首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Cellular events involved in butyric acid-induced T cell apoptosis   总被引:4,自引:0,他引:4  
We have previously demonstrated that butyric acid induces cytotoxicity and apoptosis of murine thymocytes, splenic T cells, and human Jurkat T cells. Therefore, to determine the apoptotic signaling pathway induced by butyric acid, we investigated the contribution of reactive oxygen species (ROS), mitochondria, ceramide, and mitogen-activated protein kinases in butyric acid-induced human Jurkat cell apoptosis. After exposure of cells to butyric acid, a pronounced accumulation of ROS was seen. Pretreatment of cells with the antioxidant N-acetyl-cysteine or 3-aminobenzamide attenuated butyric acid-induced apoptosis through a reduction of ROS generation. Cytochrome c, apoptosis-inducing factor, and second mitochondria-derived activator of caspases protein release from mitochondria into the cytosol were detected shortly after butyric acid treatment. Exposure of cells to butyric acid resulted in an increase in cellular ceramide in a time-dependent fashion. In addition, butyric acid-induced apoptosis was inhibited by DL-threo-dihidrosphingosine, a potent inhibitor of sphingosine kinase. Using anti-extracellular signal-regulated kinase (ERK), anti-c-Jun N-terminal kinase (JNK), and anti-p38 phosphospecific Abs, we showed a decrease in ERK, but not in JNK and p38 phosphorylation after treatment of cells with butyric acid. Pretreatment of cells with the JNK inhibitor SP600125 attenuated the effect of butyric acid on apoptosis, whereas no effect was seen with the p38 inhibitor SB202190 or the ERK inhibitor PD98059. Taken together, our results indicate that butyric acid-induced T cell apoptosis is mediated by ceramide production, ROS synthesis in mitochondria, and JNK activation in the mitogen-activated protein kinase cascade. Finally, these results were further substantiated by the expression profile of butyric acid-treated Jurkat cells obtained by means of cDNA array.  相似文献   

2.
Berberine (BBR) has indicated significant antimicrobial activity against a variety of organisms including bacteria, viruses, and fungi. The mechanism by which BBR initiates apoptosis remains poorly understood. In the present study, we demonstrated that BBR exhibited significant cytotoxicity in human hepatoma HepG2 cells. Herein, we investigated cytotoxicity mechanism of BBR in HepG2 cells. The results showed that the induction of apoptosis in HepG2 cells by BBR was characterized by DNA fragmentation, an increased percentage of annexin V, and the activation of caspase‐3. The expressions of Bcl‐2 protein and pro‐caspase‐3 were reduced by BBR in HepG2 cells. However, Bax protein was increased in the cells. BBR‐induced apoptosis was preceded by increased generation of reactive oxygen species (ROS). NAC treatment, a scavenger of ROS, reversed BBR‐induced apoptosis effects via inhibition of Bax activation and Bcl‐2 inactivation. BBR‐induced, dose‐dependent induction of apoptosis was accompanied by sustained phosphorylation of MAP Kinases (JNK and p38 MAPK), ASK1, Akt, and p53. Furthermore, SB203580, p38 inhibitor, reduced the apoptotic effect of BBR, and blocks the generation of ROS and NO as well as activation of Bax. We found that the treatment of HepG2 cells with BBR triggers generation of ROS through Akt phosphorylation, resulting in dissociation of the ASK1‐mediated activation of JNK and p38 pathways. J. Cell. Biochem. 109: 329–338, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Mitochondrial translocation of pro-apoptotic Bax prior to apoptosis is well established after treatment with many cell death stimulants or under apoptosis-inducing conditions. The mechanism of mitochondrial translocation of Bax is, however, still unknown. The aim of this work was to investigate the mechanism of Bax activation and mitochondrial translocation to initiate apoptosis of human hepatoma HepG2 and porcine kidney LLC-PK1 cells exposed to various cell death agonists. Phosphorylation of Bax by JNK and p38 kinase activated after treatment with staurosporine, H(2)O(2), etoposide, and UV light was demonstrated by the shift in the pI value of Bax on two-dimensional gels and confirmed by metabolic labeling with inorganic [(32)P]phosphate in HepG2 cells. Specific inhibitors of JNK and p38 kinase significantly inhibited Bax phosphorylation and mitochondrial translocation and apoptosis of HepG2 cells. A specific small interfering RNA to MAPKK4 (the upstream protein kinase of JNK and p38 kinase) markedly decreased the levels of MAPKK4 and MAPKK3/6, blocked the activation of JNK or p38 kinase, and inhibited Bax phosphorylation. However, the negative control small interfering RNA did not cause these changes. Confocal microscopy of various Bax mutants showed differential rates of mitochondrial translocation of Bax before and after staurosporine treatment. Among the Bax mutants, T167D did not translocate to mitochondria after staurosporine exposure, suggesting that Thr(167) is a potential phosphorylation site. In conclusion, our results demonstrate, for the first time, that Bax is phosphorylated by stress-activated JNK and/or p38 kinase and that phosphorylation of Bax leads to mitochondrial translocation prior to apoptosis.  相似文献   

4.
Copper oxide nanoparticles (CuO NPs) are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 2–50 µg/ml) were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level.  相似文献   

5.
Molecular mechanisms of echinocystic acid-induced apoptosis in HepG2 cells   总被引:12,自引:0,他引:12  
Echinocystic acid (EA), a natural triterpone enriched in various herbs, has been showed to have cytotoxic activity in some cancer cells, and is used for medicinal purpose in many Asian countries. In the present study, we found that EA could induce apoptosis in human HepG2 cells, as characterized by DNA fragmentation, activation of caspase-3, -8, and -9, and PARP cleavage. The efficacious induction of apoptosis was observed at 45 microM for 24 h. Molecular data showed that EA induced the truncation of Bid protein and reduction of Bcl-2 protein. EA also caused the loss of mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c release from mitochondria to cytosol. Moreover, EA could activate c-Jun NH(2)-terminal kinase (JNK) and p38 kinase, and JNK-specific inhibitor SP600125 and p38 kinase-specific inhibitor SB200235 could block serial molecular events of EA-induced apoptosis such as Bid truncation, Bcl-2 reduction, cytochrome c release, caspase activation, and DNA fragmentation in HepG2 cells. These findings indicate that JNK- and p38 kinase-mediated mitochondrial pathways might be involved in EA-induced apoptosis and enhance our understanding of the anticancer function of EA in herbal medicine.  相似文献   

6.
We investigated mitogen-activated protein kinase (MAPK) pathways as well as reactive oxygen species (ROS) in olaquindox-induced apoptosis. Exposure of HepG2 cells to olaquindox resulted in the phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). To confirm the role of p38 MAPK and JNK, HepG2 cells were pretreated with MAPKs-specific inhibitors prior to olaquindox treatment. Olaquindox-induced apoptosis was significantly potentiated by the JNK inhibitor (SP600125) or the p38 MAPK inhibitor (SB203580). Furthermore, we observed that olaquindox treatment led to ROS generation and that olaquindox-induced apoptosis and ROS generation were both significantly reduced by the antioxidants, superoxide dismutase and catalase. In addition, the levels of phosphorylation of JNK, but not p38 MAPK, were significantly suppressed after pretreatment of the antioxidants, while inhibition of the activations of JNK or p38 MAPK had no effect on ROS generation. This result suggested that ROS may be the upstream mediator for the activation of JNK. Conclusively, our results suggested that apoptosis in response to olaquindox treatment in HepG2 cells might be suppressed through p38 MAPK and ROS–JNK pathways.  相似文献   

7.
Zinc oxide (ZnO) nanoparticles are finding applications in a wide range of products including cosmetics, food packaging, imaging, etc. This increases the likelihood of human exposure to these nanoparticles through dermal, inhalation and oral routes. Presently, the majority of the studies concerning ZnO nanoparticle toxicity have been conducted using in vitro systems which lack the complex cell-cell, cell-matrix interactions and hormonal effects found in the in vivo scenario. The present in vivo study in mice was aimed at investigating the oral toxicity of ZnO nanoparticles. Our results showed a significant accumulation of nanoparticles in the liver leading to cellular injury after sub-acute oral exposure of ZnO nanoparticles (300 mg/kg) for 14 consecutive days. This was evident by the elevated alanine aminotransferase (ALT) and alkaline phosphatase (ALP) serum levels and pathological lesions in the liver. ZnO nanoparticles were also found to induce oxidative stress indicated by an increase in lipid peroxidation. The DNA damage in the liver and kidney cells of mice was evaluated by the Fpg-modified Comet assay which revealed a significant (p<0.05) increase in the Fpg-specific DNA lesions in liver indicating oxidative stress as the cause of DNA damage. The TUNEL assay revealed an induction of apoptosis in the liver of mice exposed to ZnO nanoparticles compared to the control. Our results conclusively demonstrate that sub-acute oral exposure to ZnO nanoparticles in mice leads to an accumulation of nanoparticles in the liver causing oxidative stress mediated DNA damage and apoptosis. These results also suggest the need for a complete risk assessment of any new engineered nanoparticle before its arrival into the consumer market.  相似文献   

8.
9.
An anti-tumor peptide from Musca domestica pupae (MATP) inhibited proliferation of human liver cancer cells HepG2 in a dose-dependent manner. The results of morphology observation indicated that MATP inducing HepG2 cells apoptosis based on the typical apoptotic morphological changes. Flow cytometric analysis demonstrated that MATP caused apoptosis of HepG2 cells through cells arrested at S phase (from 14.26 to 54.38 %) and the apoptotic rates significantly increased (from 1.34 to 25.20 %). The laser scanning confocal microscopy results showed that the generation of intracellular reactive oxygen species (ROS) was increased and the Western blot results revealed that ROS induced a sustained activation of phosphorylated-JNK. Simultaneously, the apoptosis induced by MATP was reversed by NAC (ROS inhibitor) and SP600125 (JNK inhibitor). These results proved that ROS/JNK participated in apoptosis of HepG2 treated with MATP. Moreover, Bax-to-Bcl-2 expression ratio was increased by the activation of phosphorylated-JNK. The release of Cytochrome c from mitochondria which arose the Caspases cascade enhanced by the increase of Bax-to-Bcl-2 expression ratio and intensified the expression of Caspase-9 and Caspase-3. Taken together, these findings suggest that the MATP induces apoptosis through a ROS/JNK-mediated Caspase pathway.  相似文献   

10.
Chondrosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. (-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit tumorigenesis and cancer cell growth in animal models. The aim of this study was to elucidate the mechanism of EGCG-induced apoptosis of human chondrosarcoma cells. EGCG induced cell apoptosis in human chondrosarcoma cell lines but not primary chondrocytes. EGCG induced upregulation of Bax and Bak, downregulation of Bcl-2 and Bcl-XL, and dysfunction of mitochondria in chondrosarcoma. We also found that the accumulation of reactive oxygen species (ROS) is a critical mediator in EGCG-induced cell death. EGCG induced apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation and its dissociation from 14-3-3. Treatment of chondrosarcoma cells with EGCG induced p38 and c-jun-NH2-kinase (JNK) phosphorylation. Transfection with ASK1 siRNA or p38 and JNK mutant antagonized the EGCG-induced cell apoptosis. Therefore, EGCG triggered ROS and activated the ASK1-p38/JNK pathway, resulting chondrosarcoma cell death. Importantly, animal studies revealed a dramatic reduction in tumor volume after 24 days of treatment. Thus, EGCG may be a novel anti-cancer agent for the treatment of chondrosarcoma.  相似文献   

11.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and is also highly resistant to conventional chemotherapy treatments. In this study, we report that Longikaurin A (LK-A), an ent-kaurane diterpenoid isolated from the plant Isodon ternifolius, induced cell cycle arrest and apoptosis in human HCC cell lines. LK-A also suppressed tumor growth in SMMC-7721 xenograft models, without inducing any notable major organ-related toxicity. LK-A treatment led to reduced expression of the proto-oncogene S phase kinase-associated protein 2 (Skp2) in SMMC-7721 cells. Lower Skp2 levels correlated with increased expression of p21 and p-cdc2 (Try15), and a corresponding decrease in protein levels of Cyclin B1 and cdc2. Overexpression of Skp2 significantly inhibited LK-A-induced cell cycle arrest in SMMC-7721 cells, suggesting that LK-A may target Skp2 to arrest cells at the G2/M phase. LK-A also induced reactive oxygen species (ROS) production and apoptosis in SMMC-7721 cells. LK-A induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase and P38 MAP kinase. Treatment with, the JNK inhibitor SP600125 prevented LK-A-induced apoptosis in SMMC-7721 cells. Moreover, the antioxidant N-acetylcysteine prevented phosphorylation of both JNK and c-Jun. Taken together, these data indicate that LK-A induces cell cycle arrest and apoptosis in cancer cells by dampening Skp2 expression, and thereby activating the ROS/JNK/c-Jun signaling pathways. LK-A is therefore a potential lead compound for development of antitumor drugs targeting HCC.  相似文献   

12.
Yin QH  Yan FX  Zu XY  Wu YH  Wu XP  Liao MC  Deng SW  Yin LL  Zhuang YZ 《Cytotechnology》2012,64(1):43-51
Carvacrol is one of the members of monoterpene phenol and is present in the volatile oils of Thymus vulgaris, Carum copticum, origanum and oregano. It is a safe food additive commonly used in our daily life, and few studies have indicated that carvacrol has anti-hepatocarcinogenic activities. The rationale of the study was to examine whether carvacrol affects apoptosis of human hepatoma HepG2 cells. In this study, we showed that carvacrol inhibited HepG2 cell growth by inducing apoptosis as evidenced by Hoechst 33258 stain and Flow cytometric (FCM) analysis. Incubation of HepG2 cells with carvacrol for 24 h induced apoptosis by the activation of caspase-3, cleavage of PARP and decreased Bcl-2 gene expression. These results demonstrated that a significant fraction of carvacrol treated cells died by an apoptotic pathway in HepG2 cells. Moreover, carvacrol selectively altered the phosphorylation state of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 significantly in a dose-dependent manner, and activated phosphorylation of p38 but not affecting JNK MAPK phosphorylation. These results suggest that carvacrol may induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the antitumor effect of carvacrol. These results have identified, for the first time, the biological activity of carvacrol in HepG2 cells and should lead to further development of carvacrol for liver disease therapy.  相似文献   

13.
14.
We investigated the signaling pathways underlying nano-TiO2-induced apoptosis in cultured human lymphocytes. Nano-TiO2 increased the proportion of sub-G1 cells, activated caspase-9 and caspase-3, and induced caspase-3-mediated PARP cleavage. Nano-TiO2 also induced loss of mitochondrial membrane potential, which suggests that nano-TiO2 induces apoptosis via a mitochondrial pathway. A time-sequence analysis of the induction of apoptosis by nano-TiO2 revealed that nano-TiO2 triggered apoptosis through caspase-8/Bid activation. We also observed that inhibition of caspase-8 by z-IETD-fmk suppressed the caspase-8/Bid activation, caspase-3-mediated PARP cleavage, and apoptosis. Nano-TiO2 activated two MAPKs, p38 and JNK. In addition, the selective p38 inhibitor SB203580 and selective JNK inhibitor SP600125 suppressed nano-TiO2-induced apoptosis and caspase-8 activation to moderate and significant extents, respectively. Knockdown of protein levels of JNK1 and p38 using an RNA interference technique also suppressed caspase-8 activation. Our results suggest that nano-TiO2-induced apoptosis is mediated by the p38/JNK pathway and the caspase-8-dependent Bid pathway in human lymphocytes.  相似文献   

15.
We report that Aplidin, a novel antitumor agent of marine origin presently undergoing Phase II clinical trials, induced growth arrest and apoptosis in human MDA-MB-231 breast cancer cells at nanomolar concentrations. Aplidin induced a specific cellular stress response program, including sustained activation of the epidermal growth factor receptor (EGFR), the non-receptor protein-tyrosine kinase Src, and the serine/threonine kinases JNK and p38 MAPK. Aplidin-induced apoptosis was only partially blocked by the general caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone and was also sensitive to AG1478 (an EGFR inhibitor), PP2 (an Src inhibitor), and SB203580 (an inhibitor of JNK and p38 MAPK) in MDA-MB-231 cells. Supporting a role for EGFR in Aplidin action, EGFR-deficient mouse embryo fibroblasts underwent apoptosis upon treatment more slowly than wild-type EGFR fibroblasts and also showed delayed JNK and reduced p38 MAPK activation. N-Acetylcysteine and ebselen (but not other antioxidants such as diphenyleneiodonium, Tiron, catalase, ascorbic acid, and vitamin E) reduced EGFR activation by Aplidin. N-Acetylcysteine and PP2 also partially inhibited JNK and p38 MAPK activation. The intracellular level of GSH affected Aplidin action; pretreatment of cells with GSH or N-acetylcysteine inhibited, whereas GSH depletion caused, hyperinduction of EGFR, Src, JNK, and p38 MAPK. Remarkably, Aplidin also induced apoptosis and activated EGFR, JNK, and p38 MAPK in two cell lines (A-498 and ACHN) derived from human renal cancer, a neoplasia that is highly refractory to chemotherapy. These data provide a molecular basis for the anticancer activity of Aplidin.  相似文献   

16.
In this study, we investigated the involvement of Akt and members of the mitogen-activated protein kinase (MAPK) superfamily, including ERK, JNK, and p38 MAPK, in gemcitabine-induced cytotoxicity in human pancreatic cancer cells. We found that gemcitabine induces apoptosis in PK-1 and PCI-43 human pancreatic cancer cell lines. Gemcitabine specifically activated p38 MAPK in a dose- and time-dependent manner. A selective p38 MAPK inhibitor, SB203580, significantly inhibited gemcitabine-induced apoptosis in both cell lines, suggesting that phosphorylation of p38 MAPK may play a key role in gemcitabine-induced apoptosis in pancreatic cancer cells. A selective JNK inhibitor, SP600125, failed to inhibit gemcitabine-induced apoptosis in both cell lines. MKK3/6, an upstream activator of p38 MAPK, was phosphorylated by gemcitabine, indicating that the MKK3/6-p38 MAPK signaling pathway is indeed involved in gemcitabine-induced apoptosis. Furthermore, gemcitabine-induced cleavage of the caspase substrate poly(ADP-ribose) polymerase was inhibited by pretreatment with SB203580, suggesting that activation of p38 MAPK by gemcitabine induces apoptosis through caspase signaling. These results together suggest that gemcitabine-induced apoptosis in human pancreatic cancer cells is mediated by the MKK3/6-p38 MAPK-caspase signaling pathway. Further, these results lead us to suggest that p38 MAPK should be investigated as a novel molecular target for human pancreatic cancer therapies.  相似文献   

17.
Okadaic acid (OA) is a specific and potent protein phosphatase inhibitor and tumor promoter. The present study establishes the role of reactive oxygen species (ROS) and mitogen activated protein kinases in cell death induced by okadaic acid. The study showed that okadaic acid is cytotoxic at 10 nM with an IC50 of 100 nM in U-937 cells. The CVDE assay and mitochondrial dehydrogenase assay showed a time dependent cytotoxicity. The phase contrast visualization of the OA treated cells showed the apoptotic morphology and was confirmed with esterase staining for plasma membrane integrity. OA activated caspases-7, 9 and 3, PARP cleavage and induced nuclear damage in a time and dose dependent manner. Compromised mitochondrial membrane potential, release of cytochrome-c and apoptosis inducing factor confirms the involvement of mitochondria. A time dependent decrease in glutathione levels and a dose dependent increase in ROS with maximum at 30 min were observed. ROS scavenger-N-acetyl cysteine, mitochondrial stabilizer-cyclosporin-A, and broad spectrum caspase inhibitor Z-VAD-FMK inhibited the OA induced caspase-3 activation, DNA damage and cell death but caspase-8 inhibitor had no effect. OA activated p38 MAPK and JNK in a time dependent manner, but not ERK½. MAP kinase inhibitors SB203580, SP600125 and PD98059 confirm the role of p38 MAPK and JNK in OA induced caspase-3 activation and cell death. Over all, our results indicate that OA induces cell death by generation of ROS, and activation of p38 MAPK and JNK, and executed through mitochondrial mediated caspase pathway.  相似文献   

18.
The insulin-like growth factor I receptor (IGF-IR) activated by its ligands insulin-like growth factor (IGF)-I or IGF-II mediates suppression of apoptosis and contributes to tumorigenesis and cell growth. Here we investigated the activation of the stress-activated protein kinases including Jun N-terminal Kinases and p38 MAPK by IGF-I in interleukin-3-dependent FL5.12 lymphocytic cells that overexpress the IGF-IR (FL5.12/WT). We have shown previously that IGF-I protects these cells from apoptosis induced by interleukin-3 withdrawal but does not promote proliferation. IGF-I induced a rapid and transient activation of JNK that peaked at 40 min that was paralleled by a transient and robust phosphorylation of c-Jun. p38 was constitutively phosphorylated in FL5.12/WT cells. Activation of the JNK pathway by IGF-I occurred in the presence of phosphatidylinositol 3-kinase inhibitors and could be enhanced by anisomycin. Analysis of a series of FL5.12 cells expressing mutated IGF-IRs and analysis of 32D/IGF-IR cells showed that neither the C terminus of the receptor nor IRS-1 and IRS-2 were required for JNK activation, although tyrosine 950 was essential for full activation. The JNK inhibitor dicumarol suppressed IGF-I-mediated activation of JNK and phosphorylation of c-Jun but did not affect p38 and IkappaB phosphorylation or activation of AKT. IGF-I-mediated protection from apoptosis in FL5.12/WT cells was completely suppressed by dicumarol and partially suppressed by a p38 inhibitor. In the breast carcinoma cell line MCF-7, treatment with dicumarol also induced apoptosis. These data indicate that transient activation of JNK by IGF-I is mediated by signals that are distinct from those leading to phosphatidylinositol 3-kinase and AKT activation. The data further suggest that the SAPK pathways contribute to suppression of apoptosis by the IGF-IR.  相似文献   

19.
Chelerythrine, a natural benzophenanthridine alkaloid, has been reported to mediate a variety of biological activities, including inhibition of protein kinase C (PKC). Here we report that chelerythrine induced time- and dose-dependent activation of JNK1 and p38 in HeLa cells, which was mediated the upstream kinases, MEKK1 and MKK4. However, treatment with two other potent and selective PKC inhibitors, GF-109203X and G?6983, or down-regulation of PKC activity by prolonged treatment with phorbol 12-myristate 13-acetate had no effect on JNK1 and p38 activities. Furthermore, under the conditions where JNK1 and p38 were activated, we did not observe any significant inhibitory effect of chelerythrine on the activities of PKC isozymes present in HeLa cells. Interestingly, pretreatment with the antioxidants, N-acetyl-L-cysteine, dithiothreitol, and glutathione, impaired chelerythrine-induced JNK1 and p38 activation. In addition, chelerythrine induced apoptosis that was blocked by the antioxidants and the dominant-negative mutants of MEKK1, MKK4, JNK1, and p38. Together, these results uncover a novel biochemical property of chelerythrine, i.e. activation of MEKK1- and MKK4-dependent JNK1 and p38 pathways through an oxidative stress mechanism, which mediate the induction of apoptosis, but are independent of PKC inhibition.  相似文献   

20.
Klebsiella pneumoniae (KP), an enterobacterium, usually causes urinary tract infection or pneumonia; however, it has caused severe liver abscess in diabetic patients in recent years. How this emerging virulent KP strain causes liver abscess is not known. This study investigates signalling pathways in HepG2 cells infected by virulent KP. Cells were infected with bacteria for various durations and harvested to screen for signalling molecules by Western blotting. Our results showed that phosphorylated mitogen-activated protein kinase (MAPK) kinase (MEK) 1/2, p44/p42 MAPK and p90 ribosomal S6 kinase (p90RSK) were observed and this pathway was inhibited by MEK1/2 inhibitors U0126 and PD98059. Phosphorylation of MEK3/6, p38 kinase and ATF-2 was also observed and this pathway was inhibited by p38 kinase inhibitors SB203850 and SB202190. Toll-like receptor (TLR) 2 and 4 expressions were increased and maximized 2-4 h post infection. The JNK pathway, Elk, MAPKAPK-2 and HSP27 were not activated. These results suggest that KP infections induce signal transduction through TLR2 and TLR4 and activate two downstream MAP kinase pathways, MEK1/2-p44/p42 MAPK-p90RSK and MEK3/6-p38 kinase-ATF-2, but not the JNK pathway in HepG2 cells. The infected HepG2 eventually showed apoptosis and died.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号