首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous two-cell voltage-clamp studies have concluded that the electrical conductance of mammalian cardiac gap junctions is not modulated by the transjunctional voltage (Vj) profile, although gap junction channels between low conductance pairs of neonatal rat ventricular myocytes are reported to exhibit Vj-dependent behavior. In this study, the dependence of macroscopic gap junctional conductance (gj) on transjunctional voltage was quantitatively examined in paired 3-d neonatal hamster ventricular myocytes using the double whole-cell patch-clamp technique. Immunolocalization with a site-specific antiserum directed against amino acids 252-271 of rat connexin43, a 43-kD gap junction protein as predicted from its cDNA sequence, specifically stained zones of contact between cultured myocytes. Instantaneous current-voltage (Ij-Vj) relationships of neonatal hamster myocyte pairs were linear over the entire voltage range examined (0 less than or equal to Vj less than or equal to +/- 100 mV). However, the steady-state Ij-Vj relationship was nonlinear for Vj greater than +/- 50 mV. Both inactivation and recovery processes followed single exponential time courses (tau inactivation = 100-1,000 ms, tau recovery approximately equal to 300 ms). However, Ij recovered rapidly upon polarity reversal. The normalized steady-state junctional conductance-voltage relationship (Gss-Vj) was a bell-shaped curve that could be adequately described by a two-state Boltzmann equation with a minimum Gj of 0.32-0.34, a half-inactivation voltage of -69 and +61 mV and an effective valence of 2.4-2.8. Recordings of gap junction channel currents (ij) yielded linear ij-Vj relationships with slope conductances of approximately 20-30 and 45-50 pS. A kinetic model, based on the Boltzmann relationship and the polarity reversal data, suggests that the opening (alpha) and closing (beta) rate constants have nearly identical voltage sensitivities with a Vo of +/- 62 mV. The data presented in this study are not consistent with the contingent gating scheme (for two identical gates in series) proposed for other more Vj-dependent gap junctions and alternatively suggest that each gate responds to the applied Vj independently of the state (open or closed) of the other gate.  相似文献   

2.
The human Na(+)-glucose cotransporter (hSGLT1) has been shown to generate, in the absence of sugar, presteady-state currents in response to a change in potential, which could be fitted with single exponentials once the voltage had reached a new constant value. By the cut-open oocyte technique (voltage rising-speed approximately 1 mV/microsecond), phlorizin-sensitive transient currents could be detected with a higher time resolution during continuous intracellular perfusion. In the absence of sugar and internal Na+, and with 90 mM external Na+ concentration ([Na+]o), phlorizin-sensitive currents exhibited two relaxation time-constants: tau 1 increased from 2 to 10 ms when Vm decreased from +60 mV to -80 mV and remained at 10 ms for more negative Vm; tau 2 ranged from 0.4 to 0.8 ms in a weakly voltage-dependent manner. According to a previously proposed model, these two time constants could be accounted for by 1) Na+ crossing a fraction of the membrane electrical field to reach its binding site on the carrier and 2) conformational change of the free carrier. To test this hypothesis, the time constants were measured as [Na+]o was progressively reduced to 0 mM. At 30 and 10 mM external Na+, tau 1 reached the same plateau value of 10 ms but at more negative potentials (-120 and -160 mV, respectively). Contrary to the prediction of the model, two time constants continued to be detected in the bilateral absence of Na+ (at pH 8.0). Under these conditions, tau 1 continuously increased through the whole voltage range and did not reach the 10 ms level even when Vm had attained -200 mV while tau 2 remained in the range of 0.4-0.8 ms. These results indicate that 1) conformational change of the free carrier across the membrane must occur in more than one step and 2) Na+ binding/debinding is not responsible for either of the two observed exponential components of transient currents. By use of the simplest kinetic model accounting for the portion of the hSGLT1 transport cycle involving extracellular Na+ binding/debinding and the dual-step conformational change of the free carrier, tau 1 and tau 2 were fitted throughout the voltage range, and a few sets of parameters were found to reproduce the data satisfactorily. This study shows that 1) tau 1 and tau 2 correspond to two steps in the conformational change of the free carrier, 2) Na+ binding/debinding modulates the slow time constant (tau 1) and 3) a voltage-independent slow conformational change of the free carrier accounts for the observed plateau value of 10 ms.  相似文献   

3.
F Qin  A Auerbach    F Sachs 《Biophysical journal》1996,70(1):264-280
We present here a maximal likelihood algorithm for estimating single-channel kinetic parameters from idealized patch-clamp data. The algorithm takes into account missed events caused by limited time resolution of the recording system. Assuming a fixed dead time, we derive an explicit expression for the corrected transition rate matrix by generalizing the theory of Roux and Sauve (1985, Biophys. J. 48:149-158) to the case of multiple conductance levels. We use a variable metric optimizer with analytical derivatives for rapidly maximizing the likelihood. The algorithm is applicable to data containing substates and multiple identical or nonidentical channels. It allows multiple data sets obtained under different experimental conditions, e.g., concentration, voltage, and force, to be fit simultaneously. It also permits a variety of constraints on rate constants and provides standard errors for all estimates of model parameters. The algorithm has been tested extensively on a variety of kinetic models with both simulated and experimental data. It is very efficient and robust; rate constants for a multistate model can often be extracted in a processing time of approximately 1 min, largely independent of the starting values.  相似文献   

4.
External pH (pH(o)) modifies T-type calcium channel gating and permeation properties. The mechanisms of T-type channel modulation by pH remain unclear because native currents are small and are contaminated with L-type calcium currents. Heterologous expression of the human cloned T-type channel, alpha1H, enables us to determine the effect of changing pH on isolated T-type calcium currents. External acidification from pH(o) 8.2 to pH(o) 5.5 shifts the midpoint potential (V(1/2)) for steady-state inactivation by 11 mV, shifts the V(1/2) for maximal activation by 40 mV, and reduces the voltage dependence of channel activation. The alpha1H reversal potential (E(rev)) shifts from +49 mV at pH(o) 8.2 to +36 mV at pH(o) 5.5. The maximal macroscopic conductance (G(max)) of alpha1H increases at pH(o) 5.5 compared to pH(o) 8.2. The E(rev) and G(max) data taken together suggest that external protons decrease calcium/monovalent ion relative permeability. In response to a sustained depolarization alpha1H currents inactivate with a single exponential function. The macroscopic inactivation time constant is a steep function of voltage for potentials < -30 mV at pH(o) 8.2. At pH(o) 5.5 the voltage dependence of tau(inact) shifts more depolarized, and is also a more gradual function of voltage. The macroscopic deactivation time constant (tau(deact)) is a function of voltage at the potentials tested. At pH(o) 5.5 the voltage dependence of tau(deact) is simply transposed by approximately 40 mV, without a concomitant change in the voltage dependence. Similarly, the delay in recovery from inactivation at V(rec) of -80 mV in pH(o) 5.5 is similar to that with a V(rec) of -120 mV at pH(o) 8.2. We conclude that alpha1H is uniquely modified by pH(o) compared to other calcium channels. Protons do not block alpha1H current. Rather, a proton-induced change in activation gating accounts for most of the change in current magnitude with acidification.  相似文献   

5.
The Hodgkin-Huxley equations for space-clamped squid axon (18 degrees C) have been modified to approximate voltage clamp data from repetitive-firing crustacean walking leg axons and activity in response to constant current stimulation has been computed. The m infinity and h infinity parameters of the sodium conductance system were shifted along the voltage axis in opposite directions so that their relative overlap was increased approximately 7 mV. Time constants tau m and tau h, were moved in a similar manner. Voltage-dependent parameters of delayed potassium conductance, n infinity and tau n, were shifted 4.3 mV in the positive direction and tau n was uniformly increased by a factor of 2. Leakage conductance and capacitance were unchanged. Repetitive activity of this modified circuit was qualitatively similar to that of the standard model. A fifth branch was added to the circuit representing a transient potassium conductance system present in the repetitive walking leg axons and in other repetitive neurons. This model, with various parameter choices, fired repetitively down to approximately 2 spikes/s and up to 350/s. The frequency vs. stimulus current plot could be fit well by a straight line over a decade of the low frequency range and the general appearance of the spike trains was similar to that of other repetitive neurons. Stimulus intensities were of the same order as those which produce repetitive activity in the standard Hodgkin-Huxley axon. The repetitive firing rate and first spike latency (utilization time) were found to be most strongly influenced by the inactivation time constant of the transient potassium conductance (tau b), the delayed potassium conductance (tau n), and the value of leakage conductance (gL). The model presents a mechanism by which stable low frequency discharge can be generated by millisecond-order membrane conductance changes.  相似文献   

6.
L-type Ca(2+) channel (L-channel) activity of the skeletal muscle dihydropyridine receptor is markedly enhanced by the skeletal muscle isoform of the ryanodine receptor (RyR1) (Nakai, J., R.T. Dirksen, H. T. Nguyen, I.N. Pessah, K.G. Beam, and P.D. Allen. 1996. Nature. 380:72-75.). However, the dependence of the biophysical and pharmacological properties of skeletal L-current on RyR1 has yet to be fully elucidated. Thus, we have evaluated the influence of RyR1 on the properties of macroscopic L-currents and intracellular charge movements in cultured skeletal myotubes derived from normal and "RyR1-knockout" (dyspedic) mice. Compared with normal myotubes, dyspedic myotubes exhibited a 40% reduction in the amount of maximal immobilization-resistant charge movement (Q(max), 7.5 +/- 0.8 and 4.5 +/- 0.4 nC/muF for normal and dyspedic myotubes, respectively) and an approximately fivefold reduction in the ratio of maximal L-channel conductance to charge movement (G(max)/Q(max)). Thus, RyR1 enhances both the expression level and Ca(2+) conducting activity of the skeletal L-channel. For both normal and dyspedic myotubes, the sum of two exponentials was required to fit L-current activation and resulted in extraction of the amplitudes (A(fast) and A(slow)) and time constants (tau(slow) and tau(fast)) for each component of the macroscopic current. In spite of a >10-fold in difference current density, L-currents in normal and dyspedic myotubes exhibited similar relative contributions of fast and slow components (at +40 mV; A(fast)/[A(fast) + A(slow)] approximately 0.25). However, both tau(fast) and tau(slow) were significantly (P < 0.02) faster for myotubes lacking the RyR1 protein (tau(fast), 8.5 +/- 1.2 and 4.4 +/- 0.5 ms; tau(slow), 79.5 +/- 10.5 and 34.6 +/- 3.7 ms at +40 mV for normal and dyspedic myotubes, respectively). In both normal and dyspedic myotubes, (-) Bay K 8644 (5 microM) caused a hyperpolarizing shift (approximately 10 mV) in the voltage dependence of channel activation and an 80% increase in peak L-current. However, the increase in peak L-current correlated with moderate increases in both A(slow) and A(fast) in normal myotubes, but a large increase in only A(fast) in dyspedic myotubes. Equimolar substitution of Ba(2+) for extracellular Ca(2+) increased both A(fast) and A(slow) in normal myotubes. The identical substitution in dyspedic myotubes failed to significantly alter the magnitude of either A(fast) or A(slow). These results demonstrate that RyR1 influences essential properties of skeletal L-channels (expression level, activation kinetics, modulation by dihydropyridine agonist, and divalent conductance) and supports the notion that RyR1 acts as an important allosteric modulator of the skeletal L-channel, analogous to that of a Ca(2+) channel accessory subunit.  相似文献   

7.
Inactivation viewed through single sodium channels   总被引:17,自引:12,他引:5       下载免费PDF全文
Recordings of the sodium current in tissue-cultured GH3 cells show that the rate of inactivation in whole cell and averaged single channel records is voltage dependent: tau h varied e-fold/approximately 26 mV. The source of this voltage dependence was investigated by examining the voltage dependence of individual rate constants, estimated by maximum likelihood analysis of single channel records, in a five-state kinetic model. The rate constant for inactivating from the open state, rather than closing, increased with depolarization, as did the probability that an open channel inactivates. The rate constant for closing from the open state had the opposite voltage dependence. Both rate constants contributed to the mean open time, which was not very voltage dependent. Both open time and burst duration were less than tau h for voltages up to -20 mV. The slowest time constant of activation, tau m, was measured from whole cell records, by fitting a single exponential either to tail currents or to activating currents in trypsin-treated cells, in which the inactivation was abolished. tau m was a bell-shaped function of voltage and had a voltage dependence similar to tau h at voltages more positive than -35 mV, but was smaller than tau h. At potentials more negative than about -10 mV, individual channels may open and close several times before inactivating. Therefore, averaged single channel records, which correspond with macroscopic current elicited by a depolarization, are best described by a convolution of the first latency density with the autocorrelation function rather than with 1 - (channel open time distribution). The voltage dependence of inactivation from the open state, in addition to that of the activation process, is a significant factor in determining the voltage dependence of macroscopic inactivation. Although the rates of activation and inactivation overlapped greatly, independent and coupled inactivation could not be statistically distinguished for two models examined. Although rates of activation affect the observed rate of inactivation at intermediate voltages, extrapolation of our estimates of rate constants suggests that at very depolarized voltages the activation process is so fast that it is an insignificant factor in the time course of inactivation. Prediction of gating currents shows that an inherently voltage-dependent inactivation process need not produce a conspicuous component in the gating current.  相似文献   

8.
Ferret atrial myocytes can display an E-4031-sensitive current (IKr) that is similar to that previously described for guinea pig cardiac myocytes. We examined the ferret atrial IKr as the E-4031-sensitive component of current using the amphotericin B perforated patch-clamp technique. Steady-state IKr during depolarizing pulses showed characteristic inward rectification. Activation time constants during a single pulse were voltage dependent, consistent with previous studies. However, for potentials positive to +30 mV, IKr time course became complex and included a brief transient component. We examined the envelope of tails of the drug-sensitive current for activation in the range -10 to +50 mV and found that the tail currents for IKr do not activate with the same time course as the current during the depolarizing pulse. The activation time course determined from tail currents was relatively voltage insensitive over the range +30 to +50 mV (n = 5), but was voltage sensitive for potentials between -10 and +30 mV and appeared to show some sigmoidicity in this range. These data indicate that activation of IKr occurs in at least two steps, one voltage sensitive and one voltage insensitive, the latter of which becomes rate limiting at positive potentials. We also examined the rapid time-dependent inactivation process that mediates rectification at positive potentials. The time constants for this process were only weakly voltage dependent over the range of potentials from -50 to +60 mV. From these data we constructed a simple linear four-state model that reproduces the general features of ferret IKr, including the initial transient at positive potentials and the apparent discrepancy between the currents during the initial depolarizing pulse and the tail current.  相似文献   

9.
10.
M-current is a time- and voltage-dependent potassium current which is suppressible by muscarinic receptor activation. We have used curve fitting and noise analysis to determine if macroscopic M-currents deviate from a previously predicted simple two-state kinetic scheme. The M-current was best described by three kinetically distinct components: 'fast' (tau 0), 'intermediate' (tau 1) and 'slow' (tau 2) time constants. The 'fast' (tau 0) and 'intermediate' (tau 1) components were identified from the spectra of M-current noise at potentials positive to the cells' resting membrane potential. The 'intermediate' (tau 1) and 'slow' (tau 2) components were seen by curve fitting M-current deactivation currents. The 'intermediate' (tau 1) time constant was voltage dependent (decreasing e-fold in 23 mV), but voltage dependence of the 'fast' (tau 0) and 'slow' (tau 2) components was not obvious. All kinetic components were sensitive to muscarine, with the 'intermediate' (tau 1) and 'slow' (tau 2) being equally so. These data suggest that all components may derive from the same channel population, and that the M-channel may have at least four kinetic states.  相似文献   

11.
Gating of the muscle chloride channel CLC-1 involves at least two processes evidenced by double-exponential current relaxations when stepping the voltage to negative values. However, there is little information about the gating of CLC-1 at positive voltages. Here, we analyzed macroscopic gating of CLC-1 over a large voltage range (from -160 to +200 mV). Activation was fast at positive voltages but could be easily followed using envelope protocols that employed a tail pulse to -140 mV after stepping the voltage to a certain test potential for increasing durations. Activation was biexponential, demonstrating the presence of two gating processes. Both time constants became exponentially faster at positive voltages. A similar voltage dependence was also seen for the fast gate time constant of CLC-0. The voltage dependence of the time constant of the fast process of CLC-1, tau(f), was steeper than that of the slow one, tau(s) (apparent activation valences were z(f) approximately -0. 79 and z(s) approximately -0.42) such that at +200 mV the two processes became kinetically distinct by almost two orders of magnitude (tau(f) approximately 16 micros, tau(s) approximately 1 ms). This voltage dependence is inconsistent with a previously published gating model for CLC-1 (Fahlke, C., A. Rosenbohm, N. Mitrovic, A.L. George, and R. Rüdel. 1996. Biophys. J. 71:695-706). The kinetic difference at 200 mV allowed us to separate the steady state open probabilities of the two processes assuming that they reflect two parallel (not necessarily independent) gates that have to be open simultaneously to allow ion conduction. Both open probabilities could be described by Boltzmann functions with gating valences around one and with nonzero "offsets" at negative voltages, indicating that the two "gates" never close completely. For comparison with single channel data and to correlate the two gating processes with the two gates of CLC-0, we characterized their voltage, pH(int), and [Cl](ext) dependence, and the dominant myotonia inducing mutation, I290M. Assuming a double-barreled structure of CLC-1, our results are consistent with the identification of the fast and slow gating processes with the single-pore and the common-pore gate, respectively.  相似文献   

12.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

13.
Previous studies have shown that symmetric tetraalkylammonium ions affect, in a voltage-dependent manner, the conductance of membranes containing many channels formed by the PA65 fragment of anthrax toxin. In this paper we analyze this phenomenon at the single-channel level for tetrabutylammonium ion (Bu4N+). We find that Bu4N+ induces a flickery block of the PA65 channel when present on either side of the membrane, and this block is relieved by large positive voltages on the blocking-ion side. At high frequencies (greater than 2 kHz) we have resolved individual blocking events and measured the dwell times in the blocked and unblocked states. These dwell times have single-exponential distributions, with time constants tau b and tau u that are voltage dependent, consistent with the two-barrier, single-well potential energy diagram that we postulated in our previous paper. The fraction of time the channel spends unblocked [tau u/(tau u + tau b)] as a function of voltage is identical to the normalized conductance-voltage relation determined from macroscopic measurements of blocking, thus demonstrating that these single channels mirror the behavior seen with many (greater than 10,000) channels in the membrane. In going from large negative to large positive voltages (-100 to +160 mV) on the cis (PA65-containing) side of the membrane, one sees the mean blocked time (tau b) increase to a maximum at +60 mV and then steadily decline for voltages greater than +60 mV, thereby clearly demonstrating that Bu4N+ is driven through the channel by positive voltages on the blocking-ion side. In other words, the channel is permeable to Bu4N+. An interesting finding that emerges from analysis of the voltage dependence of mean blocked and unblocked times is that the blocking rate, with Bu4N+ present on the cis side of the membrane, plateaus at large positive cis voltages to a voltage-independent value consistent with the rate of Bu4N+ entry into the blocking site being diffusion limited.  相似文献   

14.
The effect of temperature (0-22 degrees C) on the kinetics of Na channel conductance was determined in voltage-clamped rabbit and frog skeletal muscle fibers using the triple-Vaseline-gap technique. The Hodgkin-Huxley model was used to extract kinetic parameters; the time course of the conductance change during step depolarization followed m3h kinetics. Arrhenius plots of activation time constants (tau m), determined at both moderate (-10 to -20 mV) and high (+100 mV) depolarizations, were linear in both types of muscle. In rabbit muscle, Arrhenius plots of the inactivation time constant (tau h) were markedly nonlinear at +100 mV, but much less so at -20 mV. The reverse situation was found in frog muscle. The contrast between the highly nonlinear Arrhenius plot of tau h at +100 mV in rabbit muscle, compared with that of frog muscle, was interpreted as revealing an intrinsic nonlinearity in the temperature dependence of mammalian muscle Na inactivation. These results are consistent with the notion that mammalian cell membranes undergo thermotropic membrane phase transitions that alter lipid-channel interactions in the 0-22 degrees C range. Furthermore, the observation that Na channel activation appears to be resistant to this effect suggests that the gating mechanisms that govern activation and inactivation reside in physically distinct regions of the channel.  相似文献   

15.
Y Palti  G Ganot    R Stmpfli 《Biophysical journal》1976,16(3):261-273
The kinetics of potassium conductance changes were determined in the voltage clamped frog node (Rana esculenta), as a function of conditioning prepotential. The conditioning potential duration varied from 1 to 50 ms and the amplitude between -60 and +130 mV (relative to rest). The conductance kinetics were determined at a single test potential of +20 mV (depolarization) by means of the slope of log [ninfinity - nt] vs. time relationship which defines the time constant of the process (tau). The values of tau, after conditioning hyperpolarizations, were around 5 ms, up to 10 times greater than values obtained following a strong depolarization. The tau vs. pre-potential curve was sigmoid in shape. These differences were only slightly dependent on [K+]0 or conditioning pulse duration. The steady-state current values were also found to be a function of conditioning potential. After conditioning hyperpolarizations, the log [ninfinity - nt] vs. time curve could not be fitted by a single exponent regardless of the power of n chosen. The prepotential dependency of potassium current kinetics is inconsistent with the Hodgkin-Huxley axon model where the conductance parameters are assumed to be in either one of two possible states, and where the rate of transfer from one state to the other follows first order kinetics. In contrast the described kinetics may be consistent with complex multistate potassium "channel" models or membranes consisting of a number of types of channels.  相似文献   

16.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

17.
B Linder  K Raschke 《FEBS letters》1992,313(1):27-30
Slowly activating anion channel currents were discovered at micromolar 'cytoplasmic' Ca2+ during patch-clamp measurements on guard-cell protoplasts of Vicia faba and Xanthium strumarium. They activated at potentials as low as -200 mV, with time constants between 5 and 60 s, and no inactivation. The broad voltage dependence exhibited a current maximum near -40 mV. The single-channel open time was in the order of seconds, and the unitary conductance was 33 ps, similar to that of the already described 'quick' anion channel of guard cells. Because of its activity at low potentials, the slow anion channel may be essential for the depolarization of the plasmalemma that is required for salt efflux during stomatal closing.  相似文献   

18.
Light-dependent K(+) channels underlying a hyperpolarizing response of one extraocular (simple) photoreceptor, Ip-2 cell, in the marine mollusc Onchidium ganglion were examined using cell-attached and inside-out patch-clamp techniques. A previous report (Gotow, T., T. Nishi, and H. Kijima. 1994. Brain Res. 662:268-272) showed that a depolarizing response of the other simple photoreceptor, A-P-1 cell, results from closing of the light-dependent K(+) channels that are activated by cGMP. In the cell-attached patch recordings of Ip-2 cells, external artificial seawater (ASW) was replaced with a modified ASW containing 150 mM K(+) and 200 mM Mg(2+) to suppress any synaptic input and to maintain the membrane potential constant. When Ip-2 cells were equilibrated with this modified ASW, the internal K(+) concentration was estimated to be 260 mM. Light-dependent single-channels in the cell-attached patch on these cells were opened by light but scarcely by voltage. After confirming the light-dependent channel activity in the cell-attached patches, an application of cGMP to the excised inside-out patches newly activated a channel that disappeared on removal of cGMP. Open and closed time distributions of this cGMP-activated channel could be described by the sum of two exponents with time constants tau(o1), tau(o2) and tau(c1), tau(c2), respectively, similar to those of the light-dependent channel. In both the channels, tau(o1) and tau(o2) in ms ranges were similar to each other, although tau(c2) over tens of millisecond ranges was different. tau(o1), tau(o2), and the mean open time tau(o) were both independent of light intensity, cGMP concentration, and voltage. In both channels, the open probability increased as the membrane was depolarized, without changing any of tau(o2) or tau(o). In both, the reversal potentials using 200- and 450-mM K(+)-filled pipettes were close to the K(+) equilibrium potentials, suggesting that both the channels are primarily K(+) selective. Both the mean values of the channel conductance were estimated to be the same at 62 and 91 pS in 200- and 450-mM K(+) pipettes at nearly 0 mV, respectively. Combining these findings with those in the above former report, it is concluded that cGMP is a second messenger which opens the light-dependent K(+) channel of Ip-2 to cause hyperpolarization, and that the channel is the same as that of A-P-1 closed by light.  相似文献   

19.
The properties of the channel of the purified acetylcholine receptor (AChR) were investigated after reconstitution in planar lipid bilayers. The time course of the agonist-induced conductance exhibits a transient peak that relaxes to a steady state value. The macroscopic steady state membrane conductance increases with agonist concentration, reaching saturation at 10(-5) M for carbamylcholine (CCh). The agonist-induced membrane conductance was inhibited by d-tubocurarine (50% inhibition, IC50, at approximately 10(-6) M) and hexamethonium (IC50 approximately 10(-5) M). The single channel conductance, gamma, is ohmic and independent of the agonist. At 0.3 M monovalent salt concentrations, gamma = 28 pS for Na+, 30 pS for Rb+, 38 pS for Cs+, and 50 pS for NH+4. The distribution of channel open times was fit by a sum of two exponentials, reflecting the existence of two distinct open states. tau o1 and tau o2, the fast and slow components of the distribution of open times, are independent of the agonist concentration: for CCh this was verified in the range of 10(-6) M less than C less than 10(-3)M. tau 01 and tau o2 are approximately three times longer for suberyldicholine ( SubCh ) than for CCh. tau o1 and tau o2 are moderately voltage dependent, increasing as the applied voltage in the compartment containing agonist is made more positive with respect to the other. At desensitizing concentrations of agonist, the AChR channel openings occurred in a characteristic pattern of sudden paroxysms of channel activity followed by quiescent periods. A local anesthetic derivative of lidocaine ( QX -222) reduced both tau o1 and tau o2. This effect was dependent on both the concentration of QX -222 and the applied voltage. Thus, the AChR purified from Torpedo electric organ and reconstituted in planar lipid bilayers exhibits ion conduction and kinetic and pharmacological properties similar to AChR in intact muscle postsynaptic membranes.  相似文献   

20.
Single ventricular myocytes of adult mice were prepared by enzymatic dissociation for voltage clamp experiments with the one suction pipette dialysis method. After blocking the Na current by 10(-4) mol/l TTX early outward currents (IEO) with incomplete inactivation could be elicited by clamping from -50 mV to test potentials (VT) positive to -30 mV. Interfering Ca currents were very small (less than 0.6 nA at VT = 0 mV). The approximation of IEO by the q4r-model showed a pronounced decrease in the time constant of activation (tau q) to more positive potentials. At 50 ms test pulses the time course of the incomplete inactivation could be described by two exponentials and a constant. The time constant of the fast exponential (tau r1) showed a slight decline towards more positive test potentials (8.1 +/- 1.0 ms at -10 mV; 5.8 +/- 1.2 ms at +50 mV, mean +/- SD, n = 5) whereas the time constant of the slow exponential (tau r2) was voltage independent (41.1 +/- 7.9 ms, mean +/- SD, n = 5). The contributions of the fast exponential and the pedestal increased towards positive test potentials. The Q10 value for the time constants of activation and fast inactivation was 2.36 +/- 0.19 and 2.51 +/- 0.09 (mean +/- SD, n = 3), respectively. After an initial delay the recovery of IEO at a recovery potential of -50 mV could be fitted monoexponentially with a time constant of 16.3 +/- 2.9 ms (mean +/- SD, n = 3). The time course of the onset of inactivation determined with the double pulse protocol was slower than the decay at the same potential, and could be described as sum of a fast (tau = 18.4 +/- 6.0 ms) and a slow (tau = 62.1 +/- 19.9ms, mean +/- SD, n = 3) exponential. IEO could be blocked completely by 1 mmol/l 4-aminopyridine at potentials up to +20 mV. Stronger depolarizations had an unblocking effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号