首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gellan gum is a water-soluble exopolysaccharide, it has applications in the food, pharmaceutical and chemical industries. In this study, a gellan gum producing strain was isolated from rice root, and this strain was identified be the species of Sphingomonas azotifigens. The Plackett-Burman design was applied to investigate the main factors affecting gellan gum production by S. azotifigens GL-1 in a molasses and cheese whey based medium; the medium compositions were optimized by response surface methodology. The optimum cheese whey based medium consisted of cheese whey 68.34 g/L, Na2HPO4 14.58 g/L and KH2PO4 7.66 g/L, and the maximum gellan gum production that using this medium was 33.75 ± 1.55 g/L. 14.75 ± 0.65 g/L gellan gum was obtained with an optimized molasses medium, which consisted of molasses 50 g/L, Na2HPO4 9.71 g/L and KH2PO4 5.92 g/L. The molecular weight of gellan gum obtained from two medias were 1.06 × 106 and 0.89 × 106 Da, respectively. The cheese whey-derived gellan gum showed a higher rhamnose, lower glucuronic acid and higher glycerate content compared to the molasses-derived gellan gum. S. azotifigens GL-1 has a high gellan gum production capacity in a cheap medium suggesting it has great potential as an industrial gellan gum producer.  相似文献   

2.
Milk fermented with Lactobacillus helveticus (L. helveticus) contains small peptides such as isoleucyl-prolyl-proline (IPP) and valyl-prolyl-proline (VPP), which inhibit the angiotensin converting enzyme (ACE). We investigated the effects of L. helveticus fermented milk whey (Lh-whey) and its components, sour milk whey, calcium and IPP and VPP peptides, on bone cells in vitro. An osteoblast assay was performed by determining the amount of deposited calcium as an index of bone formation in cultures of mouse osteoblasts formed from bone marrow-derived osteoblast precursor cells. An osteoclast assay was performed by determining the activity of tartrate-resistant acid phosphatase released into the culture medium in cultures of mouse osteoclasts formed from bone marrow-derived osteoclast precursor cells. The Lh-whey increased bone formation 1.3-1.4 times with the 1 × 10−5, 1 × 10−4 and 1 × 10−3 solutions. The IPP and VPP peptides also demonstrated a significant 5-fold activation of bone formation in in vitro osteoblast cultures, whereas the sour milk whey and calcium had no effect. No significant effects were observed on osteoclasts in vitro with any of the study products. L. helveticus fermented milk whey contains bioactive components that increase osteoblastic bone formation in vitro. The effect may be due to the ACE-inhibitory IPP and VPP peptides, which showed a similar effect to that of the L. helveticus fermented milk whey.  相似文献   

3.
Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced d-lactic acid (DLA) at 12.5 g l?1 in a bioreactor. The values of Leudking–Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l?1) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l?1 with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production.  相似文献   

4.
Vitamin B12 production in fermentation of Propionibacterium shermanii and Propionibacterium arl AKU 1251 in whey permeate medium has been studied. The observed results and simulated expected values obtained by fitting statistical equations to the recorded data showed that 24 h old inoculum, 5 mg iron l?1 and 4% whey lactose were optimal for vitamin B12 biosynthesis in both strains when fermentation was carried out under anerobic (84 h) and aerobic (84 h) conditions at 30°C. The supplementation of whey medium with 0.5% (NH4)2HPO4 enhanced further the metabolite yield; however, the preference for a mixed carbon source (lactose + d-glucose or lactose + d-fructose) at different levels varied in the strains under study. P. shermanii, under optimal cultural conditions, was found to be a better strain than Propionibacterium arl AKU, 1251 in fermenting whey lactose for product (vitamin B12) formation.  相似文献   

5.
We studied the effects of a polyhydroxylated spirostanic brassinosteroid analogue (BB-16) on the activities of antioxidant enzymes in rice seedlings grown in vitro in culture medium supplemented with NaCl. Seedlings were grown in medium with 75 mM NaCl and 0.001 or 0.01 mg dm−3 BB-16 for 16 d or 3-d-old seedlings were exposed for 4 d to 0, 0.001 or 0.01 mg dm−3 BB-16 then further grown in medium with 75 mM NaCl without BB-16. Seedlings exposed to 0.01 mg dm−3 BB-16 for 16 d showed significant increase in the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) and a slight increase in ascorbate peroxidase (APX). On the other hand, 4-d exposure to BB-16 only increased SOD and CAT activities at concentration 0.001 mg dm−3. GR activity was not altered by this BB-16 treatment. These results indicated that BB-16, which is structurally modified in the lateral chain in relation to natural brassinosteroids, changes the activity of key antioxidant enzymes, which might confer tolerance to saline stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
A strain of Xanthomonas cucurbitae PCSIR B-52 produced extracellular polysaccharide using partially deproteinized cheese whey without hydrolysis. A synthetic lactose-salt medium was also utilized to determine the optiomum level of lactose desirable for successfull fermentation. The amount of extracellular polysaccharide was maximised at 7.8 gl−1 in the presence of 40 gl−1 lactose. The bacterium efficiently consumed cheese whey, particularly in the presence of corn steep liquor and penicillin waste mycelium in shaken flasks. The polysaccharide, bacterial cell mass and viscosity gradients were improved as a result of efficient oxygen transfer in a mechanically agitated fermentor. A depletion in dissolved oxygen tension resulted during the exponential growth phase. The fermentation pattern of extracellular polysaccharide was also studied by repeated batch process.  相似文献   

7.
In this study, we report on a butanol production process by immobilized Clostridium acetobutylicum in a continuous packed bed reactor (PBR) using Tygon® rings as a carrier. The medium was a solution of lactose (15–30 g/L) and yeast extract (3 g/L) to emulate the cheese whey, an abundant lactose-rich wastewater. The reactor was operated under controlled conditions with respect to the pH and to the dilution rate. The pH and the dilution rate ranged between 4 and 5, the dilution rate between 0.54 and 2.4 h?1 (2.5 times the maximum specific growth rate assessed for suspended cells). The optimal performance of the reactor was recorded at a dilution rate of 0.97 h?1: the butanol productivity was 4.4 g/Lh and the selectivity of solvent in butanol was 88%w.  相似文献   

8.
Two spirostane analogues of brassinosteroids (BB-6 and MH-5) were tested for callus induction and plant regeneration in lettuce. They were used as a cytokinin (6-BA) substitute or in combination with 6-BA at different concentrations. Treatment with 0.1 mg l−1 6-BA was used as control. Results showed that there was no callus induction when 6-BA was substituted by these analogues. However, BB-6 and MH-5 enhanced both callus formation and shoot regeneration from cotyledons in lettuce when added at determined concentrations with 0.1 mg l−1 of 6-BA in the culture medium.  相似文献   

9.
Pseudomonas sp. LS13-1 was isolated as a producer of lactobionic acid from whey and when grown with 207 g whey l-1 (150 g lactose l-1 equivalent) and three intermittent additions of 69 g whey l-1 (50 g lactose l-1 equivalent) in a fed-batch culture at pH 5.5 in a 2-l jar fermenter, it produced 175 g lactobionic acid l-1 after 180 h. In a lactose medium it produced 240 lactobionic acid l-1 from a total of 300 g lactose l-1 after 155 h. With the addition of 20 CaCO3 l-1 instead of pH control, 290 g lactobionic acid l-1 was produced in the lactose medium after 155 h with a yield of higher than 90% (mon mol-1).  相似文献   

10.
Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.  相似文献   

11.
The ability of two yeast strains to utilize the lactose in whey permeate has been studied. Kluyveromyces marxianus NCYC 179 completely utilized the lactose (9.8%), whereas Saccharomyces cerevisiae NCYC 240 displayed an inability to metabolize whey lactose for ethanol production. Of the two gel matrices tested for immobilizing K. marxianus NCYC 179 cells, sodium alginate at 2% (w/v) concentration proved to be the optimum gel for entrapping the yeast cells effectively. The data on optimization of physiological conditions of fermentation (temperature, pH, ethanol concentration and substrate concentration) showed similar effects on immobilized and free cell suspensions of K. marxianus NCYC 179, in batch fermentation. A maximum yield of 42.6 g ethanol l?1 (82% of theoretical) was obtained from 98 g lactose l?1 when fermentation was carried at pH 5.5 and 30°C using 120 g dry weight l?1 cell load of yeast cells. These results suggest that whey lactose can be metabolized effectively for ethanol production using immobilized K. marxianus NCYC 179 cells.  相似文献   

12.
The effect was investigated of sucrose concentration on sucrose metabolism and on the formation of exopolysaccharide (EPS) by Lactobacillus sanfranciscensis LTH2590 in pH-controlled fermentations with sucrose concentrations ranging from 20 to 160 g liter−1. The EPS production increased and the relative sucrose hydrolysis activity decreased by increasing the sucrose concentration in the medium. The carbon recovery decreased from 95% at a sucrose concentration of 30 g liter−1 to 58% at a sucrose concentration of 160 g liter−1 because of the production of an unknown metabolite by L. sanfranciscensis. This metabolite was characterized as a fructo-oligosaccharide. The oligosaccharide produced by L. sanfranciscensis was purified and characterized as a trisaccharide with a glucose/fructose ratio of 1:2. The comparison of the retention time of this oligosaccharide and that of pure oligosaccharide standards using two different chromatography methods revealed that the oligosaccharide produced by L. sanfranciscensis LTH2590 is 1-kestose. Kestose production increased concomitantly with the initial sucrose concentration in the medium.  相似文献   

13.
Two matrices have been assessed for their ability to immobilize Lactobacillus casei cells for lactic acid fermentation in whey permeate medium. Agar at 2% concentration was found to be a better gel than polyacrylamide in its effectiveness to entrap the bacterial cells to carry out batch fermentation up to three repeat runs. Of the various physiological parameters studied, temperature and pH were observed to have no significant influence on the fermentation ability of the immobilized organism. A temperature range of 40–50°C and a pH range of 4.5–6.0 rather than specific values, were found to be optimum when fermentation was carried out under stationary conditions. In batch fermentation ~90% conversion of the substrate (lactose) was achieved in 48 h using immobilized cell gel cubes of 4 × 2 × 2 mm size, containing 400 mg dry bacterial cells per flask and 4.5% w/v (initial) whey lactose content as substrate. However, further increase in substrate levels tested (>4.5% w/v) did not improve the process efficiency. Supplementation of Mg2+ (1 mM) and agricultural by-products (mustard oil cake, 6%) in the whey permeate medium further improved the acid production ability of the immobilized cells under study.  相似文献   

14.
Kluyveromyces fragilis (CBS 397) is a nonhalophilic yeast which is capable of lactose utilization from whey permeate and high glycerol production under anaerobic growth conditions. However, the optimum yields of glycerol (11.6 mg/ml of whey permeate medium) obtained in this study occurred only in the presence of 1% Na2SO3 as a steering agent. The use of other concentrations of Na2SO3, as well as 5% NaCl and 1% ascorbic acid, had no or detrimental effects on cell growth, lactose utilization, and glycerol production. Glycerol yields were greater in cultures grown from a light inoculum of K. fragilis than in cultures in which a resuspended mass of cells was introduced into the medium. The results of this study suggest that this strain of K. fragilis may be useful commercially in the utilization of cheese whey lactose and the concomitant production of glycerol.  相似文献   

15.
Cells of Clostridium acetobutylicum were immobilized by adsorption onto bonechar and used in a packed bed reactor for the continuous production of solvents from whey permeate. A maximum solvent productivity of 4.1 g l−1 h−1, representing a yield of 0.23 g solvent/g lactose utilized, was observed at a dilution rate of 1.0 h−1. The reactor was operated under stable conditions for 61 days. High concentrations of lactose in the whey permeate favored solventogenesis, while low concentrations favored acidogenesis.  相似文献   

16.

Background

The development of clean or novel alternative energy has become a global trend that will shape the future of energy. In the present study, 3 microbial strains with different oxygen requirements, including Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, were used to construct a hydrogen production system that was composed of a mixed aerobic-facultative anaerobic-anaerobic consortium. The effects of metal ions, organic acids and carbohydrate substrates on this system were analyzed and compared using electrochemical and kinetic assays. It was then tested using small-scale experiments to evaluate its ability to convert starch in 5 L of organic wastewater into hydrogen. For the one-step biohydrogen production experiment, H1 medium (nutrient broth and potato dextrose broth) was mixed directly with GAM broth to generate H2 medium (H1 medium and GAM broth). Finally, Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D of three species microbial co-culture to produce hydrogen under anaerobic conditions. For the two-step biohydrogen production experiment, the H1 medium, after cultured the microbial strains Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, was centrifuged to remove the microbial cells and then mixed with GAM broth (H2 medium). Afterward, the bacterial strain Clostridium acetobutylicum ATCC 824 was inoculated into the H2 medium to produce hydrogen by anaerobic fermentation.

Results

The experimental results demonstrated that the optimum conditions for the small-scale fermentative hydrogen production system were at pH 7.0, 35°C, a mixed medium, including H1 medium and H2 medium with 0.50 mol/L ferrous chloride, 0.50 mol/L magnesium sulfate, 0.50 mol/L potassium chloride, 1% w/v citric acid, 5% w/v fructose and 5% w/v glucose. The overall hydrogen production efficiency in the shake flask fermentation group was 33.7 mL/h-1.L-1, and those the two-step and the one-step processes of the small-scale fermentative hydrogen production system were 41.2 mL/h-1.L-1 and 35.1 mL/h-1.L-1, respectively.

Conclusion

Therefore, the results indicate that the hydrogen production efficiency of the two-step process is higher than that of the one-step process.  相似文献   

17.
The effect of simultaneous modification of medium composition and growth conditions on the production of Lactococcus lactis subsp. cremoris biomass in calcium alginate beads was studied by the response surface method. Statistical methods of data analysis for unbalanced experiments are illustrated. The media tested were whey, whey supplemented with yeast extract and/or meat extract, milk, and the commercial medium Gold Complete (Nordica). Fermentations were performed at 23°C under pH control (5.6, 6.0, 6.4, or 6.8). In one complete series, 1% CaCO3 was added to the growth media. There were strong interactions between CaCO3 and media, CaCO3 and pH level, and CaCO3, media, and pH level. In media with CaCO3, all first-order interactions between media, pH, and sampling time were significant. The addition of CaCO3 increased cell counts in whey-meat extract medium, but no significant difference was found with the other media. Uncoupling between growth and acidification occurred between 16 and 22 h. Highest counts were obtained on milk and Gold Complete (6 × 1010/g). In CaCO3-containing media, pH influenced cell counts only in whey and in Gold Complete (pH 5.6 and 6.0 giving the best results); pH also influenced the bead mass obtained at the end of the fermentation. Biomass production in alginate gels is proposed as a method of obtaining concentrated cell suspensions without centrifugation or filtration.  相似文献   

18.
Summary A strain ofFusarium moniliforme, previously used for microbial protein production, excreted lactase (-D-galactosidase, EC.3.2.1 23) when cultivated either in a whey liquid medium or on a wheat bran solid medium. The enzyme produced in both media had pH and temperature optima of 4–5 and 50–60°C respectively and was particularly suitable for processing acid whey.In the whey culture, maximum lactase yield was observed after 95 h of growth at 30°C and whey lactose concentration of 9%. The addition of ammonium, potassium and sodium ions to the growth medium considerably enhanced lactase production. A maximum enzyme yield corresponding to hydrolysis of 3 nmoles o-nitrophenyl--D-galactopyranoside sec–1 ml–1 of growth medium, at pH 5 and 60°C, was obtained.In the wheat bran culture, the maximum enzyme yield was obtained after 140 h of growth at 28–30°C. A marked increase in the enzyme production was observed when nitrate or phosphate was added to the growth medium. Also, the addition of certain agricultural by-products (molasses, whey) enhanced lactase production. The observed maximum yield corresponding to the hydrolysis of 182 nmoles of ONPG sec–1 g–1 of wheat bran, at pH 5 and 60°C, is comparable to that reported for certain microorganisms used commercially for lactase production.  相似文献   

19.
This work deals with the development of a new bioprocess for the efficient synthesis of lactosucrose, a potential prebiotic oligosaccharide with a high value-added, from two important and inexpensive agro-industrial by-products such as tofu whey and cheese whey permeate. The bioconversion is driven by the ability of the enzyme levansucrase SacB from Bacillus subtilis CECT 39 to transfructosylate lactose contained in the cheese whey permeate by using not only sucrose but also raffinose and stachyose, which are present in considerable amounts in the tofu whey, as suitable donors of fructosyl moieties. The maximum lactosucrose concentration obtained from both by-products was 80.1 g L-1 after a short reaction time 120 min at 37°C, leading to productivity and specific productivity values of 40.1 g lactosucrose L-1 h-1 and 80.1 mg lactosucrose U enzyme−1 h−1, respectively. Findings contained in this work could provide a new strategy to valorize agro-industrial by-products as cheese whey permeate and, specially, tofu whey by means of their use as renewable resources in the enzymatic synthesis of bioactive oligosaccharides.  相似文献   

20.
Keratella cochlearis (Gosse) was cultured non-axenically in Carefoot medium diluted with Erken water at 5 °C, 15 °C and 20 °C with Rhodomonas minuta (Skuja) as a food alga. The rotifer reached ca. 120 ind. ml?1, having generation times of 2–7 days, a Q10-value of ca. 2, and at the lowest temperature >20% longer posterior spines. When co-cultured with Chlorella sp., at 0–30 mg Ca l?1 and 1.6 meq NaHCO3 l?1 in medium L 11 at 20 °C, the maximum generation time and individual numbers were 3–4 days and up to 100 ind. ml?1, respectively. Animal numbers increased in relation to nutrient multiples, up to two multiples, of the culture medium L 16. Growth and length were reduced, although the width increased above two multiples of this culture medium. The trace metal tolerance was broad and increased additions of a metal mixture (L 11) slightly increased the length of the rotifers. No major changes in the length were observed when HCO3 or Ca were varied in the culture medium (L 11), although a decrease in the length was noted in old cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号