首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The syndecans are known to form homologous oligomers that may be important for their functions. We have therefore determined the role of oligomerization of syndecan-2 and syndecan-4. A series of glutathione S-transferase-syndecan-2 and syndecan-4 chimeric proteins showed that all syndecan constructs containing the transmembrane domain formed SDS-resistant dimers, but not those lacking it. SDS-resistant dimer formation was hardly seen in the syndecan chimeras where each transmembrane domain was substituted with that of platelet-derived growth factor receptor (PDGFR). Increased MAPK activity was detected in HEK293T cells transfected with syndecan/PDGFR chimeras in a syndecan transmembrane domain-dependent fashion. The chimera-induced MAPK activation was independent of both ligand and extracellular domain, implying that the transmembrane domain is sufficient to induce dimerization/oligomerization in vivo. Furthermore, the syndecan chimeras were defective in syndecan-4-mediated focal adhesion formation and protein kinase Calpha activation or in syndecan-2-mediated cell migration. Taken together, these data suggest that the transmembrane domains are sufficient for inducing dimerization and that transmembrane domain-induced oligomerization is crucial for syndecan-2 and syndecan-4 functions.  相似文献   

2.
3.
Polyethyleneimines (PEIs) are efficient non-viral vectors for gene transfer. Heparan sulfate proteoglycans have been proposed to be the cell-surface receptors for PEI.DNA complexes (polyplexes). Here, we investigated if syndecan-1 (SDC1) and syndecan-2 (SDC2) are involved in PEI-mediated transfection. Following addition of polyplexes to HEK293 cells, green fluorescent protein-tagged SDCs rapidly formed clusters with PEI that were dependent of lipid raft integrity. However, although SDC1 overexpression slightly enhanced PEI-mediated gene expression, SDC2 dramatically inhibited it. Confocal microscopy analysis showed that SDC1.polyplex endocytosis occurred within minutes after addition of polyplexes, whereas SDC2.polyplex endocytosis took hours. Expression of SDC1 cytoplasmic deletion mutants revealed that the SDC1 cytoplasmic tail is required for gene expression, but not for clustering or endocytosis, whereas overexpression of SDC1/SDC2 chimeras showed that the SDC2 ectodomain is responsible for the inhibitory effect on gene transfer. This study provides evidence that SDCs may have opposing effects on PEI-mediated transfection.  相似文献   

4.
Wound repair is a tightly regulated process stimulated by proteases, growth factors, and chemokines, which are modulated by heparan sulfate. To characterize further the role of the heparan sulfate proteoglycan syndecan-1 in wound repair, we generated mice overexpressing syndecan-1 (Snd/Snd) and studied dermal wound repair. Wound closure, reepithelialization, granulation tissue formation, and remodeling were delayed in Snd/Snd mice. Soluble syndecan-1 was increased, and shedding was prolonged in wounds from Snd/Snd mice. Excess syndecan-1 increased the elastolytic activity of wound fluids. Additionally, cells in the granulation tissue and keratinocytes at wound edges showed markedly reduced proliferation rates in Snd/Snd mice. Skin grafting experiments between Snd/Snd and control mice indicated that the slower growth rate was mainly due to a soluble factor in the Snd/Snd mouse skin. Syndecan-1 immunodepletion and further degradation experiments identified syndecan-1 ectodomain as a dominant negative inhibitor of cell proliferation. These studies indicate that shed syndecan-1 ectodomain may enhance proteolytic activity and inhibit cell proliferation during wound repair.  相似文献   

5.
We have identified a cDNA that encodes a variant form of murine syndecan-1. The variant cDNA lacks the sequence corresponding to the first 132 nucleotides of the third exon of the syndecan-1 gene. The corresponding message is rare. The alternative splice respects the reading frame and deletes 44 amino acids from the protein, joining the S45GS47GT sequence to a variant immediate downstream context. This sequence context initiates with alanine instead of glycine as residue 50, reducing the number of SGXG sequence motifs in the protein from two to one. Expression of this variant syndecan-1 in Madin-Darby canine kidney or MOLT-4 cells yielded a recombinant proteoglycan with a reduced number and clustering of the heparan sulfate chains. Both the conversions of Ala50 and of Lys53 into glycine enhanced the heparan sulfate substitution of the variant protein. These findings support the concept that serine-glycine dipeptide signals for glycosaminoglycan/heparan sulfate synthesis depend on sequence context (Zhang, L., David, G., and Esko, J. D. (1995) J. Biol. Chem. 270, 27127-27135) and imply that alternative splicing mechanisms may in part control the molecular polymorphism of syndecan-1 and, therefore, the efficiency and versatility of this protein in its co-receptor functions.  相似文献   

6.
Interaction of RANTES with its membrane ligands or receptors transduces multiple intracellular signals. Whether RANTES uses proteoglycans (PGs) belonging to the syndecan family to attach to primary cells expressing RANTES G-protein-coupled receptors (GPCRs) was investigated. We demonstrate that RANTES specifically binds to high and low affinity binding sites on human monocyte-derived macrophages (MDM). We show by co-immunoprecipitation experiments that RANTES is associated on these cells with syndecan-1 and syndecan-4, but neither with syndecan-2 nor with betaglycan, in addition to CD44 and its GPCRs, CCR5 and CCR1. Glycosaminidases pre-treatment of the monocyte derived-macrophages strongly decreases the binding of RANTES to syndecan-1 and syndecan-4 and also to CCR5, and abolishes RANTES binding to CD44. This suggests that glycosaminoglycans (GAGs) are involved in RANTES binding to the PGs and that such bindings facilitate the subsequent interaction of RANTES with CCR5, on the MDM, characterized by low membrane expression of CCR5. The role of these interactions in the pathophysiology of RANTES deserves further study.  相似文献   

7.
It is believed that proteoglycans influence biological properties of chemokines. We show that the CC chemokine RANTES binds not only to high-affinity binding sites on CCR5-positive HeLa cells but also to low-affinity binding sites on HeLa cells expressing or lacking RANTES G protein-coupled receptors. Coimmunoprecipitation studies demonstrate that RANTES forms complexes with glycanated syndecan (SD)-1 and -4, in addition to CCR5 on the CCR5-positive HeLa cells. Moreover, confocal microscopy analysis shows the colocalization of RANTES with SD-1 and -4. Glycosaminoglycans removal from the cells by glycosaminidases treatment prevented RANTES binding to SD-1 and -4 and decreased RANTES binding to CCR5 on the CCR5-positive HeLa cells. Removal of glycosaminoglycans by glycosaminidases treatment of the complexes, RANTES/SD-1/SD-4/+/-CCR5, immobilized on beads, reversed SD-1 and -4 bindings. Therefore, RANTES bindings to SD-1 and -4 depend on glycosaminoglycans and facilitate RANTES interaction with CCR5. Extracting plasma membrane cholesterol abolished the coimmunoprecipitation of SD-1 with RANTES, suggesting that rafts are involved in RANTES association to SD-1. Confocal microscopy analysis as well as coimmunoprecipitation experiments show a RANTES-independent heteromeric complex on the CCR5-positive HeLa cells, SD-1, SD-4, and CCR5. This complex is likely a functional unit in which proteoglycans may modulate RANTES binding to CCR5.  相似文献   

8.
Choi Y  Kang D  Han IO  Oh ES 《Cellular signalling》2012,24(8):1522-1530
Syndecan-4, a transmembrane heparan sulfate proteoglycan, plays a critical role in cell adhesion. Both the transmembrane and cytoplasmic domains of syndecan-4 are known to contribute to its functions, but the regulatory mechanisms underlying the functional interplay between the two domains were previously unclear. Here, we examined the functional relationship between these two domains. Fluorescence resonance energy transfer (FRET)-based assays showed that syndecan-4 expression enhanced RhoA activation. Furthermore, rat embryonic fibroblasts (REFs) plated on fibronectin fragments lacking the heparin-binding domain that interacts with syndecan-4 showed much lower RhoA activation than that in cells plated on full-length fibronectin, indicating that RhoA is involved in syndecan-4-mediated cell adhesion signaling. Syndecan-4 mutants defective in transmembrane domain-induced oligomerization and syndecan-4 phosphorylation-mimicking cytoplasmic domain mutants showed decreases in RhoA activation and RhoA-related functions, such as adhesion, spreading and focal adhesion formation, and subsequent increase in cell migration, but the inhibitory effect was much higher in cells expressing the transmembrane domain mutants. The cytoplasmic domain mutants (but not the transmembrane domain mutants) retained the capacity to form SDS-resistant dimers, and the cytoplasmic mutants showed less inhibition of syndecan-4-mediated protein kinase C activation compared to the transmembrane domain mutants. Finally, cytoplasmic domain activation failed to overcome the inhibition conferred by mutation of the transmembrane domain. Taken together, these data suggest that the transmembrane domain plays a major role in regulating syndecan-4 functions, and further show that a domain hierarchy exists in the regulation of syndecan-4.  相似文献   

9.
10.
Sphingosine 1-phosphate (S1P) is a lipid mediator that plays important roles in diverse cellular functions such as cell proliferation, differentiation and migration. S1P is synthesized inside the cells and subsequently released to the extracellular space, where it binds to specific receptors that are located on the plasma membranes of target cells. Accumulating recent evidence suggests that S1P transporters including SPNS2 mediate S1P release from the cells and are involved in the physiological functions of S1P. In this review, we discuss recent advances in our understanding of the mechanism and physiological functions of S1P transporters. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

11.
12.
Transgenic expression in the hypothalamus of syndecan-1, a cell surface heparan sulfate proteoglycan (HSPG) and modulator of ligand-receptor encounters, produces mice with hyperphagia and maturity-onset obesity resembling mice with reduced action of alpha melanocyte stimulating hormone (alphaMSH). Via their HS chains, syndecans potentiate the action of agouti-related protein and agouti signaling protein, endogenous inhibitors of alphaMSH. In wild-type mice, syndecan-3, the predominantly neural syndecan, is expressed in hypothalamic regions that control energy balance. Food deprivation increases hypothalamic syndecan-3 levels several-fold. Syndecan-3 null mice, otherwise apparently normal, respond to food deprivation with markedly reduced reflex hyperphagia. We propose that oscillation of hypothalamic syndecan-3 levels physiologically modulates feeding behavior.  相似文献   

13.
Brucato S  Villers C 《Biochimie》2002,84(7):681-686
Our previous studies indicated that cell surface proteoglycans were mostly heparan sulfate ones (HSPG) in 20 day-old Sertoli cells [Biochim. Biophys. Acta 1510 (2001) 474]. Among these HSPG, glypican-1, syndecans-1 and -4 mRNAs were expressed and differentially regulated. Glypican-1 and syndecan-1 mRNA expression was up-regulated under PKC activation in contrast to syndecan-4 mRNA expression which was not affected [Biochim. Biophys. Acta 1474 (2000) 31]. Rat Sertoli cells undergo extensive changes during the postnatal period both in structure and function, as the hematotesticular barrier establishment occurs at around 20 day-old. The testicular PKCalpha expression in developing Sertoli cells results in (i) a soluble (inactive) form which is maximal at the age of 1 day and declines gradually thereafter and (ii) a particulate (active) form which is low at birth, increases six-fold on days 8-11 of age and declines thereafter. The present study focused on the glypican-1, syndecan-1 and syndecan-4 mRNA expression and regulation under PKC activation by the phorbol myristate acetate (PMA) in 10-30 day-old Sertoli cells. Our data indicated that the regulation of their expression specifically depends on the nature of HSPG and Sertoli cell developmental stage and evidenced a specific PKC regulation of HSPG mRNA expression.  相似文献   

14.

Background  

In order to unravel the interactions between the epithelium and the extra cellular matrix (ECM) in breast tissue progressing to cancer, it is necessary to understand the relevant interactions in healthy tissue under normal physiologic settings. Proteoglycans in the ECM play an important role in the signaling between the different tissue compartments. The proteoglycan decorin is abundant in the breast stroma. Decreased expression in breast cancer tissue is a sign of a poor tumor prognosis. The heparane sulphate proteoglycans syndecan-1 and syndecan-4 promote the integration of cellular adhesion and proliferation. The aim of this study was to investigate the gene expression and location of decorin, syndecan-1 and syndecan-4 in the healthy breast during the menstrual cycle.  相似文献   

15.
Syndecan is the major transmembrane proteoglycan in cells. Of the four syndecans, syndecan-1 is the dominant form expressed in multiple myeloma and is an indicator of poor prognosis. In the current study, we observed that early TRAIL-induced apoptotic processes were accompanied by cleavage of syndecan-1 intracellular region, and explored the possibility whether removal of syndecan-1 promotes apoptotic processes. We found that syndecan-1 knockdown by specific small interfering RNA in multiple myeloma enhanced TRAIL-induced apoptosis, even though the expression of TRAIL receptors and several apoptosis-associated molecules was unaffected. The enhanced TRAIL-mediated apoptosis in syndecan-1-deficient cells was not due to a decrease in surface heparan sulfate or a reduction in TRAIL receptor endocytosis. The increase in TRAIL-induced cell death was accompanied by an elevated caspase-8 activation and an enhanced formation of death-inducing signaling complexes, which could be attributed to an increased expression of TRAIL receptor O-glycosylation enzyme in syndecan-1-deficient cells. We also found that in H9 lymphoma and Jurkat cells, knockdown of the predominant syndecan member also led to an increase in Fas ligand-induced apoptosis. Our results demonstrate that syndecan plays a negative role in death receptor-mediated cell death, suggesting potential application of syndecan downregulation in the treatment of myeloma in combination with TRAIL.  相似文献   

16.
PKHD1 (polycystic kidney and hepatic disease 1) 基因定位于人染色体6p12.2.该基因在基因组内约占500 kb,其中大约含86个外显子.目前所知,其最长ORF至少由67个外显子组成,编码一个由4 074个氨基酸组成的单次跨膜受体样蛋白,被称为纤囊素(fibrocystin/polycystin,FPC).PKHD1是人类常染色体隐性遗传多囊肾病(autosomal recessive polycystic kidney disease,ARPKD)的致病基因.在小鼠中,FPC于胚胎期9.5天可在发育中的神经管、气管、原肠管等含管道的器官中被探测到.在人类,FPC在胎肾即开始表达于输尿管芽,并持续表达于输尿管芽分支演变为集合管的整个过程.在成体肾,FPC也主要表达于肾内集合管上皮细胞,其亚细胞定位于上皮细胞的管腔面的顶端,主要分布在细胞纤毛和基体附近.FPC的主要生物功能目前仍未完全明了,新近的研究表明,FPC可能作为一个膜受体样蛋白,将细胞外的信号通过结合与调节TRPP2 (PKD2) 钙离子介导的通道传递到细胞内,调控体内各管道上皮细胞分化、增殖、极化和移行,从而促成各种生理管道的形成.  相似文献   

17.
Heparan sulfate chains of syndecan-1 regulate ectodomain shedding   总被引:1,自引:0,他引:1  
Matrix metalloproteinases release intact syndecan-1 ectodomains from the cell surface giving rise to a soluble, shed form of the proteoglycan. Although it is known that shed syndecan-1 controls diverse pathophysiological responses in cancer, wound healing, inflammation, infection, and immunity, the mechanisms regulating shedding remain unclear. We have discovered that the heparan sulfate chains present on syndecan core proteins suppress shedding of the proteoglycan. Syndecan shedding is dramatically enhanced when the heparan sulfate chains are enzymatically degraded or absent from the core protein. Exogenous heparan sulfate or heparin does not inhibit shedding, indicating that heparan sulfate must be attached to the core protein to suppress shedding. Regulation of shedding by heparan sulfate occurs in multiple cell types, for both syndecan-1 and syndecan-4 and in murine and human syndecans. Mechanistically, the loss of heparan sulfate enhances the susceptibility of the core protein to proteolytic cleavage by matrix metalloproteinases. Enhanced shedding of syndecan-1 following loss of heparan sulfate is accompanied by a dramatic increase in core protein synthesis. This suggests that in response to an increase in the rate of shedding, cells attempt to maintain a significant level of syndecan-1 on the cell surface. Together these data indicate that the amount of heparan sulfate present on syndecan core proteins regulates both the rate of syndecan shedding and core protein synthesis. These findings assign new functions to heparan sulfate chains, thereby broadening our understanding of their physiological importance and implying that therapeutic inhibition of heparan sulfate degradation could impact the progression of some diseases.  相似文献   

18.
Day RM  Mitchell TJ  Knight SC  Forbes A 《Cytokine》2003,21(5):224-233
Syndecan-1 is expressed on the basolateral surface of columnar epithelium and contributes to wound repair by facilitating increased growth factor binding. Inflammatory bowel disease (IBD) is associated with reduced syndecan-1 expression in areas of inflamed mucosa that is likely to impair mucosal healing. Reduced syndecan-1 expression in IBD may be related to the presence of increased inflammatory cytokines. To test this hypothesis, monolayers of HT29 and T84 colonic epithelial cells were stimulated with tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta or IL-6. Stimulation of HT29 cells with TNF-alpha and IL-1beta resulted in reversible down-regulation of syndecan-1 at both protein and mRNA levels but little effect was observed with IL-6. Loss of syndecan-1 expression was caused by shedding of the ectodomain as revealed by increased levels of soluble syndecan-1 measured in the conditioned medium of stimulated cells. No increase in cytoplasmic staining accompanied the loss of cell surface syndecan-1 expression. TNF-alpha and IL-1beta are capable of down-regulating syndecan-1 expression and may account in part for the reduced expression of syndecan-1 seen in IBD.  相似文献   

19.
Syndecan-4 is a membrane-bound heparan sulfate proteoglycan that participates in cell-cell and cell-matrix interactions and modulates adhesion and migration of many cell types. Through its extracellular domain, syndecan-4 cooperates with adhesion molecules and binds matrix components relevant for cell migration. Importantly, syndecan-4 is a substrate of extracellular proteases, however the biological significance of this cleavage has not been elucidated. Here, we show that the secreted metalloprotease ADAMTS1, involved in angiogenesis and inflammatory processes, cleaves the ectodomain of syndecan-4. We further showed that this cleavage results in altered distribution of cytoskeleton components, functional loss of adhesion, and gain of migratory capacities. Using syndecan-4 null cells, we observed that ADAMTS1 proteolytic action mimics the outcome of genetic deletion of this proteoglycan with regards to focal adhesion. Our findings suggest that the shedding of syndecan-4 by ADAMTS1 disrupts cell adhesion and promotes cell migration.  相似文献   

20.
The airway plays a vital role in allergic lung diseases by responding to inhaled allergens and initiating allergic inflammation. Various proinflammatory functions of the airway epithelium have been identified, but, equally important, anti-inflammatory mechanisms must also exist. We show in this study that syndecan-1, the major heparan sulfate proteoglycan of epithelial cells, attenuates allergic lung inflammation. Our results show that syndecan-1-null mice instilled with allergens exhibit exaggerated airway hyperresponsiveness, glycoprotein hypersecretion, eosinophilia, and lung IL-4 responses. However, administration of purified syndecan-1 ectodomains, but not ectodomain core proteins devoid of heparan sulfate, significantly inhibits these inflammatory responses. Furthermore, syndecan-1 ectodomains are shed into the airway when wild-type mice are intranasally instilled with several biochemically distinct inducers of allergic lung inflammation. Our results also show that syndecan-1 ectodomains bind to the CC chemokines (CCL7, CCL11, and CCL17) implicated in allergic diseases, inhibit CC chemokine-mediated T cell migration, and suppress allergen-induced accumulation of Th2 cells in the lung through their heparan sulfate chains. Together, these findings uncover an endogenous anti-inflammatory mechanism of the airway epithelium where syndecan-1 ectodomains attenuate allergic lung inflammation via suppression of CC chemokine-mediated Th2 cell recruitment to the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号