首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We attempt to determine whether the decrease in Na+ reabsorption and the increase in K+ secretion in sweat of cystic fibrosis patients (CF) were associated with changes in glandular anaerobic metabolism evaluated by forehead sweat lactate excretion rate. 6 CF and 11 normal (C) children, 5 months to 14 years old, were exposed to external thermal load (45 degrees C). The data showed that: 1) Na+, K+ and Cl- concentrations in CF are constant at any flow rate (Qsw); 2) In both groups the excretion rates of Na+, K+ and Cl- increased linearly with Qsw but the slopes in CF were significantly higher than in C (p less than 0.001); 3) Lactate excretion rate increased with Qsw as in CF and C with the same slope. We suggest that an increase in energy expenditure of Na+ - K+ exchange and an active secretion of K+ by the duct could explain the normal energy metabolism that we observed in CF sweat glands.  相似文献   

2.
cAMP-induced ion transport in normal and cystic fibrosis (CF) fibroblasts was investigated by X-ray microanalysis. Stimulation with cAMP causes an increase in cellular Na content and a decrease in cellular Cl and K content. No significant difference in response between CF and normal cells was noted. In this respect, fibroblasts differ from epithelial cells, where cAMP-induced Cl- efflux blocked in CF patients. Isoproterenol produced similar changes in Na and K content as cAMP, but did not effect Cl content.  相似文献   

3.
Summary In the intact, in vitro frog skin, isoproterenol (ISO) stimulates and amiloride-insensitive increase in short-circuit current (SCC) that can be localized to the exocrine glands and is associated with secretion of chloride. To determine which cells in the glands respond to stimulation we measured the intracellular electrolyte concentrations of the various cell types of the mucous and seromucous glands of the skin using freeze-dried cryosections and electron microprobe analysis. In the resting state, the various cell types of the glands have intracellular electrolyte concentrations similar to the epithelial cells of the skin. Exposure to amiloride (10–4 m) has little effect on the concentration of Na and Cl in the cells of the glands. The effect of isoproterenol has two distinct phases. Analysis of glands in tissues frozen at the peak of the SCC response (13 min after addition of isoproterenol) shows that the only significant change is an increase in Na and Ca in a group of cells at the ductal pole of the acini of both gland types. These are termed gland cells. The duct cells and cells that secrete macromolecules did not show any significant changes at this timepoint. In the gland cells, after a one-hour exposure to isoproterenol the Na concentration is at prestimulation levels while Cl drops. There is also a smaller drop in Cl in the duct and skin epithelial cells. Ouabain, which can completely block the isoproterenol SCC response, has little short-term effect on Na and Cl in the control gland but accentuates the gain of Na and drop in Cl in the isoproterenol-treated condition. Bumetanide and, to a lesser extent, furosemide, also blocks the isoproterenol SCC response and causes a further drop in Cl. The results provide indirect evidence that a major portion of the ionic component of the gland secretion is produced by a distinct group of cells separate from those producing the macromolecular component and that the mechanism of secretion involves a Na:Cl coupled transport system linked to the activity of the basolateral Na pump.  相似文献   

4.
The plantar pads of the hind feet of 15 male and female, young and old Clethrionomys glareolus (Rodentia–family Muridae) were examined for the presence of tubular glands. Groups of eight or nine coiled glands were found in all of the 11 plantar pads. The secretory portion of the gland lies deep in the fatty hypodermis and communicates with the plantar surface by a coiled duct whose lining cells merge with those of the stratum basale of the undersurface of the foot. Groups of shallow depressions mark the site of the duct openings. They are not associated with any hairs.
Although light microscopy shows only one cell type, electron microscopy reveals two morphologically different cell types. Neither conform directly to the light and dark secretory cells of the human sweat glands although similarities exist. Myoepithelial cells surround the secretory cells, but do not appear to be present around the duct cells.  相似文献   

5.
Multiple Na(+)/H(+) exchangers (NHEs) are expressed in salivary gland cells; however, their functions in the secretion of saliva by acinar cells and the subsequent modification of the ionic composition of this fluid by the ducts are unclear. Mice with targeted disruptions of the Nhe1, Nhe2, and Nhe3 genes were used to study the in vivo functions of these exchangers in parotid glands. Immunohistochemistry indicated that NHE1 was localized to the basolateral and NHE2 to apical membranes of both acinar and duct cells, whereas NHE3 was restricted to the apical region of duct cells. Na(+)/H(+) exchange was reduced more than 95% in acinar cells and greater than 80% in duct cells of NHE1-deficient mice (Nhe1(-/-)). Salivation in response to pilocarpine stimulation was reduced significantly in both Nhe1(-/-) and Nhe2(-/-) mice, particularly during prolonged stimulation, whereas the loss of NHE3 had no effect on secretion. Expression of Na(+)/K(+)/2Cl(-) cotransporter mRNA increased dramatically in Nhe1(-/-) parotid glands but not in those of Nhe2(-/-) or Nhe3(-/-) mice, suggesting that compensation occurs for the loss of NHE1. The sodium content, chloride activity and osmolality of saliva in Nhe2(-/-) or Nhe3(-/-) mice were comparable with those of wild-type mice. In contrast, Nhe1(-/-) mice displayed impaired NaCl absorption. These results suggest that in parotid duct cells apical NHE2 and NHE3 do not play a major role in Na(+) absorption. These results also demonstrate that basolateral NHE1 and apical NHE2 modulate saliva secretion in vivo, especially during sustained stimulation when secretion depends less on Na(+)/K(+)/2Cl(-) cotransporter activity.  相似文献   

6.
As a step toward understanding the metabolic consequences of the cystic fibrosis (CF) mutation, we have examined the kinetics of 36Cl efflux in cells cultured from sweat glands, a tissue that is affected in the disease. Epithelial cells, derived from the secretory coil of sweat glands of CF and control individuals, were cultured in serum-free medium, and primary cultures used for efflux experiments. Cell layers were equilibrated with Na36Cl in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-buffered balanced salt solution for 45 min at 37 degrees C, washed in 0.25 M sucrose, and incubated in nonradioactive buffer for measurement of 36Cl efflux. Efflux from CF and control cells followed biphasic kinetics and was described by the equation Y = Ae-kat + Be-kbt. All efflux was inhibited at 6 degrees C. The fast component of efflux, Ae-kat, of both control and CF cells was inhibited by the anion channel blockers 4,4'-diisothiocyanato-2,2'-stilbene disulfonic acid, 9-anthracene carboxylate, and diphenylamine 2-carboxylate, implicating release through chloride channels. At 23 degrees C, the kinetics of 36Cl efflux from CF and control cells were indistinguishable, but efflux from control cells could be accelerated by cAMP analogs and isoproterenol. At 37 degrees C, 36Cl efflux was more rapid from control cells than from CF cells, but could not be stimulated further by beta-adrenergic agents. In both cases, the increased rate of efflux was due to a severalfold increase in the A parameter of the fast component. These differential responses constitute a "CF phenotype" of secretory sweat gland cells in culture that may be useful for further investigation of the metabolic defect in cystic fibrosis.  相似文献   

7.
The ionic composition of the fluid lining the airways (airway surface liquid, ASL) in healthy subjects and patients with cystic fibrosis (CF) has been a matter of controversy. It has been attempted to resolve conflicting theories by using cell cultures, but published results show a wide variety of values for the ionic concentrations in the apical fluid in these cultures. To investigate CFTR-mediated HCO(3)(-) conductance and the role of HCO(3)(-) in regulating ASL pH we determined the pH of the fluid covering the apical surface of airway epithelial cells. A normal (16HBE14o (-)) and a CF (CFBE41o (-)) bronchial epithelial cell line were grown on membrane inserts in both a liquid-liquid interface culture system for 7 days, and in an air-liquid interface culture system for one month. The elemental composition of the fluid covering the apical surface was determined by X-ray microanalysis of frozen-hydrated specimens, or by X-ray microanalysis of Sephadex beads that had been equilibrated with the apical fluid. Analysis showed that the apical fluid had a Na(+) and Cl(-) concentration of about 80-100 mM and thus was slightly hypotonic. The ionic concentrations were somewhat higher in air-liquid interface than in liquid-liquid interface cultures. The apical fluid in CF cells had significantly higher concentrations of Na and Cl than that in control cultures. In control cultures, the concentrations of Na and Cl in the apical fluid increased if glibenclamide, an inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR) was added to the apical medium. Exposing the cells to the metabolic inhibitor NaCN also resulted in a significant increase of the Na and Cl concentrations in the apical fluid. The results agree with the notion that these cell cultures are mainly absorptive cells, and that ion absorption by the CF cells is reduced compared to that in normal cells. The pH measurements of the fluid covering the apical part of cell cultures support the notion that bicarbonate ions may be transported by CFTR, and that this can be inhibited by specific CFTR inhibitors.  相似文献   

8.
Plasma membrane vesicles were isolated from either cystic fibrosis (CF) or non-CF cultured fibroblasts derived from skin biopsies of either foetus, child or adolescent human donors. The total membrane yield was essentially identical for either CF or control membranes. By using a rapid filtration technique, 36Cl uptake by these vesicles was quantitated in the absence and presence of alkali-metal ion-, electrical- and/or pH gradients. In the absence of a pH gradient (pHout = pHin = 7.5), Cl uptake took place downhill in both cases. Either cis K+, cis Na+ or an equimolar mixture of cis Na+ plus K+ caused Cl uptake activation. In the presence of an alkaline-inside pH gradient (pHout/pHin = 5.5/7.5), Cl uptake exhibited an apparent overshoot independently of the presence or absence of any metal-ion gradient. The observed potassium-, sodium- and proton-dependent Cl influx rates were all unaffected by voltage clamping, indicating the existence in these vesicles of electroneutral symport systems of the type Cl-/H+, Cl-/K+ and/or Cl-/Na+; but not 2 Cl-/Na+/K+. In the presence of an inward-directed K+ gradient, valinomycin further increased Cl uptake, both in the presence and in the absence of a pH gradient, indicating the presence of a rheogenic Cl uniport. In absolute quantitative terms, the two different modes (rheogenic and electroneutral) of Cl transport evinced in these vesicles were about 45% lower in CF than in control skin fibroblasts. However, qualitatively, there was no difference between normal and CF cells. The evidence obtained indicates that the CF defect, which is expressed in fibroblast plasma membranes, does not affect specifically either the rheogenic or the electroneutral Cl transport systems. Rather, the CF cells appear to give a smaller yield of closed, functional vesicles, reflected by a significantly smaller apparent intravesicular volume. Because it also affects the transport of D-glucose and L-alanine, this anomaly could be the consequence of a generalized membrane defect characterizing CF fibroblasts.  相似文献   

9.
Transepithelial Cl(-) transport in salivary gland ducts is a major component of the ion reabsorption process, the final stage of saliva production. It was previously demonstrated that a Cl(-) current with the biophysical properties of ClC-2 channels dominates the Cl(-) conductance of unstimulated granular duct cells in the mouse submandibular gland. This inward-rectifying Cl(-) current is activated by hyperpolarization and elevated intracellular Cl(-) concentration. Here we show that ClC-2 immunolocalized to the basolateral region of acinar and duct cells in mouse salivary glands, whereas its expression was most robust in granular and striated duct cells. Consistent with this observation, nearly 10-fold larger ClC-2-like currents were observed in granular duct cells than the acinar cells obtained from submandibular glands. The loss of inward-rectifying Cl(-) current in cells from Clcn2(-/-) mice confirmed the molecular identity of the channel responsible for these currents as ClC-2. Nevertheless, both in vivo and ex vivo fluid secretion assays failed to identify significant changes in the ion composition, osmolality, or salivary flow rate of Clcn2(-/-) mice. Additionally, neither a compensatory increase in Cftr Cl(-) channel protein expression nor in Cftr-like Cl(-) currents were detected in Clcn2 null mice, nor did it appear that ClC-2 was important for blood-organ barrier function. We conclude that ClC-2 is the inward-rectifying Cl(-) channel in duct cells, but its expression is not apparently required for the ion reabsorption or the barrier function of salivary ductal epithelium.  相似文献   

10.
The mechanism of the pancreatic ductal HCO secretion defect in cystic fibrosis (CF) is not well defined. However, a lack of apical Cl(-)/HCO exchange may exist in CF. To test this hypothesis, we examined the expression of Cl(-)/HCO exchangers in cultured pancreatic duct epithelial cells with physiological features prototypical of CF [CFPAC-1 cells lacking a functional CF transmembrane conductance regulator (CFTR)] or normal duct cells (CFPAC-1 cells transfected with functional wild-type CFTR, CFPAC-WT). Cl(-)/HCO exchange activity, assayed with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in cells grown on coverslips, increased about twofold in cells transfected with functional CFTR. This correlated with increased apical (36)Cl influx in cells expressing functional CFTR and grown on permeable support. Northern hybridizations indicated the induction of downregulated in adenoma (DRA) in cells expressing functional CFTR. The expression of putative anion transporter PAT1 also increased significantly in cells expressing functional CFTR. DRA was detected at high levels in native mouse pancreas by Northern hybridization and localized to the apical domain of the duct cells by immunohistochemical studies. In conclusion, CFTR upregulates DRA and PAT1 expression in cultured pancreatic duct cells. We propose that the pancreatic HCO secretion defect in CF patients is partly due to the downregulation of apical Cl(-)/HCO exchange activity mediated by DRA (and possibly PAT1).  相似文献   

11.
Three colon cancer cell lines (Colo 205, HT29 and T84) were investigated by X-ray microanalysis with respect to elemental composition and the effect of cAMP on the cellular concentrations of Na, K, and Cl. The cultures were not homogeneous with respect to their elemental composition, but appeared to consist of two sub-groups, low-K cells and high-K cells. In all three cell lines, the low-K cells had, in addition, higher Ca, markedly lower Cl, and somewhat lower P and S concentrations. Differences in Na and Mg concentrations were absent or not consistent. Exposure of cells to cAMP caused a decrease of the cellular Cl and K content in high-K (high-Cl) cells. Changes in Na were not significant. No difference between the three cell lines could be noted. Incubation of the cells with phorbol myristate acetate (PMA), which has been shown to down-regulate the expression of the cystic fibrosis (CF) transmembrane conductance regulator gene and thus confer CF-like characteristics on the cells, significantly decreased the response in the cellular Cl concentration to cAMP stimulation. It is concluded that cAMP initially activates predominantly the apical Cl- channel and the basolateral K+ channel.  相似文献   

12.
13.
Harderian glands of the Wistar albino rats normal and adrenalectomized were investigated by light microscopy. In normal, these glands have a tubuloalveolar structure. The gland is located in the medio posterior aspect of the orbit. It is lobulated and appears homogeneous in colour and texture. Harderian gland consist of tubules with wide lumina lined by a single layer of columnar epithelial cells surrounded by myoepithelial cells within their basal lamina. It contains porphyrin pigment which is stored as solid intraluminal deposits. The glandular epithelium possesses two cell types, termed A and B. Type A cells are more numerous. The single excretory duct of the gland is directly continuous with endpieces at the hilus and opens nasally and ventrally to the third eyelid. The excretory duct is accompanied by many acini of small serous glands around it. The tubuloalveoli of the gland is not divided into lobules. There is no branched duct system within the gland. The secretion seems to be associated with porphyrins, is essentially released by exocytosis, but holocrine secretion also occurs. The single excretory duct is lined by a stratified epithelium. The gland is surrounded by a collagenous capsule. The adrenalectomy, caused degenerative changes in the glands. Epithelial height was lower than in normal gland epithelium. Most of the acini were completely disorganised. The acinar lumina were filled with porphyrin debris. The results suggest that rat harderian glands are sensitive to adrenal androgen changes in both male and female rats.  相似文献   

14.
Nearly all male cystic fibrosis (CF) patients exhibit tissue abnormalities in the reproductive tract, a condition that renders them azoospermic and infertile. Two swine CF models have been reported recently that include respiratory and digestive manifestations that are comparable to human CF. The goal of this study was to determine the phenotypic changes that may be present in the vas deferens of these swine CF models. Tracts from CFTR(-/-) and CFTR(ΔF508/ΔF508) neonates revealed partial or total vas deferens and/or epididymis atresia at birth, while wild-type littermates were normal. Histopathological analysis revealed a range of tissue abnormalities and disruptions in tubular organization. Vas deferens epithelial cells were isolated and electrophysiological results support that CFTR(-/-) monolayers can exhibit Na(+) reabsorption but reveal no anion secretion following exposure to cAMP-generating compounds, suggesting that CFTR-dependent Cl(-) and/or HCO(3)(-) transport is completely impaired. SLC26A3 and SLC26A6 immunoreactivities were detected in all experimental groups, indicating that these two chloride-bicarbonate exchangers were present, but were either unable to function or their activity is electroneutral. In addition, no signs of increased mucus synthesis and/or secretion were present in the male excurrent ducts of these CF models. Results demonstrate a causal link between CFTR mutations and duct abnormalities that are manifested at birth.  相似文献   

15.
Isolated salivary glands of Periplaneta americana were used to measure secretion rates and, by quantitative capillary electrophoresis, Na(+), K(+), and Cl(-) concentrations in saliva collected during dopamine (1 micro M) and serotonin (1 micro M) stimulation in the absence and presence of ouabain (100 micro M) or bumetanide (10 micro M). Dopamine stimulated secretion of a NaCl-rich hyposmotic saliva containing (mM): Na(+) 95 +/- 2; K(+) 38 +/- 1; Cl(-) 145 +/- 3. Saliva collected during serotonin stimulation had a similar composition. Bumetanide decreased secretion rates induced by dopamine and serotonin; secreted saliva had lower Na(+), K(+) and Cl(-) concentrations and osmolarity. Ouabain caused increased secretion rates on a serotonin background. Saliva secreted during dopamine but not serotonin stimulation in the presence of ouabain had lower K(+) and higher Na(+) and Cl(-) concentrations, and was isosmotic. We concluded: The Na(+)-K(+)-2Cl(-) cotransporter is of cardinal importance for electrolyte and fluid secretion. The Na(+)/K(+)-ATPase contributes to apical Na(+) outward transport and Na(+) and K(+) cycling across the basolateral membrane in acinar P-cells. The salivary ducts modify the primary saliva by Na(+) reabsorption and K(+) secretion, whereby Na(+) reabsorption is energized by the basolateral Na(+)/K(+)-ATPase which imports also some of the K(+) needed for apical K(+) extrusion.  相似文献   

16.
The enzyme Na+,K+-ATPase was localized immunohistochemically in major salivary glands of mouse, rat, and human and in exorbital lacrimal glands of the rodents. Immunoreactive Na+,K+-ATPase was abundant in the basolateral membranes of all epithelial cells lining striated and intra- and interlobular ducts of all glands. Reactivity of intercalated ducts varied among gland type and species. Cells lining granular ducts in rodent submandibular gland showed a heterogeneous staining pattern in rat but stained homogeneously in mouse. Secretory cells varied greatly in their content of immunoreactive Na+,K+-ATPase. As with all duct cells, staining was present only at the basolateral surface and was never observed at the luminal surface of reactive secretory cells. Mucous cells failed to show any reactivity in any gland examined. Serous cells showed a gradient of immunostaining intensity ranging from strongly positive in demilunes of human sublingual gland to negative in rat submandibular gland and lacrimal glands of rats and mice. The presence of basolaterally localized Na+,K+-ATPase in most serous cells but not in mucous cells suggests that the enzyme contributes to the ion and water content of copious, low-protein serous secretions. The intense immunostaining of cells in most if not all segments of the duct system supports the idea that the ducts are involved with modification of the primary saliva, and extends this concept to include all segments of the duct system.  相似文献   

17.
Abnormal regulation of ion channels in cystic fibrosis epithelia.   总被引:9,自引:0,他引:9  
M J Welsh 《FASEB journal》1990,4(10):2718-2725
Cystic fibrosis (CF), the most common lethal genetic disease in Caucasians, is characterized by defective electrolyte transport in several epithelia. In sweat duct, pancreatic, intestinal, and airway epithelia, abnormalities in transepithelial ion transport may account for the manifestations of the disease. A Cl- impermeable apical cell membrane is a common feature in these CF epithelia. The rate of transepithelial Cl- transport is controlled in part by hormonally regulated apical membrane Cl- channels; in CF epithelia, Cl- channels are present but their regulation is defective. Most regulation studies have focused on an outwardly rectifying Cl- channel, although other channels may be involved in Cl- secretion. Phosphorylation of Cl- channels or associated regulatory proteins by cAMP-dependent protein kinase or by protein kinase C (at a low internal [Ca2+]) in excised patches of membrane activates Cl- channels in normal cells but not in CF cells. Phosphorylation with protein kinase C at a high internal [Ca2+] in excised patches of membrane inactivates the channel; such inactivation is normal in CF cells. Cl- channels can also be activated by other maneuvers including an increase in the cytosolic [Ca2+], sustained membrane depolarization, an increase in temperature, proteolysis, and changes in osmolarity; the response to such maneuvers is not defective in CF. In addition to the Cl- channel abnormalities, Na+ absorption is increased in CF epithelia. It is not certain whether the increased rate of Na+ absorption results from an increase in the number of cation channels or an alteration of their kinetics. The relation of these ion channel abnormalities to the CF gene product is unknown, but an understanding of the function of the protein product and its defective function in CF should yield important new insights into the pathogenesis and potential therapy of this disease.  相似文献   

18.
Cystic fibrosis (CF) is a fatal inherited disease caused by the absence or dysfunction of the CF transmembrane conductance regulator (CFTR) Cl- channel. About 70% of CF patients are exocrine pancreatic insufficient due to failure of the pancreatic ducts to secrete a HCO3- -rich fluid. Our aim in this study was to investigate the potential of a recombinant Sendai virus (SeV) vector to introduce normal CFTR into human CF pancreatic duct (CFPAC-1) cells, and to assess the effect of CFTR gene transfer on the key transporters involved in HCO3- transport. Using polarized cultures of homozygous F508del CFPAC-1 cells as a model for the human CF pancreatic ductal epithelium we showed that SeV was an efficient gene transfer agent when applied to the apical membrane. The presence of functional CFTR was confirmed using iodide efflux assay. CFTR expression had no effect on cell growth, monolayer integrity, and mRNA levels for key transporters in the duct cell (pNBC, AE2, NHE2, NHE3, DRA, and PAT-1), but did upregulate the activity of apical Cl-/HCO3- and Na+/H+ exchangers (NHEs). In CFTR-corrected cells, apical Cl-/HCO3- exchange activity was further enhanced by cAMP, a key feature exhibited by normal pancreatic duct cells. The cAMP stimulated Cl-/HCO3- exchange was inhibited by dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2-DIDS), but not by a specific CFTR inhibitor, CFTR(inh)-172. Our data show that SeV vector is a potential CFTR gene transfer agent for human pancreatic duct cells and that expression of CFTR in CF cells is associated with a restoration of Cl- and HCO3- transport at the apical membrane.  相似文献   

19.
Chloride channel regulation in secretory epithelia   总被引:3,自引:0,他引:3  
Patch-clamp techniques were applied for single-channel recording to cultured cells from Cl secretory epithelia: human airway cells and the T84 cell line. Epinephrine or cyclic AMP (cAMP) stimulated single-channel activity in human airway cells during cell-attached recording. Similarly, prostaglandin E2 and cAMP stimulated single-channel activity in T84 cells. Ion substitution experiments with patches in the inside-out configuration indicated greater than 10:1 selectivity for Cl over Na in channels from both cell types, which confirms the identity of these events as Cl channel openings. The Ca ionophore A23187 stimulated these Cl channels to open in both cell types. Human airway cells from patients with cystic fibrosis (CF) did not respond to epinephrine or cAMP, but A23187 treatment elicited Cl channel activity. Changes in bath Ca activity in the inside-out configuration demonstrated that increased Ca could activate cAMP-insensitive Cl channels in CF cells. This indicates that the primary defect in CF is in the regulation of Cl channel opening rather than in conduction of Cl through the channel.  相似文献   

20.
Summary The recognized need for epithelial cell culture models for cystic fibrosis (CF) research has resulted in ongoing efforts to improve normal and CF submandibular duct cell culture capabilities. The duct is most likely the site of the CF defect in this and other exocrine glands. In a previous report conditions required for the successful primary explant culture of normal and CF submandibular glands were outlined; however, terminal keratinization and involution of these cultures were recognized as severe limiting factors to their utilization in CF research. This report explores the effects of calcium concentrations in the medium, growth factor supplements, and matrix components on growth and differentiation of these cultures. Results of the study further confirm the ductal origin of cells in the outgrowth and demonstrate that progressive keratinization is initiated only after cells proliferate beyond the environment of the explant fragment. Keratinization with subsequent multilayering, desmosome formation, and involution in the cell outgrowth are governed in degree by the calcium concentration of the growth medium. Upon reduction of medium calcium to 0.1 mM concentration, the cells proliferate as a monolayer and subculture through 8 to 9 passages and retain the capacity to undergo ductlike differentiation. This work was supported by Public Health Service grant AM 11028, Department of Health and Human Services, Washington, DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号