首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toluene-treated cells of Streptococcus diacetilactis produced large amounts of diacetyl and acetoin without 2,3-butylene glycol. With Na-[3-14C]pyruvate added to reaction mixtures in place of unlabeled pyruvate, diacetyl with specific activity of 6.1 × 104 cpm/μmol and acetoin with specific activity of 6.8 × 104 cpm/μmol were harvested. Growing cells of Enterobacter aerogens incubated 48 h at 30°C in a complex medium produced large amounts of 2,3-butylene glycol without acetoin or diacetyl. With uniformly labeled [14C]glucose added to the medium in place of unlabeled glucose, 2,3-butylene glycol with specific activity of 10.8 × 104 cpm/μmol was harvested. The radioactive chemicals were tested and found to be chromatographically homogeneous. Storage frozen in capped containers was especially important for diacetyl, which was found to evaporate rapidly from capped containers at room temperature.  相似文献   

2.
A method has been developed for the separation and measurement of ethylene glycol and three other glycols (propylene glycol, 1,3-butylene glycol and 2,3-butylene glycol) in biological samples by wide-bore column gas chromatography with a flame ionization detector. The method used 1,3-propylene glycol (1,3-propanediol) as an internal standard. The method was linear at least from 2 to 1000 μg/ml, with a detection limit of 1 μg/ml. Analytical recoveries were 89–98% for the different concentrations. Precision studies showed coefficients of variation of 1.5–7.7% for the different concentrations. The assay was applied to the analysis of biological samples from two patients who had ingested ethylene glycol and/or other glycols in a suicide attempt.  相似文献   

3.
Growth, substrate utilization and product formation from glucose, citrate and a mixture of both substrates were studied in four strains of Leuconostoc spp. Citrate was not used as an energy source but was rapidly metabolized when glucose was present. The predictable amounts of D-lactate and ethanol were produced from glucose, although strains X2 and 7–1 gave lower yields of ethanol. In strains NCW1, S3 and X2, co-metabolism of both glucose and citrate resulted in stimulation of growth, decreased uptake of glucose, increased acetate and D-lactate production and lack of ethanol production compared with that obtained with glucose alone. Strain 7–1 showed only growth stimulation and increased acetate production. Diacetyl, acetoin or 2, 3-butylene glycol were not detected. In strain NCW1 citrate had a slightly inhibitory effect on the enzymes of the 'ethanol' leg of glucose metabolism. Except for strain 7–1, these observations are consistent with a switch in glucose metabolism from ethanol to acetate production.  相似文献   

4.
Rhizopus nigricans and Penicillium expansum produced 2,3-butylene glycol which accumulated in natural and artificial media with time. Mycelial mats of P. expansum decreased the quantity of a diacetyl substrate and converted part of this substrate into acetylmethylcarbinol (AMC) and 2,3-butylene glycol. Mycelial mats of P. expansum also decreased AMC substrate with the formation of 2,3-butylene glycol. 2,3-Butylene glycol decreased slightly during incubation with the fungal mat. The formation of AMC was suppressed significantly by cysteine and ascorbic acid.  相似文献   

5.
CITRATE AS THE PRECURSOR OF THE ACETYL MOIETY OF ACETYLCHOLINE   总被引:13,自引:12,他引:1  
Abstract— Rat brain cortex slices were incubated with glucose labeled with either 3H or 14C in the 6-position. The 3H/14C ratios and the incorporation of radioactivity into lactate, citrate, malate and acetylcholine were determined. While the 3H/14C ratio of lactate was close to that of glucose, the ratios in the acetyl moiety of acetylcholine and the acetyl (C-4,5) portion of citrate decreased in a similar proportion. This was interpreted as indirect evidence for the participation of citrate as a precursor to the acetyl moiety of acetylcholine. Two inhibitors of the citrate cleavage pathway: n -butylmalonate, an inhibitor of citrate transport and (-)-hydroxycitrate, an inhibitor of ATP-citrate lyase were studied for their effect on acetylcholine synthesis. N -butylmalonate (10 mM) and (-)-hydroxycitrate (7.5 mM) led to a decrease in the per cent of 14C recovered as acetylcholine. In each instance the 3H/14C ratio in acetylcholine was higher in the presence of inhibitor while the corresponding ratios in lactate and citrate (C-4.5) remained unchanged. From the results, it is suggested that citrate is involved in the transport mechanism of acetyl units from its site of synthesis in mitochondria to the site of acetylcholine synthesis in the cytosol.  相似文献   

6.
Conditions were developed for the long-term stabilization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum, purified Ca2+-ATPase, and purified-delipidated Ca2+-ATPase preparations. The standard storage medium contains 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Preparations stored under these conditions at 2 degrees C in a nitrogen atmosphere retain significant Ca2+-stimulated ATPase activity for periods of 5-6 months or longer when assayed in the presence of asolectin. The same conditions are also conducive for the formation of three-dimensional microcrystals of Ca2+-ATPase. Of the 49 detergents tested for solubilization, optimal crystallization of Ca2+-ATPase was obtained in sarcoplasmic reticulum solubilized with octaethylene glycol dodecyl ether at a detergent/protein weight ratio of 2, and with Brij 36T, Brij 56, and Brij 96 at a detergent/protein ratio of 4. Similar Ca2+-induced crystals of Ca2+-ATPase were obtained with purified or purified delipidated ATPase preparations at lower detergent/protein ratios. The stabilization of the ATPase activity in the presence of detergents is the combined effect of high Ca2+ (20 mM) and a relatively high glycerol concentration (20%). Ethylene glycol, glucose, sucrose, or myoinositol can substitute for glycerol with preservation of ATPase activity for several weeks in the presence of 20 mM Ca2+.Ca2+-induced association between ATPase molecules may be an essential requirement for preservation of enzymatic activity, both in intact sarcoplasmic reticulum and in solubilized preparations.  相似文献   

7.
Mixtures of diacetyl, acetoin, and 2,3-butylene glycol were quantitatively separated by ion-exchange chromatography on Dowex 1-X8 resin in the bisulfite form. Initial elution with water removed 2,3-butylene glycol from the column. Further elution with 0.1 m NaCl separated acetoin from diacetyl. Sulfite in the eluates was deactivated with I2KI reagent. After oxidation by bromine, 2,3-butylene glycol was measured as acetoin. Excess bromine was neutralized by addition of 40% NaOH and saturated Na2S2O5. After separation and conversion of the glycol to acetoin, the Westerfeld colorimetric method was used to determine the three components quantitatively.  相似文献   

8.
Production of pyruvate by isolated mouse cumulus cells   总被引:3,自引:0,他引:3  
Cumulus cells were isolated by hyaluronidase treatment of whole cumulus masses from superovulated, non-mated mice. The cells, in groups of approximately 200, were incubated for up to 4 h in 50 nl medium M2 at 37 degrees C, and serial 3-nl samples assayed for pyruvate using an ultramicrofluorescence technique. With 5.55 mM glucose, 23.3 mM lactate, or a mixture of the two substrates, the cumulus cells formed pyruvate at rates of 10.2, 9.6, and 8.9 fmol/cell/h, respectively. The concentrations of glucose, pyruvate, and lactate, as measured in 3-nl aliquots of rabbit oviduct fluid were 1.5 mM, 0.3 mM, and 3.7 mM, respectively. When incubated with 1 mM glucose and 3 mM lactate, mouse cumulus cells formed 7.5 fmol pyruvate/cell/h. The mean number of cumulus cells per ovum within a cumulus mass was 2,060. Intact cumulus masses from mated and non-mated superovulated mice, incubated with 1 mM glucose and 3 mM lactate, formed 22.6 and 23.3 pmol pyruvate/ovum/h, respectively. The results suggest that pyruvate production by cumulus cells may be important in supporting the nutrition of unfertilized and fertilized ova, and of spermatozoa, within the oviduct lumen.  相似文献   

9.
Microbial Production of 2,3-Butylene Glycol from Cheese Whey   总被引:4,自引:3,他引:1       下载免费PDF全文
Six microorganisms that produced acetoin or diacetyl or both from glucose were tested for the production of 2,3-butylene glycol from lactose. Bacillus polymyxa and Streptococcus faecalis gave positive results and were tested in unmodified wheys. Cottage cheese whey was unsatisfactory, but B. polymyxa produced large amounts of the glycol in sweet whey, about 60 mmol of glycol per 100 mmol of lactose utilized. Aeration and an increased ratio of surface area to volume of whey enhanced the production of glycol. 2,3-Butylene was separated from the spent whey and from acetoin and diacetyl with a Sephadex G-10 column.  相似文献   

10.
We evaluated the possible autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from normal hamsters. We measured 14CO2 and 3H2O production from d-[U-14C]glucose and d-[5-3H]glucose, respectively, in islets incubated with 0.6, 3.3, 8.3, and 16.7 mM glucose alone or with 5 or 15 mU/ml insulin, anti-insulin guinea pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured (radioimmunoassay) in islets incubated with 3.3 or 16.7 mM glucose with or without 75, 150, and 300 nM wortmannin. Insulin significantly enhanced 14CO2 and 3H2O production with 3.3 mM glucose but not with 0.6, 8.3, or 16.7 mM glucose. Addition of anti-insulin serum to the medium with 8.3 and 16.7 mM glucose decreased 14CO2 and 3H2O production significantly. A similar decrease was obtained in islets incubated with 8.3 and 16.7 mM glucose and wortmannin or nifedipine. This latter effect was reversed by adding 15 mU/ml insulin to the medium. Glucose metabolism was almost abolished when islets were incubated in a Ca2+-deprived medium, but this effect was not reversed by insulin. No changes were found in 14CO2 and 3H2O production by islets incubated with 3.3 mM glucose and anti-insulin serum, wortmannin, or nifedipine in the media. Addition of wortmannin significantly decreased insulin release induced by 16.7 mM glucose in a dose-dependent manner. Our results suggest that insulin exerts a physiological autocrine stimulatory effect on glucose metabolism in intact islets as well as on glucose-induced insulin release. Such an effect, however, depends on the glucose concentration in the incubation medium.  相似文献   

11.
Abstract— (1) Swelling of synaptosomes was measured spectrophotometrically by recording changes in extinction at 520 nm.
(2) Synaptosomes behaved as osmometers in NaCl solutions. When the tonicity of the medium was changed, synaptosome volume changed in accordance with Boyle and van't Hoff's Law. These changes were reversed on restoring the tonicity of the medium.
(3) The rate at which a solute entered the synaptosome was determined from the rate of swelling in the presence of that solute. Permeability of synaptosomes to non-electrolytes was in the order glucose ≪ glycerol < thiourea = formamide < propylene glycol = dimethylsulphoxide.
(4) Synaptosomes were freely permeable to ammonium and acetate ions and impermeable to Ca2+, Mg2+, PO42−, SO42− and oxalate ions.  相似文献   

12.
—Cortex slices of rat brain were incubated with glucose mixed-labelled with 3H and 14C in the 6-position and the 3H/14C ratios of lactate, acetate, citrate and acetylcholine were determined. The values obtained were: lactate 0·95, acetate 0·85, citrate 0·65 and acetylcholine 0·67 when expressed in relation to a glucose 3H/14C ratio of 1·00. When brain slices were incubated with [2-14C, 2-3H]acetate in the presence of unlabelled glucose, labelled acetylcholine was formed with a 3H/14C ratio not significantly different from the labelled substrate. The results indicate that citrate is a precursor to the acetyl moiety of acetylcholine.  相似文献   

13.
The conditions required for production of levo 2,3-butylene glycol by Bacillus polymyxa from citrus molasses were studied. Starter cultures required acclimatization to the substrate prior to inoculation of the fermentation medium. Maximal production of butylene glycol with minimal residual sugar was obtained with a medium consisting of molasses, diluted to 20 degrees Brix, and 0.4% urea. Optimal environmental conditions included aeration at 0.11 volumes of air per volume of medium per minute, maintenance of pH at 6.0 to 6.2, a fermentation temperature of 30 C, and a stirring rate of 420 rev/min. The concentration of butylene glycol obtained in the fermentation beer ranged from 2.3 to 4.4%. The optical rotation of the glycol ranged from [alpha](D) (23 degrees ) = -1.01 degrees to -10.45 degrees . The variation in rotation was probably due to the presence of contaminating substances in the distillate.  相似文献   

14.
A simple gas-liquid chromatographic procedure for analyzing ethanol, acetic acid, acetoin, and racemic and meso-2,3-butylene glycol in broth media is described. Overnight broth cultures were filtered or centrifuged, and the filtrate or supernatant was treated with formic acid to aid separation of volatile fatty acids. Samples were then directly analyzed by gas-liquid chromatography on a 20% Tween 80-Chromosorb W-AW column and propionic acid as an internal standard. A complete analysis took ca. 8 min. The method can be used to distinguish homofermentative from heterofermentative lactic acid bacteria based on the level of ethanol produced and citrate-utilizing from non-citrate-utilizing lactic acid bacteria based on the levels of acetic acid produced. The method also has potential in distinguishing other bacterial fermentations. Of the 13 species of lactic acid bacteria tested, Streptococcus lactis subsp. diacetylactis was the major producer of 2,3-butylene glycol (total range, 0.3 to 3.5 mM), and, except for strain DRC1, both the racemic and meso isomers were produced in approximately equal amounts.  相似文献   

15.
5-Ethylphenazine-glucose-dehydrogenase-NAD+ conjugate (EP(+)-GlcDH-NAD+) was prepared by linking both poly(ethylene glycol)-bound 5-ethylphenazine and poly(ethylene glycol)-bound NAD+ to glucose dehydrogenase. The average number of the ethylphenazine moieties bound/enzyme subunit was 0.8, and that of the NAD+ moieties was 1.2. This conjugate is a semisynthetic enzyme having glucose oxidase activity using oxygen or 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) as an electron acceptor. When the concentration of oxygen or MTT is varied, the oxidase activity fits the Michaelis-Menten equation with the following values of the kinetic constants: for the system with oxygen, the turnover number per subunit is 0.40 s-1 and Km for oxygen is 1.57 mM; and for the system with MTT, the turnover number is 0.11 s-1 and Km for MTT is 0.072 mM. The catalytic cycle of the semisynthetic oxidase has two catalytic steps: reduction of the NAD+ moiety by the active site of the glucose dehydrogenase moiety and oxidation of the NADH moiety by another catalytic site of the ethylphenazine moiety. The apparent intramolecular rate constants of these steps were estimated, and the values are as follows: 0.39 s-1 for the reductions of the NAD+ moiety, 2.2 s-1 and 0.12 s-1 for the oxidation of the NADH moiety in the systems with oxygen and with MTT, respectively, and 3.2 s-1 and 0.18 s-1 for the reduction of the ethylphenazine moiety in the systems with oxygen and with MTT, respectively. On the bases of these results, the following three rate-acceleration mechanisms of the semisynthetic glucose oxidase are discussed: high effective concentration, intramolecular coupling of successive catalytic reactions, and multiple connection between the two kinds of the catalytic sites.  相似文献   

16.
Gamma-glutamylmetylamide synthetase (GMAS) of Methylovorus mays No. 9, produced by Eschericia coli AD494 (DE3) harboring pET21aGM, formed theanine from glutamic acid and ethylamine with coupling of the reaction with sugar fermentation of baker's yeast cells as an ATP-regeneration system. Theanine formation was stimulated by the addition of Mn(2+) to the reaction mixture, whereas Mg(2+) was less effective. Increases to a certain level in the concentrations of GMAS and the substrates in the mixture were effective in increasing theanine formation, but high concentrations of ethylamine (900 mM or more) inhibited yeast sugar fermentation, and eventually decreased theanine formation. The inhibitory effect of ethylamine was restored by increasing the concentration of potassium phosphate buffer in the mixture. Approximately 600 mM (110 mg/ml) theanine was formed in 48 h in an improved reaction mixture containing 600 mM sodium glutamate, 600 mM ethylamine.HCl, 300 mM glucose, 200 mM potassium phosphate buffer (pH 7.0), 30 mM MgCl(2), 5 mM MnCl(2), 5 mM AMP, 30 units/ml of GMAS, and 40 mg/ml of yeast cells. The yield of theanine was 100% on the substrates (glutamic acid and ethylamine) and also on the energy source (glucose consumed).  相似文献   

17.
Amphora coffeaeformis (Ag.) Kütz. var. perpusilla (Grun.) Cleve took up glucose by an inducible transport system. The system was induced by d -fructose, d -mannose, as well as glucose. Some d -pentoses also induced a glucose uptake system but it may not be the same one as that induced by hexose. d -fructose, d -mannose and 2-deoxy-d -glucose inhibited 2 mM glucose uptake at equimolar concentration, but d -pentoses did not. The uptake system decayed in ca. 5 h in the absence of glucose. The half-saturation constant for uptake, K8 was ca. 0.1 mM glucose with a maximum uptake rate, Vmax= 0.4 nmol/106 cells-min?1.  相似文献   

18.
The sporulation of Clostridium perfringens NCTC 8798 was studied after exposing vegetative cells to: pH values of 1.5 to 8.0 in fluid thioglycolate broth (for 2h) and then transferring them to Duncan-Strong (DS) sporulation medium; sodium cholate or sodium deoxycholate (0.3 to 6.5 mM) in DS medium; or Rhia-Solberg medium with 0.4% (wt/wt) starch, glucose, or both added at 0 to 55 mM. At pH 1.5, no culturable heat-resistant spores were formed. For cells exposed to pH 3.0, 4.0, 5.0, or 6.0, increases in heat-resistant spores were not seen until after a lag of 12 to 13 h, whereas the lag was only 2 to 3 h for cells exposed to pH 7.0 or 8.0. Maximal spore crops were produced after only 6 to 8 h for cells exposed to pH 7 or 8, but 16 to 18 h was required for production of maximal spore crops by cells exposed to the lower-pH media. The addition of sodium cholate (3.5 to 6.5 mM) to DS medium only slightly reduced the culturable heat-resistant spore count from 1.9 X 10(7) to 3 X 10(6)/ml. The addition of 1.8 mM or more sodium deoxycholate reduced the culturable heat-resistant spore count to less than 10/ ml. When either starch or glucose alone was added to Rhia-Solberg medium there was no production of culturable heat-resistant spores, but a combination of 0.4% (wt/wt) starch and 4.4 mM glucose yielded 6 X 10(5) spores/ml. The spore production remained at this level for glucose concentrations of 6 to 22 mM, but then declined to about 3 X 10(3) spores per ml at higher concentrations.  相似文献   

19.
The sporulation of Clostridium perfringens NCTC 8798 was studied after exposing vegetative cells to: pH values of 1.5 to 8.0 in fluid thioglycolate broth (for 2h) and then transferring them to Duncan-Strong (DS) sporulation medium; sodium cholate or sodium deoxycholate (0.3 to 6.5 mM) in DS medium; or Rhia-Solberg medium with 0.4% (wt/wt) starch, glucose, or both added at 0 to 55 mM. At pH 1.5, no culturable heat-resistant spores were formed. For cells exposed to pH 3.0, 4.0, 5.0, or 6.0, increases in heat-resistant spores were not seen until after a lag of 12 to 13 h, whereas the lag was only 2 to 3 h for cells exposed to pH 7.0 or 8.0. Maximal spore crops were produced after only 6 to 8 h for cells exposed to pH 7 or 8, but 16 to 18 h was required for production of maximal spore crops by cells exposed to the lower-pH media. The addition of sodium cholate (3.5 to 6.5 mM) to DS medium only slightly reduced the culturable heat-resistant spore count from 1.9 X 10(7) to 3 X 10(6)/ml. The addition of 1.8 mM or more sodium deoxycholate reduced the culturable heat-resistant spore count to less than 10/ ml. When either starch or glucose alone was added to Rhia-Solberg medium there was no production of culturable heat-resistant spores, but a combination of 0.4% (wt/wt) starch and 4.4 mM glucose yielded 6 X 10(5) spores/ml. The spore production remained at this level for glucose concentrations of 6 to 22 mM, but then declined to about 3 X 10(3) spores per ml at higher concentrations.  相似文献   

20.
P450 BM3 mutant can catalyze indole to indoxyl, and indoxyl can dimerize to form indigo. But the reaction catalyzed by P450 BM3 requires NADPH, as coenzyme regeneration is very important in this system. As we know, when glucose dehydrogenase oxidizes glucose to glucolactone, NADH or NADPH can be formed, which can contribute to NADPH regeneration in the reaction catalyzed by P450 BM3. In this paper, a recombinant Escherichia coli BL21 (pET28a (+)-P450 BM3-gdh0310) was constructed to co-express both P450 BM3 gene and glucose dehydrogenase (GDH) gene. To improve the expression level of P450 BM3 and GDH in E. coli and to avoid the complex and low-efficiency refolding operation in the purification procedure, the expression conditions were optimized. Under the optimized conditions, the maximum P450 BM3 and GDH activities amounted to 8173.13 and 0.045 U/mg protein, respectively. Then bioconversion of indole to indigo was carried out by adding indole and glucose to the culture after improved expression level was obtained under optimized conditions, and 2.9 mM (760.6 mg/L) indigo was formed with an initial indole concentration of 5 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号