首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of l-arginine on porcine foetal development and myogenesis were determined. Twenty Swiss Large White gilts were randomly allocated to either the control (C) or l-arginine treatment (A). In addition to the standard gestation diet, A-sows received 26 g l-arginine daily from days 14 to 28 of gestation. At day 75 of pregnancy, sows were sacrificed and the number and weight of foetuses were recorded. From each litter, the lightest, heaviest and the ones with an average foetal weight (FtW) were selected. Primary (P), secondary (S) and total myofiber number as well as S/P ratio were determined in the semitendinosus (ST) and rhomboideus (RH) muscles. In A-sows, the number of viable foetuses (13.0 v. 9.3) and total FtW (4925 v. 3729 g) was greater (P ⩽ 0.04) than in C-sows. Compared to C-sow foetuses, the ST of A-sow foetuses had 7% more (17 699 v. 16 477; P = 0.04) P myofibers and the S/P ratio in both muscles was lower (ST = 20.3 v. 21.5; RH = 24.1 v. 27.1; P ⩽ 0.07). Regardless of the maternal diet, the S myofiber number and the S/P ratio in both muscles were greater (P ⩽ 0.01) in foetuses with a high FtW compared to low FtW. These data suggest that l-arginine supplemented to gilts during early gestation enhanced foetal survival and in the ST positively affected the primary phase of myofiber formation.  相似文献   

3.
A study was designed to advance the time of the ovulatory luteinizing hormone (LH) surge in Meishan gilts by human chorionic gonadotrophin (hCG) administration at the onset of oestrus and assess the effect on embryo survival and development. Twelve Meishan gilts were observed six times daily for oestrous behaviour and bred at 24, 36 and 48 h after observed oestrous onset. Six of those gilts were administered an ovulatory dose of hCG (500 IU) at observed oestrous onset. Blood samples were collected at oestrous onset (Day —2) and on Days 0, 2, 6, 9, 13, 16, 20, 23, 27 and 30 of gestation. All gilts were slaughtered on Day 30 of gestation and embryo survival and conceptus development assessed. Ovulation rate did not differ between control and hCG treated gilts (18.5 and 17.7 respectively; P>0.1) while the number of live conceptuses per gilt (17.2 and 12.8 respectively; P<0.08) and embryo survival rate (92.1 and 75.8% respectively; P<0.1) both tended to be reduced by the hCG treatment. Placental weight (17.2 and 23.1 g; P<0.01) was significantly increased in hCG treated gilts, while embryo weight (1.2 and 1.4 g; P<0.06) and placental length (42.8 and 47.2 cm; P<0.07) both tended to be increased in hCG treated gilts. Crown rump length (P>0.1) and allantoic fluid volume (P>0.1) did not differ between the treatment groups. Serum progesterone concentrations did not differ with treatment overall (P>0.1) but were significantly elevated (P< 0.05) at 48 h postoestrus in the hCG treated gilts compared to control gilts. Overall, these results indicate that advancing the time of the LH surge to oestrous onset, as in European breeds, compromised embryo survival and suggests that the longer time interval between oestrous onset and ovulation is important for the high rate of embryo survival in the Meishan pig.  相似文献   

4.
Norwegian Landrace gilts were inseminated on the second day of their second oestrus and slaughtered 28 to 34 days after insemination. The number of corpora lutea (ovulation rate) and normal embryos was counted and the embryonic survival rate was calculated for the 306 pregnant gilts. Mean (+/-S.D.) ovulation rate, number of normal embryos and embryonic survival rate were 14.17+/-2.48, 10.55+/-3.30 and 74.8%+/-20.7%, respectively. The significant (P<0.001) curvilinear regression of embryonic survival rate on ovulation rate gives a maximum embryonic survival rate at 13.2 ovulations. Increased ovulation rate gives increased number of normal embryos up to 18.1 ovulations. Ovulation rate should be considered when assessing factors affecting embryonic survival in pigs.  相似文献   

5.
This study was designed to determine the effect of location of the preovulatory dominant follicle and stage of ovarian follicle development on ovulation rate and embryo survival in alpacas. In Experiment 1, mature lactating alpacas were randomly assigned to one of two groups according to the location of the dominant follicle detected by ultrasonography: (a) Right ovary (RO, n=96) or (b) Left ovary (LO, n=108). All females were mated once by an intact adult male. Ovulation rate, CL diameter and embryo survival rate (heartbeat) were assessed by ultrasonography on Days 2 (Day 0=mating), 8 and 30, respectively. Ovulation rate (96.5 and 96.3% for RO and LO group, respectively), corpus luteum (CL) diameter (10.2 and 10.6 mm for RO and LO group, respectively) and pregnancy rate (60.2 and 56.7% for RO and LO group, respectively) did not differ among groups. In Experiment 2, lactating alpacas (n=116) were submitted to ultrasonic-guided follicle ablation to synchronize follicular wave emergence. Afterwards, daily ultrasonography examinations were performed and females were randomly assigned to the following groups according to the growth phase and diameter of the dominant follicle: (a) early growing (5-6 mm, n=27), (b) growing (7-12 mm, n=30); (c) static (7-12 mm, n=30), or (d) regressing phase (12-7 mm, n=29). All alpacas were mated with a proven intact male, except five alpacas from early growing group that rejected the male. Females were examined by ultrasonography on Day 2 (ovulation rate), Day 8 (CL diameter), and Days 15, 20, 25, 30 and 35 (embryo survival by the presence of embryo proper and heartbeat). No differences were detected in ovulation rate among groups (96%, 97%, 100%, and 97%) or in CL size (10.3, 11.7, 11.1, and 11.1 mm, for early growing, growing, early static and regressing, respectively). Although, embryo survival rate at Day 35 after mating was numerically greatest in growing (65.5%), intermediate in early growing (52.4%) and static (53.3%), and least in regressing phase (42.9%), there were no differences among groups. Results suggest that neither location nor stage of development of the dominant follicle has an influence on ovulation and embryo survival rate in alpacas.  相似文献   

6.
Embryonic loss is a major problem in mammals, but there are few effective ways to prevent it. Using a porcine model, we determined effects of dietary l-arginine supplementation between days 14 and 25 of gestation on embryonic growth and survival. Gilts were checked daily for estrus with boars in the morning and bred at onset of the second estrus and 12 h later (the time of breeding = day 0 of gestation). Between days 14 and 25 of gestation, 15 gilts/treatment were housed individually and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8 % l-arginine. All diets were made isonitrogenous by addition of l-alanine. On day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Compared with controls, dietary supplementation with 0.4 or 0.8 % l-arginine increased (P ≤ 0.05) arginine concentrations in maternal plasma, total volume of amniotic fluid; total amounts of arginine in allantoic and amniotic fluids; total amounts of fructose and most amino acids in amniotic fluid; placental growth; and the number of viable fetuses per litter by 2. The numbers of total fetuses, fetal weight, corpora lutea, volume of allantoic fluid, maternal circulating levels of progesterone and estrogen, or total amounts of hormones in allantoic fluid did not differ among the three treatment groups. Reproductive performance of gilts did not differ between the 0.4 and 0.8 % l-arginine groups. Thus, dietary supplementation with 0.4 or 0.8 % l-arginine between days 14 and 25 of gestation enhances embryonic/fetal survival in swine.  相似文献   

7.
The aim of this work was to determine if gilts, which have a high growth rate (GR) could be mated earlier without reducing the reproductive performance or increasing the culling rate up to the third parity. Gilts of Camborough 22 (C22, n=568) breeding were mated and allocated into three groups according to weight and age on the insemination day. G1 (n=164)-gilts with a GR>or=700 g/d and inseminated at <210 d. G2 (n=165)-gilts with a GR>or=700 g/d and inseminated at >or=210 d. G3 (n=239)-gilts with a GR<700 g/d and inseminated at >or=210 d. All females were fed ad libitum from 150 d on and were inseminated at their second estrus or later. The minimum weight at mating was 127 kg. Three parities were studied, with farrowing rate, litter size and culling rate being compared. At the first parity, G2 gilts produced, on average, one more piglet than the other groups (P<0.05). However, when analyzing three parities, there were no differences in total born (11.6 x 12.3 x 11.7), farrowing rate (87.1% x 88.7% x 89.8%) and culling rate (30.2% x 25.3% x 28.2%) among G1-G3 groups, respectively (P>0.05). In conclusion, gilts, which had a minimum weight of 127 kg can be inseminated at their second or greater estrus, between 185 and <210 d of age, without impairing their productive performance over three parities.  相似文献   

8.
9.
Previous studies have shown that use of altrenogest resulted in a high rate of fertility and increased litter size compared with controls under conditions of practical pig production. The present study was designed to evaluate whether ovulation rate and/or foetal survival were increased by altrenogest using crossbred gilts derived from one herd (n = 227) and introduced in the same piggery over 12 months. Each gilt was allocated to a treated group (n = 103) receiving an individual daily dose of 20 mg of altrenogest for 18 days in its feed or a control group (n = 124) after puberty had been diagnosed, (197 ± 1 day; mean ± SEM). They were inseminated (double AI) at the second induced or natural oestrus. Pregnancy was diagnosed by ultrasonography at Days 22 and 42 post-insemination in the absence of return to oestrus. Pregnant gilts were slaughtered at 48 ± 3 days of pregnancy following the second examination. The number of living and dead foetuses were recorded before uterine contents (foetuses and placentae) were weighed and the number of corpora lutea (CL) per ovary counted.Precise synchronization of oestrus was observed after the end of the progestogen administration, with 93% of the gilts in oestrus by Days 5 to 7. For the controls, the interval from first to second oestrus ranged from 17 to 25 days in 93% of the control gilts. The pregnancy rate was 89.3% for treated gilts and 77.4% for controls (P < 0.05). The ovulation rate was increased by the treatment (15.4 ± 0.3 vs 14.6 ± 0.3; mean ± SEM, P < 0.02). Although the altrenogest group had more foetuses (11.1 vs 10.6), this difference was not significant (P > 0.14). The percent of foetal survival was similar in both groups (64.9%; P > 0.27). The foetal and placental weights differed only between dams and increased with stage of gestation. The increase in litter size through feeding altrenogest was associated with an increased ovulation rate.  相似文献   

10.
Glutathione (GSH) is an antioxidant synthesized from three constitutive amino acids (CAA): cysteine (Cys), glycine (Gly) and glutamate (Glu). Glutathione plays an important role in oocyte maturation, fertilization and early embryo development. This study aimed to investigate the effect of Cys (0.6 mM), Gly (0.6 mM) and Glu (0.9 mM) supplementation during in vitro fertilization (IVF) of cattle oocytes. In a Pilot Experiment, de novo synthesis of GSH in bovine zygote was evaluated using a modified TALP medium prepared without MEM-essential and MEM-non-essential amino acids (mTALP): mTALP + CAA (constitutive amino acids); mTALP + CAA+5 mMBSO (buthionine sulfoximide); mTALP + Cys + Gly; mTALP + Cys + Glu and mTALP + Gly + Glu. This evidence led us to investigate the impact of CAA supplementation to TALP medium (with essential and non-essential amino acids) on zygote viability, lipid peroxidation, total intracellular GSH content (include reduced and oxidized form; GSH-GSSG), pronuclear formation in zygotes and subsequent embryo development. IVF media contained a) TALP; b) TALP + Cys + Gly + Glu (TALP + CAA); c) TALP + Cys + Gly; d) TALP + Cys + Glu; e) TALP + Gly + Glu, were used. Total GSH-GSSG concentration was increased in TALP, TALP + CAA, and TALP + Cys + Gly. The viability of zygote was similar among treatments. Lipid peroxidation was increased in zygote fertilized with TALP + Cys + Gly; TALP + Cys + Glu; TALP + Gly + Glu and TALP + CAA. The percentage of penetrated oocytes decreased in TALP + CAA and TALP + Cys + Gly. The cleavage rate was lower in TALP + CAA and TALP + Gly + Glu. The percentage of embryos developing to the blastocyst stage was lower in TALP + Cys + Glu and TALP + CAA. In conclusion, we have demonstrated the synthesis of GSH during IVF. However, Cys, Gly and Glu supplementation to TALP medium had negative effects on embryonic development.  相似文献   

11.
In normal production practices, sows and gilts are inseminated at least twice during estrus because the timing of ovulation is variable relative to the onset of estrus. The objective of this study was to determine if a normal fertilization rate could be achieved with a single insemination of low sperm number given at a precise interval relative to ovulation. Gilts (n=59) were randomly assigned to one of three treatment groups: low dose (LD; one insemination, 0.5 x 10(9) spermatozoa), high dose (HD; one insemination, 3 x 10(9) spermatozoa) or multiple dose (MD; two inseminations, 3 x 10(9) spermatozoa per insemination). Twice daily estrus detection (06:00 and 18:00 h) was performed using fenceline boar contact and backpressure testing. Transrectal ultrasonography was performed every 6 h beginning at the detection of the onset of standing estrus and continuing until ovulation. Gilts in the LD and HD groups were inseminated 22 h after detection of estrus; MD gilts received inseminations at 10 and 22 h after detection of estrus. Inseminations were administered by using an insemination catheter and semen was deposited into the cervix. The uterus was flushed on Day 5 after the onset of estrus and the number of corpora lutea, oocytes, and embryos were counted. Time of insemination relative to ovulation was designated as 40 to >24 h, 24 to >12 h, and 12 to 0 h before ovulation and >0 h after ovulation. The LD gilts had fewer embryos (P<0.04), more unfertilized oocytes (P<0.05) and a lower fertilization rate (P<0.07) compared to MD gilts. The effects of time of insemination relative to ovulation and the treatment by time interaction were not significant. We conclude that a cervical insemination with low spermatozoa concentration may not result in acceptable fertility even when precisely timed relative to ovulation.  相似文献   

12.
13.
Studies on the ovulation rate, prenatal survival and litter size of Chinese Meishan pigs have given widely divergent results depending on the extent of inbreeding of the animals, their original genetic diversity, the age and parity, and the conditions of management. To obtain meaningful results, it is necessary to characterize the population under study. The following report characterizes populations of Meishan and Yorkshire of a widely diverse background. First farrowing data were collected on 21 Meishan and 20 Yorkshire gilts. Meishan gilts had 12.4 fully formed piglets and Yorkshire gilts had 7.4 fully formed piglets (P < 0.01). Meishan gilts averaged 1.86 mummified fetuses per litter vs 0.05 per Yorkshire litter (P < 0.01). Yorkshire piglets averaged 1.3 kg body weight at birth vs 0.9 kg for Meishan piglets (P < 0.01). At 47 days of second gestation, 19 Meishan and 12 Yorkshire sows averaged 22.7 and 16.3 corpora lutea (CL), respectively (P < 0.01). Uterine length and number of fetuses were not different (P > 0.40) in the two breeds. Daily estrous detection of 50 Meishan and 34 Yorkshire gilts began at 60 and 120 days of age, respectively. Meishan gilts reached sexual maturity at 95 days of age, which was 105 days earlier than Yorkshire gilts (P < 0.01). Meishan gilts were in estrus nearly 1 day longer than Yorkshire gilts at first, second and third estrus (P < 0.05). No differences in cycle length between breeds were detected for the first or second estrous cycle (P > 0.60). Nineteen Meishan gilts were slaughtered at 51 days of gestation and their reproductive tracts were recovered. The mean number of dissected CL (17.0), number of fetuses (13.1), total uterine length (396 cm), spacing per fetus (29.9 cm), allantoic (124.9 ml) and amniotic (32.2 ml) volumes, crown-rump length (82.8 mm), weight (35.4 g), sex, and direction of each fetus were determined. Chinese Meishan gilts reached puberty much earlier and were in estrus longer than Yorkshire gilts and Meishan sows had more CL than Yorkshire sows.  相似文献   

14.
The effect of dietary Mo (Na2Mo(4)2H2O) added to drinking water at levels of 0, 5, 10, 50, or 100 mg on hepatic (gestating dams), placental, and fetal Mo, Cu, Zn, and Fe contents of Sprague-Dawley rats was studied. These elements were determined by a polarographic catalytic procedure for Mo and by atomic absorption spectrophotometry for Cu, Fe, and Zn. Hepatic Mo increased two to sixfold (5-100 mg Mo). There was a 1.5-fold increase in hepatic Cu, significant only at the 50 to 100 mg Mo/L treatment levels. Although the hepatic Fe content of the gestating rats significantly increased with Mo supplementation, the extent of the increase appeared to be influenced by the litter size, fetal weights, and the degree of fetal resorption. Zinc values did not differ at any of the treatment levels. Placental Mo increased 3-76-fold, Cu one to threefold. No differences were observed in placenta Fe or Zn. Fetal Mo increased two to six-fold (10-100 mg/L) and Cu increased one to fivefold. There were no differences in the Fe and Zn content although both of these elements appeared to decline as the level of supplemental Mo increased. Significant correlations were also observed between hepatic, placental, and fetal Mo, Cu, Fe, and Zn. These results suggest that changes in trace mineral status in gestation, owing to high Mo intake, do occur and such occurrences are also reflected in the fetus.  相似文献   

15.
Thirty-two Border Leicester x Scottish Blackface ewes that lambed in March were individually penned with their lambs from April 16th and given daily an oral dose of 3 mg melatonin at 1500 h (Group M). A further 32 acted as controls (Group C). Within each group half were used as embryo donors (Group D) following superovulation and half received embryos (Group R) following an induced estrus. Prior to weaning on 21 May ewes received ad libitum a complete diet providing 9 megajoules (MJ) of metabolizable energy and 125 g/kg crude protein. Thereafter each received 1.6 kg of the diet daily. In early June each ewe received an intravaginal device (300 mg progesterone) inserted for 12 d. Donors were superovulated with 4 i.m. injections of porcine FSH 12 h apart, commencing 24 h before progesterone withdrawal. Ovulation in recipients was induced with 800 IU PMSG injected i.m. at progesterone removal. Donor ewes were inseminated 52 h after progesterone withdrawal. Embryos were collected 4 d later and transferred to recipients. Melatonin suppressed plasma prolactin (P < 0.001) and advanced estrus (P < 0.05) and timing of the LH peak (P < 0.05). These events also occurred earlier in donors than in recipients (P < 0.01). Mean (+/- SEM) ovulation rates for melatonin-treated and control donors were 5.5 +/- 0.71 and 4.7 +/- 0.66, respectively (NS). Corresponding recipient values were 3.3 +/- 0.40 and 3.4 +/- 0.39 (NS). Mean (+/- SEM) embryo yields were 2.9 +/- 0.64 and 2.6 +/- 0.73 for melatonin-treated (n = 15) and control (n = 16) donors, respectively, and for the 12 ewes per treatment that supplied embryos, corresponding numbers classified as viable were 2.7 +/- 0.47 and 2.3 +/- 0.61 (NS). Following transfer, 57% of embryos developed to lambs when both donor and recipient received melatonin, 86% when only the donor received melatonin, 91% when only the recipient received melatonin, and 67% when neither received melatonin (NS). Thus, embryo survival following transfer was not improved by treating recipients with melatonin. Gestation length and lamb birthweights were unaffected by melatonin. Unlike nonpregnant control ewes, melatonin-treated recipients that failed to remain pregnant sustained estrous cyclicity following embryo transfer.  相似文献   

16.
17.
The objective of this study was to determine concentrations of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P4) and 17β-estradiol (E2) in sows from a line selected on an index which emphasized ovulation rate (Select) and from a control line. A further classification of the sows in each line was made according to the estimated number of ovulations during an estrous cycle. Sows in the Select line were ranked into a high (HI) or low group (LI) when their estimated number of ovulations were 25 or more and 14 to 15, respectively. Sows of the control line were classified into groups as high (HC) or low (LC) when the estimated values for ovulation rate were 14–15 and 8–9 ovulations, respectively. Blood samples were collected every 12 h during a complete estrous cycle and samples were analyzed for concentrations of FSH and LH. Samples collected every 24 h were assayed for P4 and E2. Mean concentrations of FSH, LH, P4 and E2 did not differ (P>0.10) between lines or between HI and LI or HC and LC groups. Selection of pigs for ovulation rate and embryonal survival did not affect concentrations of FSH, LH, P4 and E2 in sows during the estrous cycle.  相似文献   

18.
In vitro systems are commonly used for the production of bovine embryos. Comparisons between in vivo and in vitro produced embryos illustrate that the morphology of preimplantation-stage embryos differ significantly, the survival of embryos and fetuses is decreased, the size distributions of the populations of conceptuses and fetuses are altered throughout gestation, and placental development is significantly changed. Taken together these findings indicate that exposure to some in vitro environments during the first 7 days of life can profoundly influence fetal and placental development in cattle. An understanding of how in vitro oocyte maturation, in vitro fertilization, and embryo culture systems influence both fetal and placental development should result in systems that consistently produce normal embryos, fetuses, and calves.  相似文献   

19.
The aim of the present study was to evaluate the effect of artificial insemination time (before or after ovulation) using either fresh or frozen-thawed boar semen on embryo viability and early pregnancy rate. Seventy-seven prepubertal crossbred (Landrace x Large White x Duroc) gilts were inseminated in 4 treatments. Artificial inseminations were performed 6 h either after (A) or before (B) ovulation using frozenthawed (A-frozen, n = 19; B-frozen, n = 19) or fresh semen (A-fresh, n = 21; B-fresh, n = 18). The gilts were induced to puberty by administration of 400 IU of eCG and 200 IU hCG (sc) followed by 500 IU of hCG (sc) 72 h later. Ovulation was predicted to occur 42 h after the second injection. All animals were slaughtered 96 h after AI. Embryos were collected and classified as viable (5- to 8-cells, morulae, compacted morulae and early blastocysts) and nonviable (fragmented, degenerated and 1- to 4-cell embryos). The total embryo viability rate was: 64.3% (A-frozen), 54.2% (A-fresh), 76.0% (B-frozen), 91.9% (B-fresh); (A-fresh vs B-fresh, P = 0.018; A-frozen vs B-frozen, P = 0.094). It was observed that AI before ovulation resulted in a higher percentage of total viable embryos than AI after ovulation (P = 0.041). The early pregnancy rate, defined as presence of at least one viable embryo, was 78.9, 80.9, 84.2 and 94.4% for A-frozen, A-fresh, B-frozen, B-fresh, respectively. There was no significant difference in the early pregnancy rate among groups. In conclusion, there was a detrimental effect upon total embryo viability rate when AI was performed after ovulation with either frozen-thawed or fresh semen. The total embryo viability rate and the early pregancy rate were not affected by AI with either frozen-thawed or fresh semen regardless of the time of AI.  相似文献   

20.
A total of 64 ewes was used to determine if the changes in superovulatory yields related to the ovarian status at the start of superovulatory treatment are due to differences in the population of gonadotrophin-responsive follicles, alterations in the processes of ovulation or transport of embryos from oviduct to uterus and/or developmental competence of the oocyte/embryo. Ovarian status at the start of a superovulatory FSH step-down treatment, administered coincidentally with a progestagen, was assessed by ultrasonography. On Day 4 after progestagen withdrawal, embryos were recovered from oviduct and their viability was determined by assessing development in vitro culture (IVC) until the hatched blastocyst stage. In all the ewes, the ovulation rate was related positively to the number of 2-3 mm follicles at first FSH injection (P<0.005). However, the total number of embryos and their viability were related to the more limited category of 3 mm follicles (P<0.05), whereas a higher degeneration rate was related to the number of 2mm follicles. The presence of a corpus luteum (CL) at the start of superovulatory treatment exerted a protective effect on embryonic viability, decreasing the degeneration of embryos. On the other hand, the presence of a dominant follicle at first FSH dose affected the mean size of the pool of follicles responding to the superovulation treatment, because ovulation arose from 3 to 5 mm follicles in absence of large follicles (P<0.05), but from 2 to 3 mm follicles when large follicles were present (P<0.005), indicating atresia in medium sized follicles in the presence of a large follicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号