首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The telotrophic ovary of Epilachna vigintioctopunctata is composed of 32-40 ovarioles, each with an apical germarium and a basal vitellarium. The germarium encloses mononucleate and binucleate trophocytes, prefollicular tissue and oogonia, while the vitellarium contains 2-5 oocytes arranged in order of maturity. Definite nutritive cords are absent. When females are exposed to 75 mg 4,4,6-trimethyl-1h, 4H-pyrimidine-2-thiol by contact, the trophocytes and the follicular epithelial cells disintegrate to form dark-staining clumps and thus fail to supply nourishment to the developing oocytes, which consequently remain yolk-less and are ultimately reduced to shrunken masses.  相似文献   

2.
A single meal of cis-diamminedichloroplatinum (DDP) fed to virgin braconid wasps decreased drastically the number of eggs derived from oogonia. In contrast, most of the larger oocytes completed oogenesis even after a dose which shortened average lifespan to 1/3 its normal length. Temporary infecundity resulted from the destruction of the germarial cells which produced the 32 cystocytes per follicle (1 oocyte and 31 trophocytes) by mitosis. As determined by egg hatchability, oogonia were the most vulnerable cell type to DDP in the ovariole sequence. Therefore, oogonial vulnerability to DDP was demonstrated by failure to complete both gametogenesis and embryogenesis. In combination with gamma radiation, DPP reduced egg production and hatchability below the values obtained from either agent used alone. However, the decreases were moderate, as expected from additivity of effect. A difference from the results from either radiation or several types of alkylating agents appeared in the proportion of early embryonic deaths. Deaths during cleavage predominated in every daily sample of eggs treated with DDP as oocytes. Usually only the eggs laid the first 2 days after treatment are characterized by a large number of 'stage 1' deaths.  相似文献   

3.
We examined six types of cells that form the ovary of the earthworm Dendrobena veneta ogonia, prooocytes, vitellogenic oocytes, trophocytes, fully grown postvitellogenic oocytes and somatic cells of the gonad. The quantitative stereological method revealed a much higher “volume density” of mitochondria in all of the types of germ-line cells except for the somatic cells. Fluorescent vital stain JC-1, however, showed a much higher oxidative activity of mitochondria in the somatic cells than in the germ-line cells. The distribution of active and inactive mitochondria within the studied cells was assessed using the computer program ImageJ. The analysis showed a higher luminosity of inactive mitochondria in all of the types of germ-line cells and a higher luminosity of active mitochondria in somatic cells. The OXPHOS activity was found in somatic cells mitochondria and in the peripheral mitochondria of the vitellogenic oocytes. The detection of reactive oxygen species (ROS) revealed a differentiated distribution of ROS in the different cell types. The amount of ROS substances was lower in somatic cells than in younger germ-line cells. The ROS level was also low in the cytoplasm of fully grown postwitellogenic oocytes. The distribution of the MnSOD enzyme that protects mitochondria against destructive role of ROS substances was high in the oogonia and in prooocytes and it was very high in vitellogenic and postvitellogenic oocytes. However, a much lower level of this protective enzyme was observed in the trophocytes and the lowest level was found in the cytoplasm of somatic cells. The lower mitochondrial activity and higher level of MnSOD activity in germ-line cells when compared to somatic cells testifies to the necessity of the organisms to protect the mitochondria of oocytes against the destructive role of the ROS that are produced during oxidative phosphorylation. The protection of the mitochondria in oocytes is essential for the transfer of healthy organelles to the next generation.  相似文献   

4.
The structure of ovaries has been analysed in advanced aphids only. In this paper we report the results of ultrastructural studies on the ovarioles of Adelges laricis, a representative of the primitive aphid family, Adelgidae. The ovaries of the studied species are composed of five telotrophic‐meroistic ovarioles that are subdivided into a terminal filament, tropharium (= trophic chamber) and vitellarium. The tropharium houses trophocytes (= nurse cells) and arrested oocytes. The vitellarium consists of one or two ovarian follicles. The total number of germ cells (trophocytes + oocytes) in the ovarioles analysed varies from 50 to 92 and is substantially higher than in previously studied aphids. The centre of the tropharium is occupied by a cell‐free region, termed a trophic core, which is connected both with trophocytes and oocytes. Trophocytes are connected to the core by means of cytoplasmic strands, whereas oocytes by nutritive cords. Both trophic core and nutritive cords are filled with parallel arranged microtubules. In the light of obtained results the anagenesis of hemipteran ovaries is discussed.  相似文献   

5.
Telotrophic ovarioles of scale insects are subdivided into tropharia (=trophic chambers) and vitellaria that contain single developing oocytes. Tropharium encloses trophocytes (=nurse cells) and arrested oocytes. The central area of the tropharium, termed the trophic core, is devoid of cells. Both trophocytes and oocytes are connected to the trophic core: trophocytes by cytoplasmic processes, oocytes by means of nutritive cords. The trophic core, processes and nutritive cords are filled with bundles of microtubules. The trophocytes contain large lobated nuclei with giant nucleoli. Fluorescent labelling with DAPI has shown that trophocyte nuclei are characterized by high contents of DNA. In the cortical cytoplasm of trophocytes, numerous microfilaments are present. The developing oocyte is surrounded by a simple follicular epithelium. The cortical cytoplasm of follicular cells contains numerous microtubules and microfilaments.  相似文献   

6.
Histochemical and electron microscopic methods have revealed that there are four types of cell inclusions in the late vitellogenic oocytes of Oncopeltus. (a) Type 1 is a vacuole which seems to be contributed from the tropharium via the nutritive tubes. It is suggested that this type consists partly at least of nucleolus-like material (ribonucleoprotein) emitted from the nuclei of the Zone III trophocytes. (b) Type 2 is lipid yolk which in early stage oocytes seems to be produced in the “Balbiani body.” In the vitellogenic oocytes these lipid spheres are apparently imported by the oocyte from the haemolymph either through the follicle cells, or through the extracellular space in the follicular epithelium. (c) Type 3 is carbohydrate/protein yolk where at least part of the protein (“vitellogenic protein”) is taken up from the haemolymph, transported through the extracellular space in the follicular epithelium, and deposited into the oocyte by pinocytosis. (d) Glycogen is deposited from the early phases of vitellogenesis. The tropharium may contribute, besides Type 1 vacuoles, ribosomes, mitochondria, stacks of annulated lamellae, and “food vacuoles” to the oocytes. Specialized cells which line the tropharium and send projections toward the trophic core have been called “peripheral trophocytes.” Contrary to the regular trophocytes, they contain glycogen and an abundance of Golgi complexes.  相似文献   

7.
The paired ovaries of young larva of the 3rd instar of Orthezia urticae are filled with numerous germ cell clusters that can be regarded as ovariole anlagen. Germ cells (cystocytes) belonging to one cluster form a rosette, in the centre of which a polyfusome occurs. Staining with rhodamine-phalloidin has revealed that polyfusomes contain numerous microfilaments. The number of cystocytes per cluster is not stable and varies considerably. The ovaries of older larva become elongated with numerous young ovarioles protruding into the body cavity. The ovarioles are not subdivided into the tropharium and vitellarium. In this stage germ cells differentiate into oocytes and trophocytes (nurse cells). The ovaries of adult females are composed of about 20 (Newsteadia floccosa) or 30 (O. urticae) ovarioles. Their trophic chambers contain trophocytes and arrested oocytes. In the vitellarium, at the given moment, only one oocyte develops. It has been observed that after maturation of the first egg the arrested oocytes may develop.  相似文献   

8.
H Kaur  R Sandhu  S S Dhillon 《Cytobios》1992,69(277):75-81
A 4 h exposure to a residual film of 15 mg 1-(3-nitrophenyl)-4,4,6-trimethyl-1H,4H-pyrimidine-2-thiol (3NTPT) dissolved in 5 ml acetone significantly inhibited ovarian growth in Dysdercus koenigii. The ovaries of treated females remained small and the trophocytes, the trophic core, the prefollicular tissue and the oogonia completely degenerated. This was followed by degenerative changes in the follicular epithelium, the interfollicular tissue and the developing oocytes. Resorption of the oocytes reduced the vitellarium to an empty tube. The follicular epithelium of the resorbed oocytes protruded into the lumen, while the interfollicular tissue completely degenerated. By day 7 after treatment, the ovaries were completely dystrophic, and this state was not reversible.  相似文献   

9.
Siekierska E 《Tissue & cell》2003,35(4):252-259
The structure of the ovary and the type of oogenesis were determined in the earthworm Dendrobaena veneta (Oligochaeta, Haplotaxida, Lumbricidae) with histological, electron-microscopic and immunocytochemical methods. In this species the ovary is of the alimentary, nutrimentary type because it contains oocytes and the nurse cells (trophocytes). The ovarian stroma is built by somatic cells, the processes of which are connected to each other via numerous desmosomes. The somatic cells and their processes envelop the germ cells tightly and play a supportive role. Oogonia, oocytes and trophocytes are arranged in distinct zones in the ovary. Trophocytes form chains of cells, which are interconnected by intercellular bridges. Numerous microtubules are located within the latter. The oocytes are distally arranged in the ovary. Vitellogenesis involves both auto- and heterosyntheses. The results obtained were compared with the reports on oogenesis in other representatives of Annelida.  相似文献   

10.
The developing ovaries of S. quercus contain a limited number of oogonial cells which undergo a series of incomplete mitotic divisions resulting in the formation of clusters of cystocytes. Ovaries of viviparous generations contain 6 to 9 clusters, containing 32 cystocytes each, whereas ovaries of oviparous generations contain 5 clusters containing 45-60 cystocytes. During further development, clusters become surrounded by a single layer of follicular cells, and within each cluster the cystocytes differentiate into oocytes and trophocytes (nurse cells). Concurrently, cysts transform into ovarioles. The anterior part of the ovariole containing the trophocytes becomes the tropharium, whereas its posterior part containing oocytes transforms into the vitellarium. The vitellaria of viviparous females are composed of one or two oocytes, which develop until previtellogenesis. The nuclei of previtellogenic oocytes enter cycles of mitotic divisions which lead to the formation of the embryo. Ovarioles of oviparous females contain a single oocyte which develops through three stages: previtellogenesis, vitellogenesis and choriogenesis. The ovaries are accompanied by large cells termed bacteriocytes which harbor endosymbiotic microorganisms.  相似文献   

11.
Szklarzewicz, T., Kalandyk‐Kolodziejczyk, M., Kot, M. and Michalik, A. 2011. Ovary structure and transovarial transmission of endosymbiotic microorganisms in Marchalina hellenica (Insecta, Hemiptera, Coccomorpha: Marchalinidae). —Acta Zoologica (Stockholm) 00 :1–9. The paired ovaries of Marchalina hellenica are composed of about 200 ovarioles of telotrophic type. In each ovariole, a trophic chamber, vitellarium and ovariolar stalk can be distinguished. The tropharia comprise trophocytes and early previtellogenic oocytes (termed arrested oocytes) or trophocytes only. The arrested oocytes are not capable of further development. In the vitellaria, single oocytes develop that are connected to the tropharium by means of broad nutritive cords. The number of germ cells (trophocytes and oocytes) constituting ovarioles is not constant and may range between 25 and 32. Numerous endosymbiotic bacteria occur in the cytoplasm of trophocytes. The endosymbionts are transported via nutritive cords to the developing oocyte. The obtained results are discussed in a phylogenetic context.  相似文献   

12.
Poprawa I 《Tissue & cell》2005,37(5):385-392
The reproductive system of Dactylobiotus dispar consists of the ovary and the oviduct that opens into the rectum. The sack-like ovary is filled with the developing oocytes, which are assisted by the trophocytes. In D. dispar, the mixed vitellogenesis takes place. One part of the yolk material is produced inside the oocyte (autosynthesis), the second part is absorbed by micropinocytosis while the third part is synthesized in the trophocytes and is transported to the oocytes through the cytoplasmatic bridges. Moreover, rRNA, lipids and mitochondria are transfered from the trophocytes to the oocytes. The histochemical researches show that the reserve material accumulated in the oocytes contains proteins, polysaccharides and lipids.  相似文献   

13.
The structure of the developing ova and egg shell formation of Heterakis gallinarum has been described. The oogonia are small, undifferentiated cells which are arranged around a central cytoplasmic rachis. The oogonia and young oocytes are in cytoplasmic continuity with the rachis and it is suggested that the rachis may influence synchronous development of the oocytes. The oocytes contain two types of granule; refringent, which give rise to the ascaroside layer of the egg shell, and another kind which appear to be a type of yolk for the developing egg. After fertilization the spermatozoon produces numerous ribosomes; a second unit membrane appears beneath the oolemma, and the chitinous layer of the shell forms between the oolemma and this inner membrane. The refringent granules later produce the ascaroside layer of the shell between the chitinous layer and the inner membrane. The outermost layer of the shell is produced from material secreted by the cells of the uterus.  相似文献   

14.
Early stages of differentiation of the oocytes and nurse cells are comparatively studied in the polytrophic ovarioles in larvae, pupae and imago of the butterfly Laspeyresia pomonella and in the telotrophic ovarioles in larvae and imago of the bug Eurigaster integriceps. In L. pomonella, the oocytes and trophocytes, being the descendants of one oogonial cell, pass synchroniously through early stages of meiotic prophase up to the pachyten. After the pachyten chromosomes of the future trophocytes transform into diakinetic bivalents, whereas in the oocyte nucleus chromosomes retain their pachyten stage appearance. In the fifth instar larva of E. integriceps, two zones may be seen in the germarium of the telotrophic ovariole: the apical trophocyte zone and the distal oocyte zone. The oocytes develop up to the zygotene("bouquet") stage. As to the future trophocytes, they miss zygotene and reach directly diakinesis. Thus,the earlier divergence in the development ways of oocytes and trophocytes is observed in the telotrophic ovarioles, since the trophocyeres pass themeiotic stages more quickly then oocytes. The supposition is advanced that the quicker development of the nurse cells in the bug's ovarioles takes place due to missing the synaptonemal complex formation. The patterns of similarity and distinction between the telotrophic ovarioles in Coleoptera, on the one hand, and the polytrophic ovarioles of the butterfly L. pomonella and telotrophic ovarioles of the bug E. integricept, on the other hand, are discussed.  相似文献   

15.
利用免疫组织化学方法研究丝裂原激活蛋白激酶(mitogen-activated protein kinases, MAPK)及其底物之一p90rsk在大鼠卵泡发育过程中的表达与活性.结果表明,非活性形式的MAPK存在于大鼠各生长期卵泡的卵母细胞和颗粒细胞中,但磷酸化活性形式的MAPK只存在于部分具有分裂增殖活性的颗粒细胞中.MAPK的作用底物p90rsk只在各期卵泡的卵母细胞中表达,在颗粒细胞中无着色,说明MAPK信号级联在卵母细胞和颗粒细胞中具有不同的作用方式.另外,胎鼠卵巢的免疫组化染色结果显示,MAPK在卵原细胞增殖过程中具有活性,表明MAPK信号级联在这一过程中起作用.  相似文献   

16.
The paired ovaries of Steingelia gorodetskia are composed of about 100 telotrophic ovarioles devoid of terminal filaments (scale insect autapomorphy). In structure they resemble those of other scale insects, but differ in the following details: (a) all ovarioles develop synchronously, (b) they are suspended to the lateral oviducts by means of long stalks, (c) the tropharium is tubular (unique in scale insects) and (d) consists of 15-35, trophocytes, 2-4 previtellogenic oocytes that further develop, and numerous somatic prefollicular cells, (e) the vitellarium houses 2-4 linearly arranged vitellarial oocytes (versus one in most scale insects). Most of these features must be considered as plesiomorphic corresponding with the conditions in the most primitive Heteroptera. Bacterial endosymbionts have been found in some somatic cells, trophocytes, oocytes and in the nutritive cord. Present results support the opinion, based on external morphology, that the Steingeliidae are closely related to the Ortheziidae, Xylococcidae and Matsucoccidae.  相似文献   

17.
Oogenesis of Tilapia mossambica. I. Oogonia and meiotic prophase oocytes   总被引:1,自引:0,他引:1  
Using light and electron microscopy and autoradiography, the morphology and synthesis of DNA, RNA and proteins in oogonia and early meiotic prophase oocytes in Tilaria mossabique were studied. According to dimensions and morphological features observed it is possible to distinguish between two groups of oogonia: large oogonia corresponding to type A spermatogonia of mammals, and small actively dividing oogonia, located in groups and identical to type B spermatogonia. The morphology of oogonia and of the early meiotic prophase oocytes well compares with the pattern described for other species of bony fishes. In the cytoplasm of these cells dense bodies, nuage-material, free ribosomes, large mitochondria with lamellar cristae and Golgi cisterns are available. In the oocyte nuclei at zygotene and pahytene stages 3H-thymidine incorporation was seen mainly into the nucleolus-associated chromatin. Besides, the formation of a heterochromatin cape and the synaptonemal complex was observed. Incorporation of 3H-uridine and 3H-leucine in the nuclei of these cells was very poor.  相似文献   

18.
The vasa gene, first identified in Drosophila, is a key determinant for germline formation in eukaryotes. Homologs of vasa have been identified and linked to germline development, in many invertebrates and vertebrates. Here, we analyze the distribution of Vasa in early germ cells (oogonia and oocytes) and previtellogenic ovarian follicles of the lizard Podarcis sicula. During most of its previtellogenic growth, the oocyte in this lizard species is structurally and functionally integrated through intercellular bridges with special follicle cells called pyriform cells. The pyriform cells function similarly to Drosophila nurse cells, but are somatic in origin. In the oogenesis of P. sicula, Vasa is initially highly detected in the oogonia, but its levels decrease in early stage oocytes before the onset of pyriform cell differentiation. In the later stages of oogenesis, the high level of Vasa is related with the nurse function of the pyriform follicle cells. These observations suggest that cells of somatic origin are engaged in the synthesis of Vasa in the oogenesis of this lizard.  相似文献   

19.
The paired, spindle-shaped ovaries of the second instar of the Polish cochineal, Porphyrophora polonica (L.) (Hemiptera: Coccinea) are filled with cystocytes that are arranged into rosettes. In the centre of each rosette, there is a polyfusome. During the third instar, cystocytes differentiate into oocytes and trophocytes (nurse cells) and ovarioles are formed. Ovaries of adult females are composed of about 300 ovarioles of the telotrophic type. Each of them is subdivided into a tropharium (trophic chamber) and vitellarium. The tropharium consists of trophocytes and arrested oocytes that may develop. The number of germ cells in the trophic chambers varies from 11 to 18 even between the ovarioles of the same ovary. The obtained results seem to confirm the concept of a monophyletic origin of the primitive scale insects (Archaeococcoidea).  相似文献   

20.
The chronology and dynamics of the female germ cell development, of the mitotic activity of oogonia, and of the chromosome rearrangements at prophase I of meiosis have been quantitatively estimated in 30 cow embryos and foetuses at the age of 1.5 to 9 months. The sexual differentiation of the gonads was shown in a 1.5 month old embryo. The oocytes at the stages of preleptotene chromosome condensation and decondensation occurred in the 1.5 month old embryos and their maximum number was observed in the 2-5 month old foetuses. The leptotene oocytes were found in the 2-2.5 month old foetuses. The transition to zygotene and pachytene was also recorded in the 2-2.5 month old foetuses but their maximum number was observed in the 4-6 month old foetuses; their number was reduced to single oocytes thereafter. The first diplotene oocytes appeared in the 3 month old foetuses but the active transition of the oocytes to diplotene was observed after four months of development. The formation of a layer of follicle cells takes place around the diplotene oocytes. The vast majority of degenerating germ cells are the oocytes in zygotene-pachytene and in diplotene. The population of germ cells is formed by the mitotic division of oogonia in the cow foetuses, mainly at the age of 1.5 to 4 months of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号