首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of U937 cells with various apoptosis-inducing agents, such as TNFalpha and beta-D-arabinofuranosylcytosine (ara-C) alone or in combination with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), bryostatin 1 or cycloheximide, causes proteolytic cleavage of protein kinase Cmu (PKCmu) between the regulatory and catalytic domain, generating a 62 kDa catalytic fragment of the kinase. The formation of this fragment is effectively suppressed by the caspase-3 inhibitor Z-DEVD-FMK. In accordance with these in vivo data, treatment of recombinant PKCmu with caspase-3 in vitro results also in the generation of a 62 kDa fragment (p62). Treatment of several aspartic acid to alanine mutants of PKCmu with caspase-3 resulted in an unexpected finding. PKCmu is not cleaved at one of the typical cleavage sites containing the motif DXXD but at the atypical site CQND378/S379. The respective fragment (amino acids 379-912) was expressed in bacteria as a GST fusion protein (GST-p62) and partially purified. In contrast to the intact kinase, the fragment does not respond to the activating cofactors TPA and phosphatidylserine and is thus unable to phosphorylate substrates effectively.  相似文献   

2.
Senescent cells in which pRb is inactivated undergo apoptosis on attempted reinitiation of DNA synthesis. To further explore the cell death resulting from loss of pRb function in senescent cells, we employed a temperature-sensitive pRb mutant protein (tspRb). We found that tspRb inactivation results in rapid E2F reactivation and subsequent S-phase reentry associated with the up-regulation of E2F target gene expression and cyclin E-dependent kinase activity. Total inhibition of cyclin-dependent kinase 2 activity results in a cell cycle arrest on pRb loss and a nearly complete suppression of apoptosis. Furthermore, blocking of E2F activity with a dominant-negative DP1 inhibits S-phase reentry and cell death following tspRb inactivation. Finally, inhibition of p73 activity abolishes apoptosis but not S-phase entry on pRb inactivation, suggesting that activation of E2F in senescent cells can result in the use of p73 as a cell death effector. Interestingly, senescent cells rescued from apoptosis maintain their altered shape and express senescence-associated beta-galactosidase despite loss of pRb function. Thus, maintenance of the terminal cell cycle arrest of senescent cells requires continuous pRb-mediated inactivation of E2F activity, the reappearance of which in these irrevocably altered cells triggers a cell death program instead of an inappropriate resumption of cell cycling.  相似文献   

3.
Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects.  相似文献   

4.
A precise balance between quiescence and proliferation is crucial for the lifelong function of hematopoietic stem cells (HSCs). Cyclins E1 and E2 regulate exit from quiescence in fibroblasts, but their role in HSCs remains unknown. Here, we report a non-redundant role for cyclin E1 in mouse HSCs. A long-term culture-initiating cell (LTC-IC) assay indicated that the loss of cyclin E1, but not E2, compromised the colony-forming activity of primitive hematopoietic progenitors. Ccne1−/− mice showed normal hematopoiesis in vivo under homeostatic conditions but a severe impairment following myeloablative stress induced by 5-fluorouracil (5-FU). Under these conditions, Ccne1−/− HSCs were less efficient in entering the cell cycle, resulting in decreased hematopoiesis and reduced survival of mutant mice upon weekly 5-FU treatment. The role of cyclin E1 in homeostatic conditions became apparent in aged mice, where HSC quiescence was increased in Ccne1−/− animals. On the other hand, loss of cyclin E1 provided HSCs with a competitive advantage in bone marrow serial transplantation assays, suggesting that a partial impairment of cell cycle entry may exert a protective role by preventing premature depletion of the HSC compartment. Our data support a role for cyclin E1 in controlling the exit from quiescence in HSCs. This activity, depending on the physiological context, can either jeopardize or protect the maintenance of hematopoiesis.  相似文献   

5.
Apoptosis is a cell suicide mechanism that requires the activation of cellular death proteases for its induction. We examined whether the progress of apoptosis involves cleavage of phospholipase C-gamma1 (PLC-gamma1), which plays a pivotal role in mitogenic signaling pathway. Pretreatment of T leukemic Molt-4 cells with PLC inhibitors such as U-73122 or ET-18-OCH(3) potentiated etoposide-induced apoptosis in these cells. PLC-gamma1 was fragmented when Molt-4 cells were treated with several apoptotic stimuli such as etoposide, ceramides, and tumor necrosis factor alpha. Cleavage of PLC-gamma1 was blocked by overexpression of Bcl-2 and by specific inhibitors of caspases such as Z-DEVD-CH(2)F and YVAD-cmk. Purified caspase-3 and caspase-7, group II caspases, cleaved PLC-gamma1 in vitro and generated a cleavage product of the same size as that observed in vivo, suggesting that PLC-gamma1 is cleaved by group II caspases in vivo. From point mutagenesis studies, Ala-Glu-Pro-Asp(770) was identified to be a cleavage site within PLC-gamma1. Epidermal growth factor receptor (EGFR) -induced tyrosine phosphorylation of PLC-gamma1 resulted in resistance to cleavage by caspase-3 in vitro. Furthermore, cleaved PLC-gamma1 could not be tyrosine-phosphorylated by EGFR in vitro. In addition, tyrosine-phosphorylated PLC-gamma1 was not significantly cleaved during etoposide-induced apoptosis in Molt-4 cells. This suggests that the growth factor-induced tyrosine phosphorylation may suppress apoptosis-induced fragmentation of PLC-gamma1. We provide evidence for the biochemical relationship between PLC-gamma1-mediated signal pathway and apoptotic signal pathway, indicating that the defect of PLC-gamma1-mediated signaling pathway can facilitate an apoptotic progression.  相似文献   

6.
The effect of several microbial and mammalian proteinases on the inhibitory activity of human plasma alpha-1-anti-chymotrypsin (alpha-1-Achy) has been tested. Most of these enzymes caused rapid inactivation of the inhibitor by cleavage at single sites within the reactive-site loop between P5 Lys and P3' Leu, with additional cleavages also being detected in some cases near the NH2 terminus of the native protein. In contrast, two of the enzymes tested failed to inactivate alpha-1-Achy, although they could cause removal of peptides near the NH2 terminus. Studies of neutrophil chemotaxis revealed that native or NH2-terminally truncated alpha-1-Achy was not stimulatory. However, testing of two enzymatically inactivated forms of the inhibitor (alpha-1-Achy), cleaved at widely different positions within the reactive-site loop, indicated that they had become potent chemoattractants at concentrations within the nanomolar range. Competition studies using proteolytically inactivated alpha-1-proteinase inhibitor suggested that the chemotactic activity of the two inactivated serpins was probably mediated by the same mechanism. The physiological relevance of this chemotactic activity is underscored by the results of plasma elimination studies which indicate that alpha-1-Achy is eliminated at approximately the same rate as native alpha-1-Achy, thus prolonging chemotactic stimuli within the tissues.  相似文献   

7.
Exposure of mammalian cells to ultraviolet (UV) light elicits a cellular response and can also lead to apoptotic cell death. In this report, we show that a 36-kDa myelin basic protein (MBP) kinase detected by an in-gel kinase assay can be dramatically activated during the early stages of UV irradiation-triggered apoptosis of A431 cells. Immunoblot analysis revealed that this 36-kDa MBP kinase could be recognized by an antibody against the C-terminal regions of a family of p21Cdc42/Rac-activated kinases (PAKs). By using this antibody and a PAK2-specific antibody against the N-terminal region of PAK2 as studying tools, we further demonstrated that UV irradiation caused cleavage of PAK2 to generate a 36-kDa C-terminal catalytic fragment and a 30-kDa N-terminal fragment in A431 cells. The appearance of the 36-kDa C-terminal catalytic fragment of PAK2 matched exactly with the activation of the 36-kDa MBP kinase in A431 cells upon UV irradiation. In addition, UV irradiation also led to activation of CPP32/caspase-3, but not ICH-1L/caspase-2 and ICE/caspase-1, in A431 cells and the kinetics of activation of CPP32/caspase-3 appeared to correlate well with that of DNA fragmentation and of cleavage/activation of PAK2, respectively. Moreover, blockage of activation of CPP32/caspase-3 by pretreating the cells with two specific tetrapeptidic inhibitors for caspases (Ac-DEVD-cho and Ac-YVAD-cmk) could significantly attenuate the extent of cleavage/activation of PAK2 induced by UV irradiation. Collectively, the results demonstrate that cleavage and activation of PAK2 can be induced during the early stages of UV irradiation-triggered apoptosis and indicate the involvement of CPP32/caspase-3 in this process. J. Cell. Biochem. 70:442-454, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Paclitaxel is a potential cancer chemotherapeutic agent for ovary, breast, and head and neck cancers; its effects on nasopharyngeal carcinoma (NPC) have not been reported previously. This study investigated the cytotoxic mechanism of paclitaxel in two NPC cell lines, NPC-TW01 and NPC-TW04. NPC cells treated with pacli-taxel showed convoluted nuclei, condensed chromatin and decreased cellular and nuclear volume, and also exhibited genomic DNA degradation into multiple oligonucleosomal fragments, suggesting that pacli-taxel induced apoptosis in these cells. The effects of paclitaxel on apoptosis-related proteins including Bcl-2, Bax and CDC 2 were also detected. Although the levels of Bcl-2 and Bax were not changed in NPC cells following treatment with 5 nM-1 μM of paclitaxel, phosphorylation of Bcl-2 was significantly observed in the cells treated with 1 μM of paclitaxel for 12 hours. In addition, cyclin B1-associated CDC 2 kinase was highly activated in the NPC cells exposed to paclitaxel even at low (5 nM) concentration, and this result is associated with the finding that low concentration of paclitaxel is able to induce apoptosis in NPC cells.  相似文献   

9.
T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of immature T cells that exhibits heterogeneity of oncogenic lesions, providing an obstacle for development of more effective and less toxic therapies. Inherited deficiency of ATM, a regulator of the cellular DNA damage response, predisposes young humans and mice to T-ALLs with clonal chromosome translocations. While acquired ATM mutation or deletion occurs in pediatric T-ALLs, the role of somatic ATM alterations in T-ALL pathogenesis remains unknown. We demonstrate here that somatic Atm inactivation in haematopoietic cells starting as these cells differentiate in utero predisposes mice to T-ALL at similar young ages and harboring analogous translocations as germline Atm-deficient mice. However, some T-ALLs from haematopoietic cell specific deletion of Atm were of more mature thymocytes, revealing that the developmental timing and celluar origin of Atm inactivation influences the phenotype of ATM-deficient T-ALLs. Although it has been hypothesized that ATM suppresses cancer by preventing deletion and inactivation of TP53, we find that Atm inhibits T-ALL independent of Tp53 deletion. Finally, we demonstrate that the Cyclin D3 protein that drives immature T cell proliferation is essential for transformation of Atm-deficient thymocytes. Our study establishes a pre-clinical model for pediatric T-ALLs with acquired ATM inactivation and identifies the cell cycle machinery as a therapeutic target for this aggressive childhood T-ALL subtype.  相似文献   

10.
11.
The differentiation capacity of mesenchymal stem cells has been extensively studied, but little is known on cell cycle–related events in the proliferation and differentiation phases of these cells. Here, we demonstrate that exposure to cAMP-increasing agents inhibits proliferation of adipose stem cells (ASCs). This antiproliferative effect is associated with both reduced cdk2 activity and pRB phosphorylation. Concomitantly, however, the level of cyclin E markedly increases upon cAMP induction, indicating that cyclin E may have cdk2-independent functions in these cells besides its role as a cdk2 activator. Indeed, we found indications of a cdk2-independent role of cyclin E in DNA damage–induced apoptosis. 8-CPT-cAMP sensitizes ASCs to γ-irradiation–induced apoptosis, an effect abolished by knockdown of cyclin E. Moreover, cAMP induces early activation of ERK, leading to reduced degradation of cyclin E. The cAMP-mediated up-regulation of cyclin E was blocked by knockdown of ERK or by an inhibitor of the ERK kinase MEK. We conclude that cAMP inhibits cdk2 activity and pRB phosphorylation, leading to reduced ASC proliferation. Concomitant with this growth inhibition, however, cyclin E levels are increased in a MEK/ERK-dependent manner. Our results suggest that cyclin E plays an important, cdk2-independent role in genotoxic stress–induced apoptosis in mesenchymal stem cells.  相似文献   

12.
We immunized rats with recombinant murine osteopontin protein and obtained four monoclonal antibodies recognizing distinct epitopes of murine osteopontin. OPN1.2 recognized the amino-terminal half of OPN, while OPN2.2, OPN2.3, and OPN3.1 recognized the carboxy-terminal half of OPN. The epitope recognized by OPN2.2 was destroyed by further cleavage of the carboxy half of OPN. The epitope recognized by OPN2.3 was located in the amino-terminal end of the carboxy half of OPN, whereas that recognized by OPN3.1 was located in the carboxy-terminal end of the carboxy half of OPN. OPN1.2 and OPN2.2 recognized thrombin-cleaved osteopontin, whereas thrombin-cleaved osteopontin was not recognized by OPN2.3 and OPN3.1. Thus, these monoclonal antibodies will be useful in structure/function studies of the role of osteopontin in murine models of disease.  相似文献   

13.
Proteolytic cleavage of key cellular proteins by caspases (ICE, CPP32, and Ich-1/Nedd2) may be crucial to the apoptotic process. The retinoblastoma tumor suppressor gene is a negative regulator of cell growth and the retinoblastoma protein (pRb) exhibits anti-apoptotic function. We show that pRb is cleaved during apoptosis induced by either UV irradiation or anti-Fas antibody. Our studies implicate CPP32-like activity in the proteolytic cleavage of pRb. The kinetics of proteolytic cleavage of pRb during apoptosis differ from that observed for other cellular proteins, suggesting that the specific cleavage of pRb during apoptosis may be an important event.  相似文献   

14.
Cyclin E1 is expressed at the G₁/S phase transition of the cell cycle to drive the initiation of DNA replication and is degraded during S/G₂M. Deregulation of its periodic degradation is observed in cancer and is associated with increased proliferation and genomic instability. We identify that in cancer cells, unlike normal cells, the closely related protein cyclin E2 is expressed predominantly in S phase, concurrent with DNA replication. This occurs at least in part because the ubiquitin ligase component that is responsible for cyclin E1 downregulation in S phase, Fbw7, fails to effectively target cyclin E2 for proteosomal degradation. The distinct cell cycle expression of the two E-type cyclins in cancer cells has implications for their roles in genomic instability and proliferation and may explain their associations with different signatures of disease.  相似文献   

15.
Apoptosis of SK-HEP-1 human hepatoma cells induced by treatment with ginsenoside Rh2 (G-Rh2) is associated with rapid and selective activation of cyclin A-associated cyclin-dependent kinase 2 (Cdk2). Here, we show that in apoptotic cells, the Cdk inhibitory protein p21(WAF1/CIP1), which is associated with the cyclin A-Cdk2 complex, undergoes selective proteolytic cleavage. In contrast, another Cdk inhibitory protein, p27(KIP1), which is associated with cyclin A-Cdk2 and cyclin E-Cdk2 complexes, remained unaltered during apoptosis. Ectopic overexpression of p21(WAF1/CIP1) suppressed apoptosis as well as cyclin A-Cdk2 activity induced by treatment of SK-HEP-1 cells with G-Rh2. The suppressive effects of p21(WAF1/CIP1) were much higher in the cells transfected with p21D112N, an expression vector that encodes a p21(WAF1/CIP1) mutant resistant to caspase 3 cleavage. Overexpression of cyclin A in SK-HEP-1 cells dramatically up-regulated cyclin A-Cdk2 activity and accordingly enhances apoptosis induced by treatment with G-Rh2. These up-regulating effects were blocked by coexpression of a dominant negative allele of cdk2. Furthermore, olomoucine, a specific inhibitor of Cdks, also blocked G-Rh2-induced apoptosis. These data suggest that the induction of apoptosis in human hepatoma cells treated with G-Rh2 occurs by a mechanism that involves the activation of cyclin A-Cdk2 by caspase 3-mediated cleavage of p21(WAF1/CIP1).  相似文献   

16.
Proteolysis of the smooth muscle myosin-light-chain kinase with either thermolysin or endoproteinase Lys-C cleaves the enzyme towards the amino-terminus between the first and second unc domains, unc-II-1 and unc-II-2, and in the calmodulin-binding domain. The thermolytic fragment extends 532 residues from Ser275 to Ala806 and is resistant to further digestion. It is catalytically inactive and does not bind calmodulin. Further proteolysis of the thermolytic fragment with trypsin generates a constitutively active fragment. Digestion with endoproteinase Lys-C initially results in an inactive fragment of 516 residues, Ala287 to Lys802. Further digestion with Lys-C endoproteinase results in a constitutively active 474-residue fragment with the same amino-terminus, but a carboxyl-terminus at Lys760, near Arg762, the last conserved residue of protein kinase catalytic domains. There is no cleavage in the acidic-residue-rich connecting peptide between the amino-terminus of the catalytic domain and the unc-I domain, nor within the unc-II or unc-I domains or between the adjacent unc-II-2 and unc-I domains. The pattern of cleavages by these proteases reflects well the predicted domain structure of the myosin-light-chain kinase and further delineates the regulatory pseudosubstrate region. A synthetic peptide corresponding to the pseudosubstrate sequence, MLCK(787-807) was a more potent inhibitor by three orders of magnitude than the overlapping peptide MLCK(777-793) proposed by Ikebe et al. (1989) [Ikebe, M., Maruta, S. & Reardon, S. (1989) J. Biol. Chem. 264, 6967-6971] to be important in autoregulation of the myosin-light-chain kinase.  相似文献   

17.
A major impediment to successful chemotherapy is the propensity for some tumor cells to undergo cell cycle arrest rather than apoptosis. It is well established, however, that the adenovirus E1A protein can sensitize these cells to the induction of apoptosis by anticancer agents. To further understand how E1A enhances chemosensitivity, we have made use of a human colon carcinoma cell line (HCT116) which typically undergoes cell cycle arrest in response to chemotherapeutic drugs. As seen by the analysis of E1A mutants, we show here that E1A can induce apoptosis in these cells by neutralizing the activities of the cyclin-dependent kinase inhibitor p21. E1A's ability to interact with p21 and thereby restore Cdk2 activity in DNA-damaged cells correlates with the reversal of G(1) arrest, which in turn leads to apoptosis. Analysis of E1A mutants failing to bind p300 (also called CBP) or Rb shows that they are almost identical to wild-type E1A in their ability to initially overcome a G(1) arrest in cells after DNA damage, while an E1A mutant failing to bind p21 is not. However, over time, this mutant, which can still target Rb, is far more efficient in accumulating cells with a DNA content greater than 4N but is similar to wild-type E1A and the other E1A mutants in releasing cells from a p53-mediated G(2) block following chemotherapeutic treatment. Thus, we suggest that although E1A requires the binding of p21 to create an optimum environment for apoptosis to occur in DNA-damaged cells, E1A's involvement in other pathways may be contributing to this process as well. A model is proposed to explain the implications of these findings.  相似文献   

18.
L Molz  D Beach 《The EMBO journal》1993,12(4):1723-1732
We have previously described the isolation of mcs2-75, a mutation obtained as an allele-specific suppressor of a dominant allele of cdc2. mcs2 was cloned and determined to be an essential gene, the product of which shares homology with the cyclin family of proteins. In contrast to the behavior of some, but not all cyclins, the mcs2 protein is constant in its abundance and localization throughout the cell cycle. A kinase activity that co-precipitates with mcs2 can be detected when myelin basic protein (MBP) is provided as an exogenous substrate. This kinase activity is constant throughout the cell cycle. mcs2 does not appear to associate with the cdc2 protein kinase or an antigenically related kinase. Finally, a protein kinase termed csk1 (cyclin suppressing kinase) was isolated as a high copy suppressor of an mcs2 mutation. csk1 is not essential, however, the level of kinase activity that co-precipitates with mcs2 is reduced approximately 3-fold in strains harboring a csk1 null allele. Therefore, csk1 may encode a protein kinase physically associated with mcs2 or alternatively may function as an upstream activator of the mcs2-associated kinase.  相似文献   

19.

Background  

Pertussis toxin (PT) is an exotoxin virulence factor produced by Bordetella pertussis, the causative agent of whooping cough. PT consists of an active subunit (S1) that ADP-ribosylates the alpha subunit of several mammalian G proteins, and a B oligomer (S2–S5) that binds glycoconjugate receptors on cells. PT appears to enter cells by endocytosis, and retrograde transport through the Golgi apparatus may be important for its cytotoxicity. A previous study demonstrated that proteolytic processing of S1 occurs after PT enters mammalian cells. We sought to determine whether this proteolytic processing of S1 is necessary for PT cytotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号