首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
BALB/MK is a nontransformed epithelial cell line derived from primary BALB/c mouse keratinocytes that requires epidermal growth factor (EGF) for growth. Using a defined-medium culture system, we investigated the role of physiological concentrations of EGF on phosphoinositide metabolism in these cells. The results show that EGF rapidly activates phospholipase-C mediated phosphoinositide metabolism resulting in the generation of the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. These metabolites control intracellular Ca2+ levels and activate protein kinase C, respectively. Protein kinase C activation in response to EGF was evidenced by the phosphorylation of the acidic 80 kilodalton endogenous protein substrate (p80) specific for this kinase. In contrast, insulin, which acts in concert with EGF to cause BALB/MK cell proliferation, had no effect on phosphoinositide metabolism nor led to any additional stimulation when added in combination with EGF. Taken together, our results show that rapid alterations in phosphoinositide metabolism and protein kinase C activation are associated with the normal mitogenic response of keratinocytes to EGF.  相似文献   

2.
The relation between signal transduction pathways and the genes that specify regional identity remains poorly understood. We investigated the interaction between the epidermal growth factor receptor (EGFR) pathway and the homeobox gene orthodenticle (otd), which specifies cell fate during head development. Previous studies of head formation in Drosophila melanogaster demonstrated that reducing either EGFR signaling or otd expression in the imaginal primordium of the dorsal head capsule eliminates the ocelli and other dorsal head structures. Here, we show that blocking EGFR signaling reduces otd expression and that activating EGFR signaling outside this primordium induces ectopic otd expression. We also demonstrate that loss of EGFR can be rescued by constitutive otd expression. Our results indicate that otd is a downstream target of the EGFR pathway during head development.  相似文献   

3.
Overexpression of Met is a common finding in thyroid carcinomas. Recently, we reported on overexpression and ligand-independent constitutive activation of Met in anaplastic thyroid carcinoma cells. In the present study we have investigated a putative mechanism for this phenomenon. Cell lines with constitutively activated Met expressed both TGF-alpha mRNA and protein. Western blot analysis revealed expression of receptors for epidermal growth factor (EGFR) in all carcinoma cell lines; in tumor cells with elevated levels of TGF-alpha mRNA there was a constitutive tyrosine phosphorylation of the EGFRs. Preincubation of carcinoma cells with suramin decreased EGFR activation and downregulated Met expression as well as the ligand-independent phosphorylation of Met. Similar results were obtained with a EGFR tyrosine kinase inhibitor, AG 1478. The MEK inhibitor U0126 had an even more pronounced effect compared to AG 1478, indicating a Ras/MAPK-mediated signal in the regulation of Met expression and activation. Inhibition of EGFR signaling also decreased proliferation of the anaplastic thyroid carcinoma cells. Thus, aberrant activation of EGFRs may lead to an overexpression and activation of Met, which may be of importance for the malignant phenotype of anaplastic thyroid carcinomas.  相似文献   

4.
We have characterized the expression of transforming growth factor alpha (TGF alpha) and its receptor, the epidermal growth factor receptor (EGF-R), in normal and malignantly transformed human mammary epithelial cells. Human mammary epithelial cells were derived from a reduction mammoplasty (184), immortalized by benzo-a-pyrene (184A 1N4), and further transformed by the oncogenes simian virus 40 T (SV40 T), v-Ha-ras, and v-mos alone or in combination using retroviral vectors. 184 and 184A 1N4 cells require EGF for anchorage-dependent clonal growth. In mass culture, they secrete TGF alpha at high concentrations and exhibit an attenuated requirement for exogenous EGF/TGF alpha. SV40 T transformed cells have 4-fold increased EGF-R, have acquired the ability to clone in soft agar with EGF/TGF alpha supplementation, but are not tumorigenic. Cells transformed by v-mos or v-Ha-ras are weakly tumorigenic and capable of both anchorage dependent and independent growth in the absence of EGF/TGF alpha. Cells transformed by both SV40 T and v-Ha-ras are highly tumorigenic, are refractory to EGF/TGF alpha, and clone with high efficiency in soft agar. The expression of v-Ha-ras is associated with a loss of the high (but not low) affinity binding component of the EGF-R. Malignant transformation and loss of TGF alpha/EGF responsiveness did not correlate with an increase in TGF alpha production. Thus, TGF alpha production does not appear to be a tumor specific marker for human mammary epithelial cells. Differential growth responses to EGF/TGF alpha, rather than enhanced production of TGF alpha, may determine the transition from normal to malignant human breast epithelium.  相似文献   

5.
Epidermal growth factor (EGF)-induced signaling was investigated in cells conditionally defective in clathrin-dependent endocytosis by overexpression of K44A dynamin in HeLa cells and potassium depletion in Hep2 cells. Overexpression of mutant dynamin disrupts high-affinity EGF-EGF receptor (EGFR) interaction (T. Ringerike, E. Stang, L. E. Johannessen, D. Sandnes, F. O. Levy, and I. H. Madshus, 1998, J. Biol. Chem. 273, 16639-16642). However, the EGFR substrates Shc and c-Cbl were as efficiently tyrosine phosphorylated in endocytosis-deficient HeLa cells exhibiting only low-affinity EGFRs as in HeLa cells with intact endocytosis and with both high- and low-affinity EGFRs. Both Raf and mitogen-activated protein kinase (MAPK) were activated to the same extent and with the same kinetics. HeLa cells distributed equally in the cell cycle regardless of EGFR internalization. Upon potassium depletion of Hep2 cells, EGF-induced EGFR endocytosis was inhibited. However, the EGFR and MAPK were efficiently activated by EGF in both the absence and the presence of clathrin-dependent endocytosis. The EGFR was weakly tyrosine phosphorylated by potassium depletion even in the absence of EGF, and this activation resulted in detectable activation of MAPK. Our results demonstrate that internalization of EGFR by clathrin-dependent endocytosis is not required for activation of MAPK.  相似文献   

6.
The patch clamp technique in a cell-attached configuration was used to search for calcium-permeable channels in human carcinoma A 431 cells. Unitary inward currents were recorded with 100 mM CaCl2 in a pipette, with the mean slope conductance of 2.8 pS and a reversal potential (obtained by extrapolation) of +25.5 mV. Application of epidermal growth factor (EGF) into the extracellular solution produced a transient increase in the probability of these channels being open. The effect develops with delay of about 20 s and lasts thereafter for 36 s (mean values). We propose that these channels mediate an EGF-induced increase in the concentration of cytosolic free calcium.  相似文献   

7.
In the present paper we demonstrate that the cytostatic and antiviral activity of pyrimidine nucleoside analogues is markedly decreased by a Mycoplasma hyorhinis infection and show that the phosphorolytic activity of the mycoplasmas is responsible for this. Since mycoplasmas are (i) an important cause of secondary infections in immunocompromised (e.g. HIV infected) patients and (ii) known to preferentially colonize tumour tissue in cancer patients, catabolic mycoplasma enzymes may compromise efficient chemotherapy of virus infections and cancer. In the genome of M. hyorhinis, a TP (thymidine phosphorylase) gene has been annotated. This gene was cloned, expressed in Escherichia coli and kinetically characterized. Whereas the mycoplasma TP efficiently catalyses the phosphorolysis of thymidine (Km=473 μM) and deoxyuridine (Km=578 μM), it prefers uridine (Km=92 μM) as a substrate. Our kinetic data and sequence analysis revealed that the annotated M. hyorhinis TP belongs to the NP (nucleoside phosphorylase)-II class PyNPs (pyrimidine NPs), and is distinct from the NP-II class TP and NP-I class UPs (uridine phosphorylases). M. hyorhinis PyNP also markedly differs from TP and UP in its substrate specificity towards therapeutic nucleoside analogues and susceptibility to clinically relevant drugs. Several kinetic properties of mycoplasma PyNP were explained by in silico analyses.  相似文献   

8.
Summary The expression of epidermal growth factor receptor (EGFR) was determined in cryosections of 42 human gliomas using biotinylated epidermal growth factor (B-EGF) and two monoclonal antibodies (mAb) against EGFR. All gliomas were found to express EGFR when examined with B-EGF, whereas 33 expressed EGFR when examined with the two mAbs. The highly malignant gliomas (glioblastomas and anaplastic astrocytomas) had a more heterogeneous staining pattern and a larger proportion of tumour cells staining strongly with B-EGF than did the low-grade gliomas (astrocytomas, oligodendrogliomas, mixed gliomas, and ependymomas). This indicates that high-grade gliomas contain more tumour cells rich in EGFR than do the low-grade gliomas. Reactive astrocytes, ependymal cells, and many types of nerve cells (cerebral cortical pyramidal cells, pyramidal and granular hippocampal cells, Purkinje cells, cerebellar granular cells and neurons in the molecular layer of the cerebellum) expressed EGFR, whereas small neurons and normal glial cells were not found to express EGFR.  相似文献   

9.
Urinary epidermal growth factor (EGF) excretion was calculated as ng EGF per mg creatinine and ng EGF per 24 hr. It was increased 4-9 fold in rats with genetic (BB) or streptozotocin-induced diabetes. It decreased to 2-3 fold control values in insulin-treated animals. In contrast, EGF concentration in serum was lower in diabetic than in control rats (360 +/- 72 vs 524 +/- 150 pg/ml, P .086); EGF level in plasma was unchanged (319 +/- 67 vs 313 +/- 96 pg/ml). In diabetic rats EGF content was increased in submaxillary glands (1018 +/- 259 vs 738 +/- 122 pg/mg protein, P .060) but unchanged in the kidneys (70 +/- 18 vs 65 +/- 6 pg/mg protein in controls). EGF binding to the liver microsomes in diabetic rats was decreased by 30-40% and was not restored by insulin therapy. Binding to the kidneys also showed a tendency to decrease in diabetic animals. The EGF excretion and receptor binding were normal in obese normoglycemic Zucker fa/fa rats. We suggest that hyperglycemia and/or glucosuria may affect EGF synthesis and/or excretion in the kidneys and EGF synthesis or accumulation in the megakaryocytes. The mechanism of decreased EGF receptor binding remains to be clarified.  相似文献   

10.
11.
12.
Gastrin, a gastrointestinal hormone responsible for gastric acid secretion, has been confirmed as a growth factor for gastrointestinal tract malignancies. High expression of gastrin mRNA was observed in pancreatic and colorectal cancer; however, the mechanism is unclear. Epidermal growth factor (EGF) was found to increase gastrin mRNA stability, indicating mRNA turnover regulation mechanism is involved in the control of gastrin mRNA expression. Using biotin-labeled RNA probe pull-down assay combined with mass spectrometry analysis, we identified the heterogeneous nuclear ribonucleoprotein K (hnRNP K) and poly(C) binding protein 1 (PCBP1) bound with the C-rich region in gastrin mRNA 3′ untranslated region. Nucleolin bound with the AGCCCU motif and interacted with hnRNP K were also demonstrated. Under EGF treatment, we observed the amount of nucleolin interacting with hnRNP K and gastrin mRNA increased. Using small interfering RNA technology to define their functional roles, we found hnRNP K, PCBP1, and nucleolin were all responsible for stabilizing gastrin mRNA. Moreover, nucleolin plays a crucial role in mediating the increased gastrin mRNA stability induced by EGF signaling. Besides, we also observed hnRNP K/PCBP1 complex bound with the C-rich region in the gastrin mRNA increased nucleolin binding with gastrin mRNA. Finally, a novel binding model was proposed.  相似文献   

13.
14.
In earlier studies, we and others have established that activation of EGFR can promote survival in association with upregulation of Bcl-x(L). However, the mechanism responsible for upregulation of Bcl-x(L) is unknown. For the current studies we have chosen pro-apoptotic, c-Myc-overexpressing murine mammary epithelial cells (MMECs) derived from MMTV-c-Myc transgenic mouse tumors. We now demonstrate that EGFR activation promotes survival through Akt and Erk1/2. Blockade of EGFR kinase activity and the PI3-K/Akt and MEK/Erk pathways with pharmacological inhibitors resulted in a significant induction of cellular apoptosis, paralleled by a downregulation of both Akt and Erk1/2 proteins. Consistent with a survival-promoting role of Akt, we observed that constitutively activated Akt (Myr-Akt) inhibited apoptosis of pro-apoptotic, c-Myc-overexpressing cells following the inhibition of EGFR tyrosine kinase activity. In addressing possible downstream effectors of EGFR through activated Akt, we detected significant upregulation of Bcl-x(L) protein, suggesting this pro-survival protein is a target of Akt in MMECs. By using pharmacological inhibitors of PI3-K/Akt and MEK/Erk together with dominant-negative Akt and Erk1 we observed the decrease in Bcl-x(L) protein. Our findings may be of importance for understanding the emerging role of Bcl-x(L) as a potential marker of poor prognosis in breast cancer.  相似文献   

15.
Proteinase-activated receptor (PAR)(2), a G protein-coupled receptor activated by serine proteinases, has been implicated in both intestinal inflammation and epithelial proliferation. Cyclooxygenase (COX)-2 is overexpressed in the gut during inflammation as well as in colon cancer. We hypothesized that PAR(2) drives COX-2 expression in intestinal epithelial cells. Treatment of Caco-2 colon cancer cells with the PAR(2)-activating peptide 2-furoyl-LIGRLO-NH(2) (2fLI), but not by its reverse-sequence PAR(2)-inactive peptide, for 3 h led to an increase in intracellular COX-2 protein expression accompanied by a COX-2-dependent increase in prostaglandin E(2) production. 2fLI treatment for 30 min significantly increased metalloproteinase activity in the culture supernatant. Increased epidermal growth factor receptor (EGFR) phosphorylation was observed in cell lysates following 40 min of treatment with 2fLI. The broad-spectrum metalloproteinase inhibitor marimastat inhibited both COX-2 expression and EGFR phosphorylation. The EGFR tyrosine kinase inhibitor PD153035 also abolished 2fLI-induced COX-2 expression. Although PAR(2) activation increased ERK MAPK phosphorylation, neither ERK pathway inhibitors nor a p38 MAPK inhibitor affected 2fLI-induced COX-2 expression. However, inhibition of either Src tyrosine kinase signaling by PP2, Rho kinase signaling by Y27632, or phosphatidylinositol 3 (PI3) kinase signaling by LY294002 prevented 2fLI-induced COX-2 expression. Trypsin increased COX-2 expression through PAR(2) in Caco-2 cells and in an EGFR-dependent manner in the noncancerous intestinal epithelial cell-6 cell line. In conclusion, PAR(2) activation drives COX-2 expression in Caco-2 cells via metalloproteinase-dependent EGFR transactivation and activation of Src, Rho, and PI3 kinase signaling. Our findings provide a mechanism whereby PAR(2) can participate in the progression from chronic inflammation to cancer in the intestine.  相似文献   

16.
Epidermal growth factor (EGF) decreases the mRNA and protein levels of claudin-2 (CLDN2) in Madin-Darby canine kidney (MDCK) II cells. Here we examined whether EGF affects the stability and intracellular distribution of CLDN2 protein. EGF decreased surface and total levels of CLDN2, which was inhibited by U0126, a MEK inhibitor. CLDN2 was co-localized at the tight junctions (TJs) with ZO-1, a scaffolding protein. The fluorescence signal for CLDN2 disappeared on treatment with EGF, which was inhibited by U0126. EGF accelerated the decrease in CLDN2 in the presence of cycloheximide, a translation inhibitor, indicating that EGF reduces the stability of the protein. Chloroquine, a lysosomal protease inhibitor, blocked the EGF-induced decrease in CLDN2 protein and caused the co-localization of CLDN2 with Lamp-1, a marker of lysosome. Monodancylcadaverine, an inhibitor of endocytosis, and clathrin siRNA blocked the EGF-induced decrease in CLDN2 and the translocation of CLDN2 from the TJs to the lysosome. EGF increased the association of CLDN2 with clathrin and adaptin α which was inhibited by U0126. These results suggest that EGF accelerates clathrin-dependent endocytosis and lysosomal degradation of CLDN2 protein mediated by the activation of a MEK/ERK pathway.  相似文献   

17.
18.
Three different receptor tyrosine kinases, epidermal growth factor (EGF), c-erbB-2/neu, and platelet-derived growth factor (PDGF) receptors, have been found to be present in the mouse mammary epithelial cell line HC11. We have investigated the consequences of receptor activation on the growth and differentiation of HC11 cells. HC11 cells are normal epithelial cells which maintain differentiation-specific functions. Treatment of the cells with the lactogenic hormones glucocorticoids and prolactin leads to the expression of the milk protein beta-casein. Activation of EGF receptor has a positive effect on cell growth and causes the cells to become competent for the lactogenic hormone response. HC11 cells respond optimally to the lactogenic hormone mixture and synthesize high levels of beta-casein only if they have been kept previously in a medium containing EGF. Transfection of HC11 cells with the activated rat neuT receptor results in the acquisition of competence to respond to the lactogenic hormones even if the cells are grown in the absence of EGF. The activation of PDGF receptor, through PDGF-BB, also stimulates the growth of HC11 cells. Cells kept only in PDGF do not become competent for lactogenic hormone induction. The results show that activation of the structurally related EGF and c-erbB-2/neu receptors, but not the PDGF receptor, allows the HC11 cells to subsequently respond optimally to lactogenic hormones.  相似文献   

19.
Insulin-like growth factors (IGFs) are important regulators of epithelial cell growth. The mitogenic activity of these factors is influenced by the levels of extracellular IGF binding proteins, including insulin-like growth factor binding protein 3 (IGFBP-3). In the present report we study the effects of epidermal growth factor (EGF) and all-trans-retinoic acid (RA) on IGFBP-3 RNA and protein levels in human papillomavirus-immortalized cervical epithelial cells. Treatment of ECE16-1 cells with 3–20 ng/ml EGF causes a marked reduction in IGFBP-3 levels. In contrast, 1 μM RA increases IGFBP-3 mRNA and protein levels in the presence or absence of 20 ng/ml EGF. The response is concentration dependent with a half-maximal increase observed at 1 nM RA. RA is able to reverse the EGF suppression when added simultaneously or 3 days after initiation of EGF treatment. Conversely, when cells are treated with RA, IGFBP-3 levels increase within 24 h and subsequent addition of EGF is without effect. Thus, the RA-dependent increase in IGFBP-3 levels is dominant over the EGF suppression. The increased IGFBP-3 levels are correlated with RA suppression of proliferation. Similar RA effects on IGFBP-3 mRNA levels were observed in other cervical epithelial cell lines (i.e., ECE16-D1, ECE16-D2, and CaSki). These results suggest that RA may act to inhibit cervical cell growth by increasing IGFBP-3 levels and reducing the extracellular concentration of free insulin-like growth factor I (IGFI) and/or, alternatively, IGFBP-3 may inhibit cell growth by direct effects on the cell, independent of IGFI. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA and protein expression is induced by EGF in MCF-10A nontransformed and Ha-ras transfected human mammary epithelial cells. The anti-EGF receptor (EGFR) blocking monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 were able to inhibit the induction of HB-EGF mRNA levels in MCF-10A cells. However, the Ha-ras transformed MCF-10A cells were more refractory to inhibition by these agents and only a combination of the 225 MAb and PD153035 was able to significantly abrogate HB-EGF induction by EGF. The anti-erbB2 MAb L26 which interferes with heterodimer formation was able to block HB-EGF induction in response to EGF in MCF-10A cells and in the Ha-ras transformed cells only when used in combination with either the 225 MAb or PD153035. The MEK inhibitor PD90859 completely blocked EGF induction of HB-EGF mRNA levels in the nontransformed and Ha-ras transformed MCF-10A cells, which indicates that MAPK is involved in the signaling pathway of HB-EGF induction by EGF. An increase in the levels of HB-EGF may, therefore, be an important contributor to oncogenic transformation that is caused by Ha-ras overexpression in mammary epithelial cells. J. Cell. Physiol. 186:233-242, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号