首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the regulation of arachidonic acid (AA) release by guanosine 5'-O-(3-thiotriphosphate (GTP gamma S) and Ca2+ in electropermeabilized HL60 granulocytes. Stimulation of AA release by GTP gamma S and Ca2+ was mediated by phospholipase A2 (PLA2) and required the presence of MgATP (EC50: 100-250 microM). The nucleotide effects were Ca(2+)-dependent (maximal effects detected at 1 microM free cation). UTP and ATP gamma S, which stimulate AA release in intact HL60 granulocytes with potencies and efficacies similar to those of ATP, were ineffective in supporting the effects of GTP gamma S in electropermeabilized cells. Pretreatment with pertussis toxin affected stimulation of AA release by ATP in intact cell, without altering the nucleotide effects in permeabilized cells. We observed the protein kinase C-dependent phosphorylation of PLA2 in permeabilized HL60 granulocytes, together with a correlation between the effects of phorbol esters and staurosporine on this reaction and on AA release. ATP-independent activation of PLA2 by GTP gamma S and/or Ca2+ was measured in subcellular fractions prepared from HL60 granulocytes. These data appear consistent with a model in which PLA2 activity in resting HL60 granulocytes is subjected to an inhibitory constraint that prevents its activation by Ca2+ and G-proteins. Removal of this constraint, either by the protein kinase C-dependent phosphorylation of the enzyme in vivo or physical disruption of the regulatory assembly (e.g. by N2 cavitation), allows its activation by Ca2+ and G-proteins.  相似文献   

2.
The non-differentiated HL60 cell can be stimulated to secrete when Ca2+ and guanosine 5'-[gamma-thio]-triphosphate (GTP gamma S) are introduced into streptolysin-O-permeabilized cells. Secretion is accompanied by activation of polyphosphoinositide phosphodiesterase (PPI-pde). Both responses show a concentration-dependence on Ca2+ between pCa 8 and pCa 5. The half-maximal requirements for Ca2+ for PPI-pde activation and secretion are pCa 6.4 +/- 0.1 and pCa 6.2 +/- 0.2 respectively. The rank order of potency of the GTP analogues to stimulate PPI-pde activation and secretion is similar; GTP gamma S greater than guanosine 5'-[beta gamma-imido]-triphosphate greater than guanosine 5'-[beta gamma-methylene]triphosphate greater than XTP approximately equal to ITP, but the maximal response achieved by each compound compared with GTP gamma S is much greater for secretion than for PPI-pde activation. A dissociation of the two responses is obtained with 10 mM-XTP and -ITP; secretion is always observed but not inositol trisphosphate formation at this concentration. GTP, dGTP, UTP and CTP are inactive for both secretion and PPI-pde activation. Both GDP and dGDP are competitive inhibitors of both GTP gamma S-induced secretion and PPI-pde activation. Phorbol 12-myristate 13-acetate could not fully substitute for GTP gamma S in stimulating secretion, suggesting that the effect of GTP gamma S cannot result simply from the generation of diacylglycerol. In the absence of MgATP, secretion and PPI-pde activation is still evident, albeit at a reduced level. This also supports the hypothesis that protein kinase C-dependent phosphorylation is not essential for secretion. The effect of MgATP is to enhance secretion, and to reduce both the Ca2+ and GTP gamma S requirement for secretion. In conclusion, two roles for guanine nucleotides can be identified; one for activating PPI-pde (GP) and the other for activating exocytosis (GE), acting in series.  相似文献   

3.
A protamine kinase from HL60 cells was purified to near homogeneity by DEAE-Sephacel, protamine-agarose, Hydroxylapatite, and S-200 chromatography. It was purified by 75.8-fold through four chromatographic steps, and 0.67% of total activity was recovered. The purified enzyme had an apparent molecular mass of 120 kDa and was activated by Mg(2+) or Mn(2+), but inhibited by Ca(2+). Neither phospholipid nor phorbol ester significantly affected the enzyme activity. Staurosporine was the most potent inhibitor of the enzyme among the protein kinase inhibitors tested, K(252a), H(7), heparin, and staurosporine. The purified protamine kinase exhibited a maximum velocity of 5,000 pmol/min/mg and K(m) of 1.3 mM for protamine sulfate as a substrate. Myelin basic protein and protamine sulfate served as the best substrates for the protamine kinase among those tested. The activity of the protamine kinase remained unchanged upon treatment with PMA, retinoic acid, dimethyl sulfoxide, or 1,25 dihydroxy vitamin D(3) for 15 min, while treatment with a differentiating agent, 1,25 dihydroxy vitamin D(3), for one week increased its activity. These results suggest that protamine kinase in HL60 cells is involved in the late stage of the macrophage-monocytic differentiation pathway and may play a role in maintenance of the differentiation after HL60 cells are committed.  相似文献   

4.
5.
Phorbol 12-myristate 13-acetate (PMA) induces the differentiation of the human promyelocytic cell line, HL60, towards adherent macrophage-like cells within 2 days. We have examined the early effects of PMA on inositol phosphates and on diacylglycerol production, two second messengers derived from inositol lipids. In proliferating HL60 cells, PMA induced a time- and concentration-dependent decrease in inositol phosphate levels. Maximal effects were seen after 1 h at 10 nM PMA. PMA also induced the translocation of protein kinase C from the cytosol to the membrane. Comparison between the differentiating effects of several phorbol esters and of 1-oleoyl-2-acetylglycerol with their ability to inhibit inositol phosphate formation suggests that the two effects are correlated.  相似文献   

6.
We examined the effects of electric fields (EFs) on the activity and subcellular distribution of protein kinase C (PKC) of living HL60 cells. Sixty Hertz AC sinusoidal EFs (1.5–1.000 mV/cm p-p) were applied for 1 h to cells (107/ml) in Teflon chambers at 37 °C in the presence or absence of 2 μM phorbol 12-myristate 13-acetate (PMA). PMA stimulation alone evoked intracellular translocation of PKC from the cytosolic to particulate fractions. In cells that were exposed to EFs (100–1,000 mV/cm) without PMA, a loss of PKC activity from the cytosol, but no concomitant rise in particulate PKC activity, was observed. In the presence of PMA. EFs (33–330 mV/cm) also accentuated the expected loss of PKC activity from the cytosol and augmented the rise in PKC activity in the particulate fraction. These data show that EFs alone or combined with PMA promote down-regulation of cytosolic PKC activity similar to that evoked by mitogens and tumor promoters but that it does not elicit the concomitant rise in particulate activity seen with those agents. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The mechanisms whereby P2-purinergic receptors for extracellular ATP are coupled to the inositol phospholipid-signaling system were studied in the HL60 human promyelocytic leukemia cell line. Brief pretreatment of either undifferentiated or differentiated HL60 cells with various activators of protein kinase C Ca2+/phospholipid-dependent enzyme (e.g. phorbol myristate acetate) produced a 50-fold decrease in the potency of extracellular ATP to induce mobilization of intracellular Ca2+. The ATP-induced increase in rate of inositol trisphosphate (InsP3) accumulation in these 4-beta-phorbol 12-myristate-13-acetate-treated cells was characterized by a 40% decrease in the maximal rate of InsP3 accumulation. Incubation of the cells with NaF also induced mobilization of the same Ca2+ stores released in response to extracellular ATP; this provided indirect evidence that the transmembrane signaling actions of P2-purinergic receptors may be mediated by GTP-binding regulatory proteins. This latter possibility was further supported by the finding that treatment of either undifferentiated or differentiated HL60 cells with pertussis toxin produced a significant, but partial, inhibition of ATP-induced signaling actions. These included: 1) a 60-70% decrease in the maximum rate of InsP3 accumulation, and 2) a 1.5 log unit increase in the half-maximally effective [ATP] required for mobilization of intracellular Ca2+. In cells treated with both pertussis toxin and 4-beta-phorbol 12-myristate-13-acetate, there was an 80% decrease in maximal rate of ATP-induced InsP3 accumulation and near-complete inhibition of ATP-induced Ca2+ mobilization. Significantly, the residual, pertussis toxin-insensitive portion of ATP-induced signaling was observed in the same samples of differentiated HL60 cells wherein pertussis toxin treatment produced complete abolition of InsP3 accumulation and Ca2+ mobilization in response to occupation of chemotactic peptide receptors. These results indicate that the activation of inositol phospholipid breakdown by P2-purinergic receptors in HL60 cells may be mediated by both pertussis toxin-sensitive and toxin-insensitive mechanisms; this suggests that these myeloid progenitor cells may express two distinct types of GTP-binding proteins coupled to phospholipase C.  相似文献   

8.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

9.
The possible role of the peripheral cannabinoid receptor (CB2) in neutrophil migration was investigated by using human promyelocytic HL60 cells differentiated into neutrophil-like cells and human neutrophils isolated from whole blood. Cell surface expression of CB2 on HL60 cells, on neutrophil-like HL60 cells, and on human neutrophils was confirmed by flow cytometry. Upon stimulation with either of the CB2 ligands JWH015 and 2-arachidonoylglycerol (2-AG), neutrophil-like HL60 cells rapidly extended and retracted one or more pseudopods containing F-actin in different directions instead of developing front/rear polarity typically exhibited by migrating leukocytes. Activity of the Rho-GTPase RhoA decreased in response to CB2 stimulation, whereas Rac1, Rac2, and Cdc42 activity increased. Moreover, treatment of cells with RhoA-dependent protein kinase (p160-ROCK) inhibitor Y27632 yielded cytoskeletal organization similar to that of CB2-stimulated cells. In human neutrophils, neither JWH015 nor 2-AG induced motility or morphologic alterations. However, pretreatment of neutrophils with these ligands disrupted N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced front/rear polarization and migration and also substantially suppressed fMLP-induced RhoA activity. These results suggest that CB2 might play a role in regulating excessive inflammatory response by controlling RhoA activation, thereby suppressing neutrophil migration.  相似文献   

10.
The effects of phorbol esters and diacylglycerols on Ca2+ transport in isolated human platelet membranes were determined. Phorbol 12-myristate 13-acetate (PMA) stimulated Ca2+-ATPase activity in crude and purified internal platelet membranes approximately 2-fold with half-maximal stimulation occurring at 10 nM. Dilauroylglycerol also stimulated Ca2+-ATPase activity half-maximally at a concentration of 7.5 microM, but dioctanoylglycerol was without effect at up to 30 microM. PMA also inhibited Ca2+ uptake when added before or after commencement of ATP-dependent transport. PMA (25 nM) doubled the rate of Ca2+ efflux from passively loaded membranes in the absence of ATP. No protein kinase C activity was detected in crude or purified membranes by histone phosphorylation or endogenous protein phosphorylation assays. These results suggest that PMA and dilauroylglycerol stimulate Ca2+-ATPase activity and inhibit ATP-dependent Ca2+ transport by increasing the permeability of the membranes to Ca2+.  相似文献   

11.
The relationship between phospholipase A2 and C activation and secretion was investigated in intact human neutrophils and differentiated HL60 cells. Activation by either ATP or fMetLeuPhe leads to [3H]arachidonic acid release into the external medium from prelabelled cells. This response was inhibited when the cells were pretreated with pertussis toxin. When the [3H]arachidonic acid-labelled cells were stimulated with fMetLeuPhe, ATP or Ca2+ ionophore A23187, and the lipids analysed by t.l.c., the increase in free fatty acid was accompanied by decreases in label from phosphatidylinositol and phosphatidylcholine. Moreover, incorporation of label into triacylglycerol and to a lesser extent phosphatidylethanolamine was evident. Activation of secretion was evident with ATP and fMetLeuPhe but not with A23187. The pharmacological specificity of the ATP receptor in HL60 cells was investigated by measuring secretion of beta-glucuronidase, formation of inositol phosphatases and release of [3H]arachidonic acid. External addition of ATP, UTP, ITP, adenosine 5'-[gamma-thio]triphosphate (ATP[S]), adenosine 5'-[beta gamma-imido]triphosphate (App[NH]p), XTP, CTP, GTP, 8-bromo-ATP and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) to intact HL60 cells stimulated inositol phosphate production, but only the first five nucleotides were effective at stimulating secretion or [3H]arachidonic acid release. In human neutrophils, addition of ATP, ITP, UTP and ATP[S] also stimulated secretion from specific and azurophilic granules, and this was accompanied by increases in cytosolic Ca2+ and in [3H]arachidonic acid release. The addition of phorbol 12-myristate 13-acetate (PMA; 1 nM) prior to the addition of either fMetLeuPhe or ATP led to inhibition of phospholipase C activity. In contrast, this had no effect on phospholipase A2 activation, whilst secretion was potentiated. Phospholipase A2 activation by either agonist was dependent on an intact cell metabolism, as was secretion. It is concluded that (1) activation of phospholipase C does not always lead to activation of phospholipase A2, (2) phospholipase A2 is coupled to the receptor independently of phospholipase C via a pertussis-toxin-sensitive G-protein and (3) for secretion to take place, the receptor has to activate both phospholipases C and A2.  相似文献   

12.
The role of the cytosolic free calcium concentration ([Ca2+]i) and of protein kinase C on the internalization of transferrin and insulin in the human promyelocytic cell line HL60 was investigated. [Ca2+]i was selectively monitored and manipulated by the use of the fluorescent Ca2+ indicator and buffer quin2, while receptor-ligand internalization was studied directly by quantitative electron microscope autoradiography. Decreasing the [Ca2+]i up to 10-fold below resting level had no effect on the internalization of transferrin or insulin. Similarly, a 10-fold elevation of the [Ca2+]i using the calcium ionophore ionomycin caused little or no change in the endocytosis of the two ligands. In contrast, activation of protein kinase C by phorbol myristate acetate markedly stimulated the internalization of both occupied and unoccupied transferrin receptors, even in cells with very low [Ca2+]i. The insulin receptor was found to behave differently in response to phorbol myristate acetate, however, in that only the occupied receptors were stimulated to internalize. We conclude that the [Ca2+]i plays only a minor role in regulating receptor-mediated endocytosis, whereas protein kinase C can selectively modulate receptor internalization depending on receptor type and occupancy.  相似文献   

13.
We previously reported an induction of 15-hydroxyprostaglandin dehydrogenase type I mRNA (15-PGDH) expression accompanied by a decrease in prostaglandin E2(PGE2) levels during cord blood monocytes differentiation into preosteoclastic cells by 1,25 dihydroxyvitamin D3 (1,25 (OH)2D3). These results suggested a role of prostaglandin (PG) enzymes in adhesion and/or differentiation of monocytes.In the present work, we studied modulation of gene expression of PG metabolism enzymes mRNAs in HL60 cells differentiated by phorbol myristate acetate (PMA) into the monocyte/macrophage lineage. We showed that adhesion of HL60 induced by PMA causes an increase of cyclooxygenase 2 (COX 2) and 15-PGDH mRNAs. When adding indomethacin, a non steroidal antiinflammatory drug known to inhibit COX activity, the cells remained attached and expressed large amounts of 15-PGDH mRNA while COX 2 mRNA expression remained unchanged. Indomethacin, in association with PMA can consequently exert a dual control on key enzymes of PGE2 metabolism without modifying adhesion of the cells.  相似文献   

14.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is required both as a substrate for the generation of lipid-derived second messengers as well as an intact lipid for many aspects of cell signaling, endo- and exocytosis, and reorganization of the cytoskeleton. ADP ribosylation factor (ARF) proteins regulate PI(4,5)P(2) synthesis, and here we have examined whether this is due to direct activation of Type I phosphatidylinositol 4-phosphate (PIP) 5-kinase or indirectly by phosphatidate (PA) derived from phospholipase D (PLD) in HL60 cells. ARF1 and ARF6 are both expressed in HL60 cells and can be depleted from the cells by permeabilization. Both ARFs increased the levels of PIP(2) (PI(4,5)P(2), PI(3,5)P(2), or PI(3,4)P(2) isomers) at the expense of PIP when added back to permeabilized cells. The PIP(2) could be hydrolyzed by phospholipase C, identifying it as PI(4,5)P(2). However, the ARF1-stimulated pool of PI(4,5)P(2) was accessible to the phospholipase C more efficiently in the presence of phosphatidylinositol transfer protein-alpha. To examine the role of PLD in the regulation of PI(4,5)P(2) synthesis, we used butanol to diminish the PLD-derived PA. PI(4,5)P(2) synthesis stimulated by ARF1 was not blocked by 0.5% butanol but could be blocked by 1.5% butanol. Although 0.5% butanol was optimal for maximal transphosphatidylation, PA production was still detectable. In contrast, 1.5% butanol was found to inhibit the activation of PLD by ARF1 and also decrease PIP levels by 50%. Thus the toxicity of 1.5% butanol prevented us from concluding whether PA was an important factor in raising PI(4,5)P(2) levels. To circumvent the use of alcohols, an ARF1 point mutant was identified (N52R-ARF1) that could selectively activate PIP 5-kinase alpha activity but not PLD activity. N52R-ARF1 was still able to increase PI(4,5)P(2) levels but at reduced efficiency. We therefore conclude that both PA derived from the PLD pathway and ARF proteins, by directly activating PIP 5-kinase, contribute to the regulation of PI(4,5)P(2) synthesis at the plasma membrane in HL60 cells.  相似文献   

15.
Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are generated constitutively in mammalian cells. Because of its relatively long life and high permeability across membranes, H(2)O(2) is thought to be an important second messenger. Generation of H(2)O(2) is increased in response to external insults, including radiation. Catalase is located at the peroxisome and scavenges H(2)O(2). In this study, we investigated the role of catalase in cell growth using the H(2)O(2)-resistant variant HP100-1 of human promyelocytic HL60 cells. HP100-1 cells had an almost 10-fold higher activity of catalase than HL60 cells without differences in levels of glutathione peroxidase, manganese superoxide dismutase (MnSOD), and copper-zinc SOD (CuZnSOD). HP100-1 cells had higher proliferative activity than HL60 cells. Treatment with catalase or the introduction of catalase cDNA into HL60 cells stimulated cell growth. Exposure of HP100-1 cells to a catalase inhibitor resulted in suppression of cell growth with concomitant increased levels of intracellular H(2)O(2). Moreover, exogenously added H(2)O(2) or depletion of glutathione suppressed cell growth in HL60 cells. Extracellular signal regulated kinase 1/2 (ERK1/2) was constitutively phosphorylated in HP100-1 cells but not in HL60 cells. Inhibition of the ERK1/2 pathway suppressed the growth of HP100-1 cells, but inhibition of p38 mitogen-activated protein kinase (p38MAPK) did not affect growth. Moreover, inhibition of catalase blocked the phosphorylation of ERK1/2 but not of p38MAPK in HP100-1 cells. Thus our results suggest that catalase activates the growth of HL60 cells through dismutation of H(2)O(2), leading to activation of the ERK1/2 pathway; H(2)O(2) is an important regulator of growth in HL60 cells.  相似文献   

16.
17.
The human promyelocytic leukemia HL 60 and PLB 985 cell lines can differentiate into terminally mature neutrophil‐like cells via dimethyl sulfoxide (DMSO) induction. In this study the luminol‐dependent chemiluminescence (LCL) of both neutrophil‐like cells was analayzed and compared in response to phorbol myristate acetate (PMA) and opsonized zymosan (OZ) stimulants. It was shown that, like human blood neutrophils, both neutrophil‐like cells expressed high levels of CD11b, but unlike human blood neutrophils these cells almost lack LCL‐detectable intracellular oxidase activity. By studying the pattern of activation to OZ and PMA and priming with GM‐CSF, we concluded that there is no difference between the percentage of differentiation and function of DMSO‐induced HL 60 and PLB 985. However, the LCL capacity (area under the curve) of DMSO induced PLB 985 cells was higher than that of HL 60 cells in response to both PMA and OZ, which implies a higher capacity to generate reactive oxygen species in PLB 985 cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells.  相似文献   

19.
In dimethylsulfoxide-differentiated HL60 granulocytes, the chemotactic peptide N-formyl-Met-Leu-Phe (FMLP) augments arachidonic acid (AA) release via phospholipase A2 activity induced by the Ca2+-ionophore, A23187. Evidence indicates that this augmentation is mediated by diacylglycerols formed endogenously during FMLP receptor activation: The augmentation is mimicked by the synthetic diglyceride 1-oleoyl-2-acetyl-glycerol (OAG) and the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate; Pertussis toxin inhibits FMLP-induced augmentation but not OAG-induced augmentation: At suboptimal concentrations FMLP and OAG act cooperatively to augment ionophore A23187-induced AA release but not at optimal concentrations. These data indicate that phospholipase A2 activation in FMLP-stimulated HL60 granulocytes involves cooperative interactions between diacylglycerol formed endogenously and Ca2+. Interestingly, this effect of diacylglycerol appears not to be mediated by protein kinase C, since a specific protein kinase C inhibitor, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) does not inhibit receptor-mediated release of AA by stimulated HL60 granulocytes.  相似文献   

20.
Exposure of human HL60 cells to dimethyl sulfoxide results in their differentiation to mature granulocyte-like cells that concomitantly acquire the capacity to synthesize leukotrienes. The appearance of 5-lipoxygenase mRNA during differentiation indicated that these cells provide a useful model system for the biosynthesis and regulation of 5-lipoxygenase. Immunoblot analysis of protein from differentiated HL60 cells detected a 78,000-Da species comigrating with 5-lipoxygenase purified from human peripheral blood leukocytes. Metabolic labeling studies indicated that both undifferentiated and differentiated HL60 cells synthesized 5-lipoxygenase; however, the differentiated cells incorporated approximately 4.4-fold more [35S]methionine into 5-lipoxygenase protein than did controls. In addition, the differentiated HL60 cells contained approximately 3.3-fold more 5-lipoxygenase enzyme activity than undifferentiated cells. Metabolic labeling studies failed to demonstrate any post-translational modifications of 5-lipoxygenase, including proteolysis, mannose glycosylation, myristic acid acylation, or phosphorylation. When differentiated HL60 cells were incubated with [35S]methionine for 4 versus 16 h, no difference was observed in the pattern of total radiolabeled supernatant protein; however, there was a significant increase in the incorporation of radioactivity into immunoprecipitable 5-lipoxygenase protein from cells labeled for 16 as compared with 4 h. Pulse-chase studies demonstrated that the t1/2 of 5-lipoxygenase in these cells is approximately 26 h. Activation of differentiated HL60 cells with Ca2+ ionophore A23187 resulted in the loss of 5-lipoxygenase protein and activity from the cytosol and the accumulation of inactive protein in a membrane fraction. Following ionophore stimulation, no augmentation in the rate of 5-lipoxygenase synthesis occurred in order to compensate for the loss of the translocated/inactive enzyme. Finally, additional 5-lipoxygenase was able to translocate to the membrane in response to subsequent ionophore challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号