首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Mutations in mammalian Lis1 (Pafah1b1) result in neuronal migration defects. Several lines of evidence suggest that LIS1 participates in pathways regulating microtubule function, but the molecular mechanisms are unknown. Here, we demonstrate that LIS1 directly interacts with the cytoplasmic dynein heavy chain (CDHC) and NUDEL, a murine homolog of the Aspergillus nidulans nuclear migration mutant NudE. LIS1 and NUDEL colocalize predominantly at the centrosome in early neuroblasts but redistribute to axons in association with retrograde dynein motor proteins. NUDEL is phosphorylated by Cdk5/p35, a complex essential for neuronal migration. NUDEL and LIS1 regulate the distribution of CDHC along microtubules, and establish a direct functional link between LIS1, NUDEL, and microtubule motors. These results suggest that LIS1 and NUDEL regulate CDHC activity during neuronal migration and axonal retrograde transport in a Cdk5/p35-dependent fashion.  相似文献   

2.
Shu T  Ayala R  Nguyen MD  Xie Z  Gleeson JG  Tsai LH 《Neuron》2004,44(2):263-277
Correct neuronal migration and positioning during cortical development are essential for proper brain function. Mutations of the LIS1 gene result in human lissencephaly (smooth brain), which features misplaced cortical neurons and disarrayed cerebral lamination. However, the mechanism by which LIS1 regulates neuronal migration remains unknown. Using RNA interference (RNAi), we found that the binding partner of LIS1, NudE-like protein (Ndel1, formerly known as NUDEL), positively regulates dynein activity by facilitating the interaction between LIS1 and dynein. Loss of function of Ndel1, LIS1, or dynein in developing neocortex impairs neuronal positioning and causes the uncoupling of the centrosome and nucleus. Overexpression of LIS1 partially rescues the positioning defect caused by Ndel1 RNAi but not dynein RNAi, whereas overexpression of Ndel1 does not rescue the phenotype induced by LIS1 RNAi. These results provide strong evidence that Ndel1 interacts with LIS1 to sustain the function of dynein, which in turn impacts microtubule organization, nuclear translocation, and neuronal positioning.  相似文献   

3.
Mitotic spindle regulation by Nde1 controls cerebral cortical size   总被引:1,自引:0,他引:1  
Feng Y  Walsh CA 《Neuron》2004,44(2):279-293
Ablation of the LIS1-interacting protein Nde1 (formerly mNudE) in mouse produces a small brain (microcephaly), with the most dramatic reduction affecting the cerebral cortex. While cortical lamination is mostly preserved, the mutant cortex has fewer neurons and very thin superficial cortical layers (II to IV). BrdU birthdating revealed retarded and modestly disorganized neuronal migration; however, more dramatic defects on mitotic progression, mitotic orientation, and mitotic chromosome localization in cortical progenitors were observed in Nde1 mutant embryos. The small cerebral cortex seems to reflect both reduced progenitor cell division and altered neuronal cell fates. In vitro analysis demonstrated that Nde1 is essential for centrosome duplication and mitotic spindle assembly. Our data show that mitotic spindle function and orientation are essential for normal development of mammalian cerebral cortex.  相似文献   

4.
NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling. Here, we show that Aurora-A phosphorylates NDEL1 at Ser251 at the beginning of mitotic entry. Interestingly, NDEL1 phosphorylated by Aurora-A was rapidly downregulated thereafter by ubiquitination-mediated protein degradation. In addition, NDEL1 is required for centrosome targeting of TACC3 through the interaction with TACC3. The expression of Aurora-A phosphorylation-mimetic mutants of NDEL1 efficiently rescued the defects of centrosomal maturation and separation which are characteristic of Aurora-A-depleted cells. Our findings suggest that Aurora-A-mediated phosphorylation of NDEL1 is essential for centrosomal separation and centrosomal maturation and for mitotic entry.  相似文献   

5.
The widespread LIS1-proteins were originally identified as the target for sporadic mutations causing lissencephaly in humans. Dictyostelium LIS1 (DdLIS1) is a microtubule-associated protein exhibiting 53% identity to human LIS1. It colocalizes with dynein at isolated, microtubule-free centrosomes, suggesting that both are integral centrosomal components. Replacement of the DdLIS1 gene by the hypomorphic D327H allele or overexpression of an MBP-DdLIS1 fusion disrupted various dynein-associated functions. Microtubules lost contact with the cell cortex and were dragged behind an unusually motile centrosome. Previously, this phenotype was observed in cells overexpressing fragments of dynein or the XMAP215-homologue DdCP224. DdLIS1 was coprecipitated with DdCP224, suggesting that both act together in dynein-mediated cortical attachment of microtubules. Furthermore, DdLIS1-D327H mutants showed Golgi dispersal and reduced centrosome/nucleus association. Defects in DdLIS1 function also altered actin dynamics characterized by traveling waves of actin polymerization correlated with a reduced F-actin content. DdLIS1 could be involved in actin dynamics through Rho-GTPases, because DdLIS1 interacted directly with Rac1A in vitro. Our results show that DdLIS1 is required for maintenance of the microtubule cytoskeleton, Golgi apparatus and nucleus/centrosome association, and they suggest that LIS1-dependent alterations of actin dynamics could also contribute to defects in neuronal migration in lissencephaly patients.  相似文献   

6.
T Sapir  M Elbaum    O Reiner 《The EMBO journal》1997,16(23):6977-6984
Forming the structure of the human brain involves extensive neuronal migration, a process dependent on cytoskeletal rearrangement. Neuronal migration is believed to be disrupted in patients exhibiting the developmental brain malformation lissencephaly. Previous studies have shown that LIS1, the defective gene found in patients with lissencephaly, is a subunit of the platelet-activating factor acetylhydrolase. Our results indicated that LIS1 has an additional function. By interacting with tubulin it suppresses microtubule dynamics. We detected LIS1 interaction with microtubules by immunostaining and co-assembly. LIS1-tubulin interactions were assayed by co-immunoprecipitation and by surface plasmon resonance changes. Microtubule dynamic measurements in vitro indicated that physiological concentrations of LIS1 indeed reduced microtubule catastrophe events, thereby resulting in a net increase in the maximum length of the microtubules. Furthermore, the LIS1 protein concentration in the brain, measured by quantitative Western blots, is high and is approximately one-fifth of the concentration of brain tubulin. Our new findings show that LIS1 is a protein exhibiting several cellular interactions, and the interaction with the cytoskeleton may prove to be the mode of transducing a signal generated by platelet-activating factor. We postulate that the LIS1-cytoskeletal interaction is important for neuronal migration, a process that is defective in lissencephaly patients.  相似文献   

7.
Schaar BT 《Neuron》2004,44(2):213-214
The development of the cerebral cortex is a highly orchestrated process of cell division and migration. In this issue of Neuron, Feng and Walsh and Shu et al. examine the roles of two related proteins, Nde1 (mNudE) and Ndel1 (NUDEL), in cortical development. These proteins play a crucial role in centrosome positioning, with Nde1 functioning mainly during progenitor cell divisions and Ndel1 functioning in neuronal migration.  相似文献   

8.
Lissencephaly is a devastating neurological disorder due to defective neuronal migration. LIS1 (or PAFAH1B1), the gene mutated in lissencephaly patients and its binding protein NDEL1 were found to regulate cytoplasmic dynein function and localization. LIS1 and NDEL1 also play a pivotal role on a microtubule regulation and determination of cell polarity. For example, LIS1 is required for the precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. On the other hand, NDEL1 is essential for mitotic entry as an effector molecule of Aurora-A kinase. In addition, an atypical protein kinase C (aPKC)-Aurora-A-NDEL1 pathway is critical for the regulation of microtubule organization during neurite extension. These findings suggest that physiological functions of LIS1 and NDEL1 in neurons have been ascribed for proteins fundamentally required for cell cycle progression and control. In turn, cell cycle regulators may exert other functions during neurogenesis in a direct or an indirect fashion. Thus far, only a handful of cell cycle regulators have been shown to play physiological cell-cycle-independent roles in neurons. Further identification of such proteins and elucidation of their underlying mechanisms of action will likely reveal novel concepts and/or patterns that provide a clear link between their seemingly distinct cell cycle and neuronal functions.  相似文献   

9.
Regulation of cytoplasmic dynein and microtubule dynamics is crucial for both mitotic cell division and neuronal migration. NDEL1 was identified as a protein interacting with LIS1, the protein product of a gene mutated in the lissencephaly. To elucidate NDEL1 function in vivo, we generated null and hypomorphic alleles of Ndel1 in mice by targeted gene disruption. Ndel1(-/-) mice were embryonic lethal at the peri-implantation stage like null mutants of Lis1 and cytoplasmic dynein heavy chain. In addition, Ndel1(-/-) blastocysts failed to grow in culture and exhibited a cell proliferation defect in inner cell mass. Although Ndel1(+/-) mice displayed no obvious phenotypes, further reduction of NDEL1 by making null/hypomorph compound heterozygotes (Ndel1(cko/-)) resulted in histological defects consistent with mild neuronal migration defects. Double Lis1(cko/+)-Ndel1(+/-) mice or Lis1(+/-)-Ndel1(+/-) mice displayed more severe neuronal migration defects than Lis1(cko/+)-Ndel1(+/)(+) mice or Lis1(+/-)-Ndel1(+/+) mice, respectively. We demonstrated distinct abnormalities in microtubule organization and similar defects in the distribution of beta-COP-positive vesicles (to assess dynein function) between Ndel1 or Lis1-null MEFs, as well as similar neuronal migration defects in Ndel1- or Lis1-null granule cells. Rescue of these defects in mouse embryonic fibroblasts and granule cells by overexpressing LIS1, NDEL1, or NDE1 suggest that NDEL1, LIS1, and NDE1 act in a common pathway to regulate dynein but each has distinct roles in the regulation of microtubule organization and neuronal migration.  相似文献   

10.
Summary The mammalian centrosome monoclonal antibody MPM-13 recognized component(s) of the well defined MTOC basal-body root complex in the green plantChlamydomonas. The antibody reaction coincided in location with the basal-body root complex and the cruciate nature of the staining pattern corresponded to the configuration of the root microtubules. During mitosis the behaviour of MPM-13 stained material mirrored the duplication, separation and migration to the spindle poles of the basal body-root complex. It is suggested that conserved MTOC components were recognized and that these may have retained a similar, perhaps universal, function in microtubule organization.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidine-2-phenylindole dihydrochloride - mt mating type - MT microtubule - MTOC microtubule organizing centre - PFA paraformaldehyde - PBS phosphate buffered saline  相似文献   

11.
12.
We have investigated the role of cytoplasmic dynein in microtubule organizing center (MTOC) positioning using RNA-mediated interference (RNAi) in Caenorhabditis elegans to deplete the product of the dynein heavy chain gene dhc-1. Analysis with time-lapse differential interference contrast microscopy and indirect immunofluorescence revealed that pronuclear migration and centrosome separation failed in one cell stage dhc-1 (RNAi) embryos. These phenotypes were also observed when the dynactin components p50/dynamitin or p150(Glued) were depleted with RNAi. Moreover, in 15% of dhc-1 (RNAi) embryos, centrosomes failed to remain in proximity of the male pronucleus. When dynein heavy chain function was diminished only partially with RNAi, centrosome separation took place, but orientation of the mitotic spindle was defective. Therefore, cytoplasmic dynein is required for multiple aspects of MTOC positioning in the one cell stage C. elegans embryo. In conjunction with our observation of cytoplasmic dynein distribution at the periphery of nuclei, these results lead us to propose a mechanism in which cytoplasmic dynein anchored on the nucleus drives centrosome separation.  相似文献   

13.
Dynein, a microtubule motor complex, plays crucial roles in cell-cycle progression in many systems. The LIS1 accessory protein directly binds dynein, although its precise role in regulating dynein remains unclear. Mutation of human LIS1 causes lissencephaly, a developmental brain disorder. To gain insight into the in vivo functions of LIS1, we characterized a male-sterile allele of the Drosophila homolog of human LIS1. We found that centrosomes do not properly detach from the cell cortex at the onset of meiosis in most Lis-1 spermatocytes; centrosomes that do break cortical associations fail to attach to the nucleus. In Lis-1 spermatids, we observed loss of attachments between the nucleus, basal body and mitochondria. The localization pattern of LIS-1 protein throughout Drosophila spermatogenesis mirrors that of dynein. We show that dynein recruitment to the nuclear surface and spindle poles is severely reduced in Lis-1 male germ cells. We propose that Lis-1 spermatogenesis phenotypes are due to loss of dynein regulation, as we observed similar phenotypes in flies null for Tctex-1, a dynein light chain. We have previously identified asunder (asun) as another regulator of dynein localization and centrosome positioning during Drosophila spermatogenesis. We now report that Lis-1 is a strong dominant enhancer of asun and that localization of LIS-1 in male germ cells is ASUN dependent. We found that Drosophila LIS-1 and ASUN colocalize and coimmunoprecipitate from transfected cells, suggesting that they function within a common complex. We present a model in which Lis-1 and asun cooperate to regulate dynein localization and centrosome positioning during Drosophila spermatogenesis.  相似文献   

14.
Niethammer M  Smith DS  Ayala R  Peng J  Ko J  Lee MS  Morabito M  Tsai LH 《Neuron》2000,28(3):697-711
Disruption of one allele of the LIS1 gene causes a severe developmental brain abnormality, type I lissencephaly. In Aspergillus nidulans, the LIS1 homolog, NUDF, and cytoplasmic dynein are genetically linked and regulate nuclear movements during hyphal growth. Recently, we demonstrated that mammalian LIS1 regulates dynein functions. Here we characterize NUDEL, a novel LIS1-interacting protein with sequence homology to gene products also implicated in nuclear distribution in fungi. Like LIS1, NUDEL is robustly expressed in brain, enriched at centrosomes and neuronal growth cones, and interacts with cytoplasmic dynein. Furthermore, NUDEL is a substrate of Cdk5, a kinase known to be critical during neuronal migration. Inhibition of Cdk5 modifies NUDEL distribution in neurons and affects neuritic morphology. Our findings point to cross-talk between two prominent pathways that regulate neuronal migration.  相似文献   

15.
The microtubule (MT) network is essential in a broad spectrum of cellular functions. Many studies have linked CENP-F to MT-based activities as disruption of this protein leads to major changes in MT structure and function. Still, the basis of CENP-F regulation of the MT network remains elusive. Here, our studies reveal a novel and critical localization and role for CENP-F at the centrosome, the major MT organizing center (MTOC) of the cell. Using a yeast two-hybrid screen, we identify Hook2, a linker protein that is essential for regulation of the MT network at the centrosome, as a binding partner of CENP-F. With recently developed immunochemical reagents, we confirm this interaction and reveal the novel localization of CENP-F at the centrosome. Importantly, in this first report of CENP-F−/− cells, we demonstrate that ablation of CENP-F protein function eliminates MT repolymerization after standard nocodazole treatment. This inhibition of MT regrowth is centrosome specific because MT repolymerization is readily observed from the Golgi in CENP-F−/− cells. The centrosome-specific function of CENP-F in the regulation of MT growth is confirmed by expression of truncated CENP-F containing only the Hook2-binding domain. Furthermore, analysis of partially reconstituted MTOC asters in cells that escape complete repolymerization block shows that disruption of CENP-F function impacts MT nucleation and anchoring rather than promoting catastrophe. Our study reveals a major new localization and function of CENP-F at the centrosome that is likely to impact a broad array of MT-based actions in the cell.  相似文献   

16.
Microtubule organizing centres (MTOCs), which include fungal spindle pole bodies and centrosome in higher eukaryotes, are a structurally diverse group of organelles that share a conserved role in microtubule nucleation and spindle formation. However, recent studies propose that the function of MTOC components extends far beyond these established roles. Numerous cell cycle regulators, checkpoint proteins, and microtubule plus tip binding proteins localize to MTOCs during the cell cycle, suggesting that these organelles serve as cellular scaffolds. In addition, several MTOC components such as γ-tubulin and its associating proteins have been directly implicated in the control of cell cycle progression, activation of checkpoint responses and the regulation of microtubule organization and dynamics. Collectively, these findings implicate MTOCs as cellular control centers that coordinate events at both microtubule minus ends and plus ends with the cell cycle. In this review, we discuss recent studies that support a role for MTOC components, in particular γ-tubulin, in cell cycle progression, checkpoint response and the coordination of microtubule organization and dynamics.  相似文献   

17.
Humans with mutations in either DCX or LIS1 display nearly identical neuronal migration defects, known as lissencephaly. To define subcellular mechanisms, we have combined in vitro neuronal migration assays with retroviral transduction. Overexpression of wild-type Dcx or Lis1, but not patient-related mutant versions, increased migration rates. Dcx overexpression rescued the migration defect in Lis1+/- neurons. Lis1 localized predominantly to the centrosome, and after disruption of microtubules, redistributed to the perinuclear region. Dcx outlined microtubules extending from the perinuclear "cage" to the centrosome. Lis1+/- neurons displayed increased and more variable separation between the nucleus and the preceding centrosome during migration. Dynein inhibition resulted in similar defects in both nucleus-centrosome (N-C) coupling and neuronal migration. These N-C coupling defects were rescued by Dcx overexpression, and Dcx was found to complex with dynein. These data indicate Lis1 and Dcx function with dynein to mediate N-C coupling during migration, and suggest defects in this coupling may contribute to migration defects in lissencephaly.  相似文献   

18.
Lissencephaly is a severe congenital brain malformation resulting from incomplete neuronal migration. One causal gene, LIS1, is homologous to nudF, a gene required for nuclear migration in A. nidulans. We have characterized the Drosophila homolog of LIS1 (Lis1) and show that Lis1 is essential for fly development. Analysis of ovarian Lis1 mutant clones demonstrates that Lis1 is required in the germline for synchronized germline cell division, fusome integrity and oocyte differentiation. Abnormal packaging of the cysts was observed in Lis1 mutant clones. Our results indicate that LIS1 is important for cell division and differentiation and the function of the membrane cytoskeleton. They support the notion that LIS1 functions with the dynein complex to regulate nuclear migration or cell migration.  相似文献   

19.
Although it has been known for over a century that sea urchin eggs are polarized cells, very little is known about the mechanism responsible for establishing and maintaining polarity. Our previous studies of microtubule organization during sea urchin oogenesis described a cortical microtubule-organizing center (MTOC) present during germinal vesicle (GV) migration in large oocytes. This MTOC was localized within the future animal pole of the mature egg. In this study we have used electron microscopy and immunocytochemistry to characterize the structure of this MTOC and have established that this organelle appears prior to GV migration. We show that the cortical MTOC contains all the components of a centrosome, including a pair of centrioles. Although a centrosome proper was not found in small oocytes, the centriole pair in these cells was always found in association with a striated rootlet, a structural remnant of the flagellar apparatus present in precursor germinal cells (PGCs). The centrioles/striated rootlet complex was asymmetrically localized to the side of the oocyte closest to the gonadal wall. These data are consistent with the previously proposed hypothesis that in echinoderms the polarity of the PGCs in the germinal epithelium influences the final polarity of the mature egg.  相似文献   

20.
中心体由中心粒周围物质(PCM)围绕一对相互垂直的圆柱形中心粒组成,是哺乳动物细胞内主要的微管组织中心,在细胞分裂时发挥重要的作用。中心体以半保留的形式复制,在精子及卵母细胞发生时会发生减灭,精子和卵母细胞各保留部分中心体的成分,在受精后重新组成功能完整中心体。精子的中心体结构发生异常将会导致男性的不育,卵母细胞的老化也会引起中心体蛋白缺陷,从而产生纺锤体结构异常,并导致受精及早期胚胎发育异常。中心体的结构与功能,与人类受精及胚胎发育相关密切,在辅助生殖中具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号