated chlorophyll a and beta-carotene pigments were found to be particularly intense in the spectra excited at 441.6 nm. The frequencies of the phorbin skeleton of chlorophyll a at 1606, 1552, and 1525 cm(-1) are typical of a Mg atom with a single axial ligand. Strong RR bands corresponding to stretching or deformation modes of beta-carotene were detected at 1137, 1157, 1191, 1216, and 1531 cm(-1) in the different forms of cyt b6f. This set of frequencies is assigned to an all-trans configuration of the polyene chain. The redox titrations of the b(6)f complex allow the characterization of RR bands of the three hemes. The nu10, nu2, nu3, and nu8 modes of reduced cyt f are detected at 1619, 1591, 1492, and 356 cm(-1), respectively. From this set of frequencies, one can conclude that the particular histidine/amine heme coordination found in the truncated soluble domain of cyt f is a specific feature of the entire cyt f included in the b6f complex. The frequencies of the nu2, nu8, and nu10 marker modes are consistent with different conformations for the two b-type hemes of cyt b6f. One of these hemes is strongly distorted (nu2, nu8, and nu10 at 1581, 351, and 1610 cm(-1), respectively), while the other one is planar (1586, 345, and 1618 cm(-1), respectively). Largely different structures for the b-type hemes appear to be a common property for the bc1/b6f complexes.  相似文献   

11.
The aim of this study was to quantify algal colonisation on anthropogenic surfaces (viz. building facades and roof tiles) using chlorophyll a (chl a) as a specific biomarker. Chl a was estimated as the initial fluorescence F0 of 'dark adapted' algae using a pulse-modulated fluorometer (PAM-2000). Four isolates of aeroterrestrial green algae and one aquatic isolate were included in this study. The chl a concentration and F0 showed an exponential relationship in the tested range between 0 and 400 mg chl a m(-2). The relationship was linear at chl a concentrations <20 mg m(-2). Exponential and linear models are presented for the single isolates with large coefficients of determination (exponential: r2 > 0.94, linear: r2 > 0.92). The specific power of this fluorometric method is the detection of initial algal colonisation on surfaces in thin or young biofilms down to 3.5 mg chl a m(-2), which corresponds to an abundances of the investigated isolates between 0.2 and 1.5 million cells cm(-2).  相似文献   

12.
The energy transfer rates between chlorophylls in the light harvesting complex CP29 of higher plants at room temperature were calculated ab initio according to the F?rster mechanism (F?rster T. 1948, Ann. Physik. 2:55-67). Recently, the transition moment orientation of CP29 chlorophylls was determined by differential linear dichroism and absorption spectroscopy of wild-type versus mutant proteins in which single chromophores were missing (Simonetto R., Crimi M., Sandonà D., Croce R., Cinque G., Breton J., and Bassi R. 1999. Biochemistry. 38:12974-12983). In this way the Q(y) transition energy and chlorophyll a/b affinity of each binding site was obtained and their characteristics supported by reconstruction of steady-state linear dichroism and absorption spectra at room temperature. In this study, the spectral form of individual chlorophyll a and b ligands within the protein environment was experimentally determined, and their extinction coefficients were also used to evaluate the absolute overlap integral between donors and acceptors employing the Stepanov relation for both the emission spectrum and the Stokes shift. This information was used to calculate the time-dependent excitation redistribution among CP29 chlorophylls on solving numerically the Pauli master equation of the complex: transient absorption measurements in the (sub)picosecond time scale were simulated and compared to pump-and-probe experimental data in the Q(y) region on the native CP29 at room temperature upon selective excitation of chlorophylls b at 640 or 650 nm. The kinetic model indicates a bidirectional excitation transfer over all CP29 chlorophylls a species, which is particularly rapid between the pure sites A1-A2 and A4-A5. Chlorophylls b in mixed sites act mostly as energy donors for chlorophylls a, whereas site B5 shows high and bidirectional coupling independent of the pigment hosted.  相似文献   

13.
The chlorophyll content is an important experimental parameter in agronomy and plant biology research. In this report, we explore the feasibility of determining total concentration of extracts containing chlorophyll a and chlorophyll b by chlorophyll fluorescence. We found that an excitation at 457?nm results in the same integrated fluorescence emission for a molecule of chlorophyll a and a molecule of chlorophyll b. The fluorescence yield induced by 457?nm is therefore proportional to total molar chlorophyll concentration. Based on this observation, we designed an instrument to determine total chlorophyll concentrations. A single light emitting diode (LED) is used to excite chlorophyll extracts. After passing through a long-pass filter, the fluorescence emission is assessed by a photodiode. We demonstrate that this instrument facilitates the determination of total chlorophyll concentrations. We further extended the functionality of the instrument by including LEDs emitting at 435 and 470?nm wavelengths, thereby preferentially exciting chlorophyll a and chlorophyll b. This instrument can be used to determine chlorophyll a and chlorophyll b concentrations in a variety of organisms containing different ratios of chlorophylls. Monte-Carlo simulations are in agreement with experimental data such that a precise determination of chlorophyll concentrations in carotenoid-containing biological samples containing a concentration of less than 5?nmol/mL total chlorophyll can be achieved.  相似文献   

14.
The effects of changes in the chlorophyll (chl) content on the kinetics of the OJIP fluorescence transient were studied using two different approaches. An extensive chl loss (up to 5-fold decrease) occurs in leaves suffering from either an Mg(2+) or SO(4)(2-) deficiency. The effects of these treatments on the chl a/b ratio, which is related to antenna size, were very limited. This observation was confirmed by the identical light intensity dependencies of the K, J and I-steps of the fluorescence rise for three of the four treatments and by the absence of changes in the F(685 nm)/F(695 nm)-ratio of fluorescence emission spectra measured at 77K. Under these conditions, the F(0) and F(M)-values were essentially insensitive to the chl content. A second experimental approach consisted of the treatment of wheat leaves with specifically designed antisense oligodeoxynucleotides that interfered with the translation of mRNA of the genes coding for chl a/b binding proteins. This way, leaves with a wide range of chl a/b ratios were created. Under these conditions, an inverse proportional relationship between the F(M) values and the chl a/b ratio was observed. A strong effect of the chl a/b ratio on the fluorescence intensity was also observed for barley Chlorina f2 plants that lack chl b. The data suggest that the chl a/b ratio (antenna size) is a more important determinant of the maximum fluorescence intensity than the chl content of the leaf.  相似文献   

15.
Li L  Huang Y  Zhang L  Lin Z  Wang G 《PloS one》2012,7(1):e30327
This paper reports the growth, mechanical, thermal and spectral properties of Cr(3+):MgMoO(4) crystals. The Cr(3+):MgMoO(4) crystals with dimensions up to 30 mm×18 mm×14 mm were obtained by TSSG method. The absorption cross-sections of (4)A(2)→(4)T(1) and (4)A(2)→(4)T(2) transitions are 12.94×10(-20) cm(2) at 493 nm and 7.89×10(-20) cm(2) at 705 nm for E//N(g), respectively. The Cr(3+):MgMoO(4) crystal shows broad band emission extending from 750 nm to 1300 nm with peak at about 705 nm. The emission cross-section with FWHM of 188 nm is 119.88×10(-20) cm(2) at 963 nm for E//N(g). The investigated results showed that the Cr(3+):MgMoO(4) crystal may be regarded as a potential tunable laser gain medium.  相似文献   

16.
4-Thiouridine and 4-thiothymidine were developed as efficient substrates for spectrophotometric determination of uridine phosphorylase and thymidine phosphorylase activity. 4-Thiouridine has maximum absorbance at 330 nm (pH 7.5). The change in extinction coefficient for 4-thiouridine/4-thiouracil, deltaepsilon is 3000 M(-1) x cm(-1). It appeared that 4-thiouridine is a good substrate for uridine phosphorylase with Michaelis-Menten constant 130 microM and kcat 49 s(-1). In the case of 4-thiothymidine/4-thiothymine deltaepsilon is even larger: 5000 M(-1) x cm(-1) at 336 nm.  相似文献   

17.
Reversed-phase high-performance liquid chromatography with octadecyl- or octylsilylated silica gel as the stationary phase provides a powerful tool in the analysis of chloroplast pigments from higher plants and green algae. Chromatographic columns packed with 10 μm chemically bonded silica gel particles allow the simultaneous separation of chlorophylls a and b, chlorophyll isomers, pheophytins a and b, α-carotene, β-carotene, lutein, violaxanthin, lutein-5,6-epoxide, antheraxanthin, neoxanthin and several minor carotenoids from a single sample within a short analysis time. The quantitative analysis requires a minimum of 1–5 pmol for carotenoids and 5–10 pmol for chlorophylls. Pigment degradation products, formed on polar stationary phases, are not found in reversed-phase high-performance liquid chromatography due to the weak hydrophobic forces on which the separation mechanism is based. The production of altered pigments however, either induced by various treatments or generated during the isolation, can be monitored as the reversed-phase system is selective enough to separate cis-isomers and oxidation products from their parent compounds. The reproducibility of the individual retention time for each pigment is better than ±1.5% which facilitates the identification of unknown pigments. The method is applied to the analysis of the pigment composition of Chlorella fusca, spinach (Spinacia oleracea) chloroplasts, and to the rapid determination of the ratio of chlorophyll a to chlorophyll b.  相似文献   

18.
The quantitative composition of the chloroplast pigments of phytoplankton sampled weekly at one station in the Trondheimsfjord was studied by circular paper chromatography throughout 18 months. The concentrations of total chlorophyll a (T-chl a obtained by the trichromatic method) as well as of chromatographically purified chlorophyll a (chl a) followed the variations in phytoplankton concentration. Two spring blooms and a weak autumn flowering of phytoplankton were clearly reflected in the pigment contents found, namely 14–16 mg T-chl a/m3 for the spring maxima, corresponding to nearly 300 mg T-chl a/m2 for the euphotic zone; and 3–4 mg/m3 or 32 mg/m2 for the autumn peak. The concentrations between blooms amounted to ≈ 1 mg T-chl a/m3, while concentrations down to 0.03 mg/m3 were found for winter samples.The content of T-chl a was high in diatom cells prior to a bloom (20–40 × 10?9 mg/cell). During rapid growth (a more or less exponential phase) the cell content of chloroplast pigments decreased (to 5–10 × 10?9 mg). No degradation product of chlorophylls could be detected during this phase and the percentage of chl a (of T-chl a) was high (70–80 %). At the peak of the bloom, and especially when the nitrate content in the surrounding water had been exhausted, low values for T-chl a were found (0.3–0.5 × 109?mg/cell). As soon as the cell counts started to fall, or even before the decline could be clearly detected, the percentage of chl a dropped (to 40-20 %) and derived chlorophylls (not phaeophytin a) were present in the samples. Model studies with cultured algae showed a similar behaviour.It is concluded that the proportion of chl a to T-chl a and the occurrence of chlorophyll derivatives in phytoplankton samples can give valuable information on the stage of development of the algal populations involved.  相似文献   

19.
A set of equations for determining chlorophyll a (Chl a) and accessory chlorophylls b, c 2 , c 1 + c 2 and the special case of Acaryochloris marina, which uses Chl d as its primary photosynthetic pigment and also has Chl a, have been developed for 90% acetone, methanol and ethanol solvents. These equations for different solvents give chlorophyll assays that are consistent with each other. No algorithms for Chl c compounds (c 2 , c 1 + c 2) in the presence of Chl a have previously been published for methanol or ethanol. The limits of detection (and inherent error, ± 95% confidence limit), for chlorophylls in all organisms tested, was generally less than 0.1 μg/ml. The Chl a and b algorithms for green algae and land plants have very small inherent errors (< 0.01 μg/ml). Chl a and d algorithms for Acaryochloris marina are consistent with each other, giving estimates of Chl d/a ratios which are consistent with previously published estimates using HPLC and a rarely used algorithm originally published for diethyl ether in 1955. The statistical error structure of chlorophyll algorithms is discussed. The relative error of measurements of chlorophylls increases hyperbolically in diluted chlorophyll extracts because the inherent errors of the chlorophyll algorithms are constants independent of the magnitude of absorbance readings. For safety reasons, efficient extraction of chlorophylls and the convenience of being able to use polystyrene cuvettes, the algorithms for ethanol are recommended for routine assays of chlorophylls. The methanol algorithms would be convenient for assays associated with HPLC work.  相似文献   

20.
Using a specially developed phosporoscopic attachment to spectropolarimeter, light induced spectra of circular dichroism (CD) in region 600-750 nm were measured for a pigment protein complex of photosystem 1 (PC-1) isolated from pea chloroplast (chlorophyll : P700 = 40). Minor components at 672 and 678 nm are observed in light induced spectra besides the components of dimer splitting of P700 Qy transition at 691 and 698 nm. Haussian deconvolution of light induced CD spectra of P700 and low temperature CD spectrum of PC-1 indicates that minor components are due to forms of antenna chlorophylls Chl672 and Chl678, rotational strength of that is changed by 2-4% as a result of P700 oxidation. Long term incubation of PC-1 with Triton X-100 inhibits P700 and destroys longwave optically active chlorophyll forms. A strong relation between dichroic density of 693 nm band in CD spectrum of PC-1 and the value of light induced absorption change at 698 nm could be used to determine P700 concentration on the basis of CD spectrum of PC-1. Such a relation shows that Chl693 is an important component of photo-system 1 reaction center. It is suggested that P700 is not an isolated dimer but it is included in the local complex from 8-10 chlorophyll molecules (Chl672, Chl678, Chl686, Chl693).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号