首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shi G  Jin X  Zhao S  Xu T  Wang R 《Mitochondrial DNA》2012,23(2):151-153
The complete mitochondrial genome of Trypauchen vagina was determined first. The genome is 16,686 bp in length and consists of 13 protein-coding genes, 22 tRNA genes, 2 ribosomal RNA genes, and 2 main non-coding regions [the control region (CR) and the origin of the light strand replication], the gene composition and order of which was similar to most other vertebrates. The overall base composition of T. vagina is T 27.6%, C 27.6%, A 29.5%, and G 15.3%, with a slight A+T bias of 57.1%. In addition to the discrete and conserved sequence blocks, an incomplete tandem repeat unit is detected within the CR. This mitogenome sequence data would play an important role in population genetics and phylogenetic analysis of the Gobioidei.  相似文献   

2.
Shi X  Su Y  Wang J  Ding S  Mao Y 《Mitochondrial DNA》2012,23(4):310-312
Black porgy, Acanthopagrus schlegelii, is a marine protandrous hermaphrodite and belongs to one of the most important species commercialized for food in various areas of Asia. In this study, the complete mitochondrial genome of A. schlegelii has been determined. The mitogenome was 16,649 bp in length and contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 2 non-coding regions. It shared 90.2%, 82.3%, and 82.1% mitogenome sequence with Acanthopagrus latus, Parargyrops edita, and Pagrus major, respectively.  相似文献   

3.
He AY  Tang SJ  Jiang YT  Li SF  Wang CH 《Mitochondrial DNA》2011,22(5-6):171-173
Blackchin tilapia, Sarotherodon melanotheron, is a highly salt-tolerant species in tilapias. In this paper, the complete mitochondrial genome of S. melanotheron was determined first. The mitogenome (16,627 bp) had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding, 22 tRNA, 2 rRNA genes, and 1 putative control region. It shared 95.1%, 93.2%, and 92.2% mitogenome sequence with Oreochromis aureus, Oreochromis niloticus, and Oreochromis mossambicus, respectively.  相似文献   

4.
Oh BS  Oh DJ  Jung MM  Jung YH 《Mitochondrial DNA》2012,23(2):137-138
We determined the complete nucleotide sequence of the mitochondrial (mt) genome for the longtooth grouper, Epinephelus bruneus (Perciformes, Serranidae). This mt genome, consisting of 16,686 base pairs (bp), encoded genes for 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a noncoding control region as those found in other vertebrates, with the gene order identical to that of typical vertebrates. A major noncoding region between the trnP and trnF genes (991 bp) was considered to be the control region (D-loop). Within this sequence, 22 copies of a 17-bp tandem repeat element, 5'-TGATATTACATATATGC-3', were identified in the control region unlike previous reported Epinephelus species.  相似文献   

5.
6.
Oh DJ  Oh BS  Jung MM  Jung YH 《Mitochondrial DNA》2010,21(5):151-159
We cloned and sequenced the complete mitochondrial DNA (mtDNA) of three tilefishes (Branchiostegus albus, Branchiostegus argentatus, and Branchiostegus japonicus) to characterize and compare their mitochondrial genomes (mitogenomes). The mitogenomes of B. albus, B. argentatus, and B. japonicus were 16,532, 16,550, and 16,541 bp long, respectively, and all consisted of 37 genes (13 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA (tRNAs)), which are typical for vertebrate mtDNA. As in other bony fishes, most genes were encoded on the H-strand, except for the nad6 and eight tRNA genes that were encoded on the L-strand. Among the 13 protein-coding genes of all three tilefishes, 2 reading-frame overlaps were found on the same strand: atp8 and atp6 overlapped by 10 nucleotides, and nad4L and nad4 overlapped by 7 nucleotides. The identity of the nad4 gene between B. albus and B. argentatus was the lowest at 87%. Conversely, the identity of the nad6 gene between B. albus and B. japonicus was the highest at 99%. Most tRNA genes were similar in length among the three species, while the tRNA-Ser((AGY)) of B. japonicus was 9 bp longer than those of B. albus and B. argentatus. The control region of the mitogenome spanned 853, 862, and 856 bp in B. albus, B. argentatus, and B. japonicus, respectively. A maximum likelihood tree constructed using 11,035 sites contained five independent groups with bootstrap values of 100% in support of their divergence. All three tilefishes examined were clustered with the Pomacanthidae species in Group II.  相似文献   

7.
We determined the complete nucleotide sequence of the mitochondrial genome for the rabbitfish Siganus fuscescens (Perciformes, Siganidae). This mitochondrial genome, consisting of 16,491 base pairs (bp), included 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a noncoding control region similar those found in other vertebrates; the gene order was identical to that of typical vertebrates. Most of the genes of S. fuscescens were encoded on the H-strand, while the ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser [UCN], Glu, and Pro) genes were encoded on the L-strand. The reading frames of ATPase 8 and 6 and those of ND4L and ND4 overlapped by ten and seven nucleotides, respectively. All mitochondrial protein-coding genes began with an ATG start codon, except for CO1, which started with GTG. Open reading frames of S. fuscescens ended with TAA (ND1, CO1, ATPase 8, ND4L, ND5 and ND6), and the remainder had incomplete stop codons, either TA (ATPase 6 and CO3) or T (ND2, CO2, ND3, ND4, and Cytb). The origin of L-strand replication in S. fuscescens was located in a cluster of five tRNA genes (WANCY) and was 34 nucleotides in length. A major noncoding region between the tRNA-Pro and tRNA-Phe genes (828 bp) was considered to be the control region (D-loop). Within this sequence, we identified a conserved sequence block characteristic of this region. The rabbitfish was grouped with Siganus canaliculatus in most parsimony analyses, which showed 100% bootstrap support for their divergence. These findings are useful for inferring phylogenetic relationships and identification within the suborder Acanthuroidei.  相似文献   

8.
The complete mitochondrial genome of Eleotris oxycephala was determined to be 16,527 bp in length with (A + T) content of 53%, and it consists of 13 protein-coding genes, 22 tRNAs, 2 ribosomal RNAs, and a control region. The gene composition and the structural arrangement of the E. oxycephala complete mtDNA were identical to most of other vertebrates. Phylogenetic analysis based on different sequences of species of the Gobioidei suborder and different methods showed that E. oxycephala formed a cluster with Eleotris acanthopoma and Eleotridae were divided into two clades. Furthermore, extensive taxon sampling and more molecular information are needed to confirm the phylogenetic relationships among the Gobioidei.  相似文献   

9.
Cheng Y  Xu T  Shi G  Wang R 《Marine Genomics》2010,3(3-4):201-209
The complete sequence of the 16,493 nucleotide mitochondrial genome from the single species of the family Sciaenidae, the miiuy croaker, Miichthys miiuy, was determined. The nucleotide sequences of M. miiuy mitochondrial DNA have been compared with those of three other Sciaenidae fishes. The contents of the M. miiuy mitochondrial genome are 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and two non-coding regions (L-strand replication origin and control region), the gene order of which is identical to that observed in most vertebrates. The L-strand replication origin of M. miiuy is not pyrimidine-rich compared to those of most bony fishes. Within the control region, we identified the extended termination associated sequence domain, the central conserved sequence block domain and the conserved sequence block domain, while the typical central conserved blocks CSB-D, -E and -F could not be detected in the three other Sciaenidae species. In the ML phylogenetic analyses, the monophyly of Pseudosciaeniae was not supported, which is against with the morphological results. Collichthys niveatus is most closely related to Larimichthys polyactis, and Collichthys and Larimichthys may be merged into one genus, based on the current datasets.  相似文献   

10.
11.
We determined the complete mitochondrial genome (mitogenome) sequence of the dragonet Callionymus curvicornis. The total length of C. curvicornis mitogenome is 16,406 bp, which consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region. It has the typical vertebrate mitochondrial gene arrangement. This is the first report of a complete mitochondrial genome in the fish suborder Callionymoidei.  相似文献   

12.
Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is 17119 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a control region and an L-strand origin as in other teleosts. Most mitochondrial genes are encoded on H-strand except for ND6 and seven tRNA genes. Some overlaps occur in protein-coding genes and tRNAs ranging from 1 to 7 bp. The possibly nonfunctional L-strand origin folded into a typical stem-loop secondary structure and a conserved motif (5-GCCGG-3) was found at the base of the stem within the tRNA Cys gene. The TAS, CSB-2 and CSB-3 could be detected in the control region. However, in contrast to most of other fishes, the central conserved sequence block domain and the CSB-1 could not be recognized in O. rubicundus, which is consistent with Acanthogobius hasta (Gobiidae). In addition, phylogenetic analyses based on different sequences of species of Gobiidae and different methods showed that the classification of O. rubicundus into Odontamblyopus due to morphology is debatable.  相似文献   

13.
The mudskipper, Boleophthalmus pectinirostris (Perciformes, Gobiidae), is an amphibious gobioid fish. In this paper, the complete mitochondrial genome of B. pectinirostris was firstly determined. The mitogenome (17,111 bp) comprises 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and 1 putative control region. 130-bp tandem repeat was identified in the control region, which was almost identical among the 10 individuals examined, and three different frequencies of the repeat unit (five, six or seven) were found among these individuals.  相似文献   

14.
Liobagrus obesus (Siluriformes, Amblycipitidae) is an endemic, endangered species in South Korea. Throughout this study, complete mitochondrial genome of L. obesus was sequenced, which is 16,506 bp in length. Its detail characteristics were described in this study.  相似文献   

15.
The complete sequence of Oxya chinensis (0. chinensis) mitochondrial genome is reported here. It is 15,443 bp in length and contains 75.9% A+T. The protein-coding genes have a similar A+T content (75.2%). The initiation codon of the cytochrome oxidase subunit I gene in the mitochondrial genome of O. chinensis appears to be ATC, instead of the tetranucleotides that have been reported in Locusta migratoria (L migratoria) mitochondrial genome. The sizes of the large and small ribosomal RNA genes are 1319 and 850 bp, respectively. The transfer RNA genes have been modeled and showed strong resemblance to the dipteran transfer RNAs, and all anticodons are identical to those of dipteran. The A+T-rich region is 562 bp, shorter than that of other known Orthoptera insects. The six conserved domains were identified within the A+T-rich region by comparing its sequence with those of other grasshoppers. The result of phylogenetic analysis based on the dataset containing 12 concatenated protein sequences confirms the close relation-ship of O. chinensis with L migratoria.  相似文献   

16.
The molecular phylogeny of the gobioid fishes, comprising 33 genera and 43 valid species, was examined by use of complete mitochondrial 12S rRNA and tRNA(VAL)genes. Both parsimony and neighbor-joining analyses revealed comparable results and are generally congruent with those of morphological studies. The Odontobutis, which was always placed at the base of the phylogenetic trees, can be treated as a sister group of all other nonrhyacichthyid gobioids. Within eleotrid fishes, the monophyly of the Eleotrinae is strongly supported by molecular data. The Butinae is closer to fishes with five branchiostegal rays and should be treated as a sister group of the latter. The group with five branchiostegal rays, except for sicydiines, can be divided into two groups according to their epural counts. Fish with one epural, the Gobiinae of Pezold plus Microdesmidae, form a monophyletic group which is sister to those with two epurals, the Oxudercinae and Gobionellinae of Pezold. However, Sicydiinae, which have one epural, are closer to the Oxudercinae and Gobionellinae rather than to the Gobiinae. Since progressive reduction in epural number has been observed along this lineage, the sicydiines should be treated as a derived group within the groups with two epurals.  相似文献   

17.
We isolated floating goby Gymnogobius petschiliensis mitochondrial DNA by long-polymerase chain reaction (Long-PCR) with conserved primers, and sequenced the mitogenome by primer walking using flanking sequences. The G. petschiliensis mitochondrial DNA has 16,424 bp and its structural organization is similar to the mitochondrial DNAs of other fish, and mammals. We analyzed phylogenetic relationships derived from the mitochondrial cytochrome b gene. We report the basic characteristics of the G. petschiliensis mitochondrial genome including its structural organization and the base composition of the rRNAs, tRNAs and protein-coding genes as well as characteristics of tRNAs. These features are used to analyze phylogenetic relationship among the 60 species of the genus Gymnogobius.  相似文献   

18.
Ryu SH  Hwang UW 《Mitochondrial DNA》2012,23(2):134-136
Saunders's gull Chroicocephalus saundersi (Aves, Charadriiformes, Laridae) is a small-sized gull having black-colored head. In this study, the entire mitochondrial genome of C. saundersi is sequenced, which is 16,725 bp in length. The detailed characteristics of the mitochondrial genome are described here.  相似文献   

19.
Cheng J  Ma GQ  Song N  Gao TX 《Gene》2012,491(2):210-223
The monophyly and phylogenetic relationships of Pseudosciaeniae have long been controversial. Here we describe the mitochondrial genome (mitogenome) sequence of Collichthys niveatus. It is a circular double-stranded DNA molecule of 16,450 base pairs (bp) in length with a standard set of 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), 13 protein-coding genes as well as a non-coding control region. The mitogenome of C. niveatus shared common features with those of other bony fishes in terms of gene arrangement, base composition, and tRNA structures. The C. niveatus mitogenome exhibited pronounced strand-specific asymmetry in nucleotide composition, which was also reflected in the codon usage of genes oriented in opposite directions. Contrary to the typical structure of the control region, the central conserved blocks (CSB-D, -E, and -F) could not be detected in C. niveatus mitogenome. Phylogenetic analysis based on whole mitogenome sequences provided strong support for the monophyly of Pseudosciaeniae, and sister-group relationships of C. niveatus + Collichthys lucidus and Larimichthys crocea + Larimichthys polyactis, which was consistent with the traditional taxonomy. Unexpected divergence was found in two C. niveatus mitogenomes and several hypotheses were proposed to explain this observation including misidentification and introgressive hybridization between C. niveatus and L. polyactis, and polyphyletic origin of C. niveatus. We considered species misidentification to be the main hypothesis. However, additional data is essential to test these proposed hypotheses.  相似文献   

20.
The external morphology and development of skeletal elements is investigated in larvae and fry of one of the most generalized representatives of the suborder Gobioidei—the Amur sleeper Perccottus glenii. It is characterized by an indirect type of development accompanied by the expressed metamorphosis, according to Balon’s classification (1985). Fry of P. glenii are capable of an active mode of life and exogenous feeding almost immediately after hatching which favors a wide distribution of this species. Morphogenesis of previously revealed diagnostic characters of Gobioidei is investigated. New apomorphies are found also indicating to a high separation level of P. glenii from representatives of other suborders of Perciformes. At the same time, it is found that some developmental traits of P. glenii are characteristic of generalized Perciforems. Some advanced characters acquired in parallel with representatives from the group of suborders Blennioidei s. l. also indirectly indicate that P. glenii and, generally, Gobioidei belong to Perciformes. Analysis of special traits of development of the skeleton of P. glenii supports the ideas of Regan (1911) on the origin of Gobioidei from generalized Percoidei. With consideration of advanced characters, general for Gobioidei and the suborders Trachinoidei, Notothenioidei, Zoarcoidei, and Blennioidei of the group Blennioidei s. l., it is assumed that Gobioidei and Blennioidei s. l. stem from the same group or from the related groups of Percoidei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号