首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Doublecortin (DCX) is required for normal migration of neurons into the cerebral cortex, since mutations in the human gene cause a disruption of cortical neuronal migration. To date, little is known about the distribution of DCX protein or its function. Here, we demonstrate that DCX is expressed in migrating neurons throughout the central and peripheral nervous system during embryonic and postnatal development. DCX protein localization overlaps with microtubules in cultured primary cortical neurons, and this overlapping expression is disrupted by microtubule depolymerization. DCX coassembles with brain microtubules, and recombinant DCX stimulates the polymerization of purified tubulin. Finally, overexpression of DCX in heterologous cells leads to a dramatic microtubule phenotype that is resistant to depolymerization. Therefore, DCX likely directs neuronal migration by regulating the organization and stability of microtubules.  相似文献   

2.
The neuronal migration protein doublecortin (DCX) that associates with microtubules through a tandem DCX repeat, is required for the development of the complex architecture of the human cerebral cortex. Using a yeast two-hybrid screen with Dcx as bait, we have isolated neurabin II/spinophilin, an F-actin binding protein known to play a role in dendritic spine formation. The coiled-coil domain of neurabin II binds to a DCX region encompassing the C-terminal portion of the second DCX repeat and the N-terminal portion of the Ser/Pro-rich domain. Immunoprecipitation experiments with brain extracts show that neurabin II and Dcx interact in vivo. Several Dcx constructs that mimic human DCX mutant alleles failed to interact with neurabin II. Since Dcx and neurabin II colocalized in the developing and adult brain, a neurabin II-DCX heterodimer may be involved in neuronal migration and dendritic spine formation.  相似文献   

3.
Neurons, like all cells, face the problem that tubulin forms microtubules with too many or too few protofilaments (pfs). Cells overcome this heterogeneity with the γ-tubulin ring complex, which provides a nucleation template for 13-pf microtubules. Doublecortin (DCX), a protein that stabilizes microtubules in developing neurons, also nucleates 13-pf microtubules in?vitro. Using fluorescence microscopy assays, we show that the binding of DCX to microtubules is optimized for the lateral curvature of the 13-pf lattice. This sensitivity depends on a cooperative interaction wherein DCX molecules decrease the dissociation rate of their neighbors. Mutations in DCX found in patients with subcortical band heterotopia weaken these cooperative interactions. Using assays with dynamic microtubules, we discovered that DCX binds to polymerization intermediates at growing microtubule ends. These results support a mechanism for stabilizing 13-pf microtubules that allows DCX to template new 13-pf microtubules through associations with the sides of the microtubule lattice.  相似文献   

4.
Doublecortin (DCX) is a microtubule-associated protein that is specifically expressed in neuronal cells. Genetic mutation of DCX causes lissencephaly disease. Although the abnormal cortical lamination in lissencephaly is thought to be attributable to neuronal cell migration defects, the regulatory mechanisms governing interactions between DCX and cytoskeleton in the migration of neuronal progenitor cells remain obscure. In this study we found that the G(s) and protein kinase A (PKA) signal elicited by pituitary adenylate cyclase-activating polypeptide promotes neuronal progenitor cells migration. Stimulation of G(s)-PKA signaling prevented microtubule bundling and induced the dissociation of DCX from microtubules in cells. PKA phosphorylated DCX at Ser-47, and the phospho-mimicking mutant DCX-S47E promoted cell migration. Activation of PKA and DCX-S47E induced lamellipodium formation. Pituitary adenylate cyclase-activating polypeptide and DCX-S47E stimulated the activation of Rac1, and DCX-S47E interacted with Asef2, a guanine nucleotide exchange factor for Rac1. Our data reveal a dual reciprocal role for DCX phosphorylation in the regulation of microtubule and actin dynamics that is indispensable for proper brain lamination.  相似文献   

5.
《The Journal of cell biology》1989,109(6):3367-3376
We report the complete sequence of the microtubule-associated protein MAP1B, deduced from a series of overlapping genomic and cDNA clones. The encoded protein has a predicted molecular mass of 255,534 D and contains two unusual sequences. The first is a highly basic region that includes multiple copies of a short motif of the form KKEE or KKEVI that are repeated, but not at exact intervals. The second is a set of 12 imperfect repeats, each of 15 amino acids and each spaced by two amino acids. Subcloned fragments spanning these two distinctive regions were expressed as labeled polypeptides by translation in a cell-free system in vitro. These polypeptides were tested for their ability to copurify with unlabeled brain microtubules through successive cycles of polymerization and depolymerization. The peptide corresponding to the region containing the KKEE and KKEVI motifs cycled with brain microtubules, whereas the peptide corresponding to the set of 12 imperfect repeats did not. To define the microtubule binding domain in vivo, full-length and deletion constructs encoding MAP1B were assembled and introduced into cultured cells by transfection. The expression of transfected polypeptides was monitored by indirect immunofluorescence using anti-MAP1B-specific antisera. These experiments showed that the basic region containing the KKEE and KKEVI motifs is responsible for the interaction between MAP1B and microtubules in vivo. This region bears no sequence relationship to the microtubule binding domains of kinesin, MAP2, or tau.  相似文献   

6.
《The Journal of cell biology》1996,135(5):1323-1339
The gene for a microtubule-associated protein (MAP), termed MHP1 (MAP- Homologous Protein 1), was isolated from Saccharomyces cerevisiae by expression cloning using antibodies specific for the Drosophila 205K MAP. MHP1 encodes an essential protein of 1,398 amino acids that contains near its COOH-terminal end a sequence homologous to the microtubule-binding domain of MAP2, MAP4, and tau. While total disruptions are lethal, NH2-terminal deletion mutations of MHP1 are viable, and the expression of the COOH-terminal two-thirds of the protein is sufficient for vegetative growth. Nonviable deletion- disruption mutations of MHP1 can be partially complemented by the expression of the Drosophila 205K MAP. Mhp1p binds to microtubules in vitro, and it is the COOH-terminal region containing the tau-homologous motif that mediates microtubule binding. Antibodies directed against a COOH-terminal peptide of Mhp1p decorate cytoplasmic microtubules and mitotic spindles as revealed by immunofluorescence microscopy. The overexpression of an NH2-terminal deletion mutation of MHP1 results in an accumulation of large-budded cells with short spindles and disturbed nuclear migration. In asynchronously growing cells that overexpress MHP1 from a multicopy plasmid, the length and number of cytoplasmic microtubules is increased and the proportion of mitotic cells is decreased, while haploid cells in which the expression of MHP1 has been silenced exhibit few microtubules. These results suggest that MHP1 is essential for the formation and/or stabilization of microtubules.  相似文献   

7.
Mao T  Jin L  Li H  Liu B  Yuan M 《Plant physiology》2005,138(2):654-662
The organization and dynamics of microtubules are regulated by microtubule-associated proteins, or MAPs. In Arabidopsis (Arabidopsis thaliana), nine genes encode proteins of the evolutionarily conserved MAP65 family. We proposed that different MAP65s might have distinct roles in the interaction with microtubules. In this study, two AtMAP65 proteins, AtMAP65-1 and AtMAP65-6, were chosen to test this hypothesis in vitro. Although both fusion proteins were able to cosediment with microtubules in vitro, different properties on tubulin polymerization and microtubule bundling were observed. AtMAP65-1 was able to promote tubulin polymerization, enhance microtubule nucleation, and decrease the critical concentration for tubulin polymerization. It also induced the formation of large microtubule bundles by forming cross-bridges between microtubules evenly along the whole length of microtubules. In the presence of AtMAP65-1, microtubule bundles were more resistant to cold and dilution treatments. AtMAP65-6, however, demonstrated no activity in promoting tubulin polymerization and stabilizing preformed microtubules. AtMAP65-6 induced microtubules to form a mesh-like network with individual microtubules. Cross-bridge-like interactions were only found at regional sites between microtubules. The microtubule network induced by AtMAP65-6 was more resistant to high concentration of NaCl than the bundles induced by AtMAP65-1. Purified monospecific anti-AtMAP65-6 antibodies revealed that AtMAP65-6 was associated with mitochondria in Arabidopsis cells. It was concluded that these two MAP65 proteins were targeted to distinct sites, thus performing distinct functions in Arabidopsis cells.  相似文献   

8.
The doublecortin-like (DCX) domains serve as protein-interaction platforms. DCXtandem domains appear in the product of the X-linked doublecortin (DCX) gene, inretinitis pigmentosa –1 (RP1), as well as in other gene products. Mutations in the humanDCX gene are associated with abnormal neuronal migration, epilepsy, and mentalretardation; mutations in RP1 are associated with a form of inherited blindness, whileDCDC2 has been associated with dyslectic reading disabilities. Motivated by the possibleimportance of this gene family, a thorough analysis to detect all family members in themouse was conducted. The DCX-repeat gene superfamily is composed of elevenparalogs, and we cloned the DCX domains from nine different genes. Our studyquestioned which functions attributed to the DCX domain, are conserved among thedifferent members. Our results suggest that the proteins with the DCX-domain haveconserved and unique roles in microtubule regulation and signal transduction. All thetested proteins stimulated microtubule assembly in vitro. Proteins with tandem repeatsstabilized the microtubule cytoskeleton in transfected cells, while those with singlerepeats localized to actin-rich subcellular structures, or the nucleus. All tested proteins interacted with components of the JNK/MAP-kinase pathway, while only a subsetinteracted with Neurabin 2, and a non-overlapping group demonstrated actin association.The sub-specialization of some members due to confined intracellular localization, andprotein interactions may explain the success of this superfamily.  相似文献   

9.
Microtubules are flexible polymers whose mechanical properties are an important factor in the determination of cell architecture and function. It has been proposed that the two most prominent neuronal microtubule-associated proteins (MAPs), tau and MAP2, whose microtubule binding regions are largely homologous, make an important contribution to the formation and maintenance of neuronal processes, putatively by increasing the rigidity of microtubules. Using optical tweezers to manipulate single microtubules, we have measured their flexural rigidity in the presence of various constructs of tau and MAP2c. The results show a three- or fourfold increase of microtubule rigidity in the presence of wild-type tau or MAP2c, respectively. Unexpectedly, even low concentrations of MAPs promote a substantial increase in microtubule rigidity. Thus at ~20% saturation with full-length tau, a microtubule exhibits >80% of the rigidity observed at near saturating concentrations. Several different constructs of tau or MAP2 were used to determine the relative contribution of certain subdomains in the microtubule-binding region. All constructs tested increase microtubule rigidity, albeit to different extents. Thus, the repeat domains alone increase microtubule rigidity only marginally, whereas the domains flanking the repeats make a significant contribution. Overall, there is an excellent correlation between the strength of binding of a MAP construct to microtubules (as represented by its dissociation constant Kd) and the increase in microtubule rigidity. These findings demonstrate that neuronal MAPs as well as constructs derived from them increase microtubule rigidity, and that the changes in rigidity observed with different constructs correlate well with other biochemical and physiological parameters.  相似文献   

10.
In neurons, a highly regulated microtubule cytoskeleton is essential for many cellular functions. These include axonal transport, regional specialization and synaptic function. Given the critical roles of microtubule-associated proteins (MAPs) in maintaining and regulating microtubule stability and dynamics, we sought to understand how this regulation is achieved. Here, we identify a novel LisH/WD40 repeat protein, tentatively named nemitin (neuronal enriched MAP interacting protein), as a potential regulator of MAP8-associated microtubule function. Based on expression at both the mRNA and protein levels, nemitin is enriched in the nervous system. Its protein expression is detected as early as embryonic day 11 and continues through adulthood. Interestingly, when expressed in non-neuronal cells, nemitin displays a diffuse pattern with puncta, although at the ultrastructural level it localizes along the microtubule network in vivo in sciatic nerves. These results suggest that the association of nemitin to microtubules may require an intermediary protein. Indeed, co-expression of nemitin with microtubule-associated protein 8 (MAP8) results in nemitin losing its diffuse pattern, instead decorating microtubules uniformly along with MAP8. Together, these results imply that nemitin may play an important role in regulating the neuronal cytoskeleton through an interaction with MAP8.  相似文献   

11.
We previously demonstrated (Ookata et al., 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule- associated proteins (MAPs) might be responsible for this interaction. In this study, we have investigated the mechanism by which p34cdc2 kinase associates with the microtubule cytoskeleton in primate tissue culture cells whose major MAP is known to be MAP4. Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. Detergent extraction before fixation removed cyclin B as well as MAP4 from the microtubules. Depolymerization of some of the cellular microtubules with nocodazole preferentially retained the microtubule localization of both cyclin B and MAP4. The association of p34cdc2/cyclin B kinase with microtubules was also shown biochemically to be mediated by MAP4. Cosedimentation of purified p34cdc2/cyclin B with purified microtubule proteins containing MAP4, but not with MAP-free microtubules, as well as binding of MAP4 to GST-cyclin B fusion proteins, demonstrated an interaction between cyclin B and MAP4. Using recombinant MAP4 fragments, we demonstrated that the Pro-rich C-terminal region of MAP4 is sufficient to mediate the cyclin B-MAP4 interaction. Since p34cdc2/cyclin B physically associated with MAP4, we examined the ability of the kinase complex to phosphorylate MAP4. Incubation of a ternary complex of p34cdc2, cyclin B, and the COOH-terminal domain of MAP4, PA4, with ATP resulted in intracomplex phosphorylation of PA4. Finally, we tested the effects of MAP4 phosphorylation on microtubule dynamics. Phosphorylation of MAP4 by p34cdc2 kinase did not prevent its binding to microtubules, but abolished its microtubule stabilizing activity. Thus, the cyclin B/MAP4 interaction we have described may be important in targeting the mitotic kinase to appropriate cytoskeletal substrates, for the regulation of spindle assembly and dynamics.  相似文献   

12.
BACKGROUND: MAP2 and tau are abundant microtubule-associated proteins (MAPs) in neurons. The development of neuronal dendrites and axons requires a dynamic interaction between microtubules and actin filaments. MAPs represent good candidates to mediate such interactions. Although MAP2c and tau have similar, well-characterized microtubule binding activities, their actin interaction is poorly understood. RESULTS: Here, we show by using a cosedimentation assay that MAP2c binds F-actin. Upon actin binding, MAP2c organizes F-actin into closely packed actin bundles. Moreover, we show by using a deletion approach that MAP2c's microtubule binding domain (MTBD) is both necessary and sufficient for both F-actin binding and bundling activities. Surprisingly, even though the MAP2 and tau MTBDs share high sequence homology and possess similar microtubule binding activities, tau is unable to bind or bundle F-actin. Furthermore, experiments with chimeric proteins demonstrate that the actin binding activity fully correlates with the ability to promote neurite initiation in neuroblastoma cells. CONCLUSIONS: These results provide the first demonstration that the MAP2c and tau MTBD domains exhibit distinct properties, diverging in actin binding and neurite initiation activities. These results implicate a novel actin function for MAP2c in neuronal morphogenesis and furthermore suggest that actin interactions could contribute to functional differences between MAP2 and tau in neurons.  相似文献   

13.
Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases.  相似文献   

14.
Doublecortin (DCX) plays an important role in neuronal migration and development, and the participation of DCX in neuronal migration has been demonstrated by intensive mutational analysis for patients with X-linked or sporadic lissencephaly, and/or subcortical laminar heterotopia. Although a previous search for protein similarity showed that DCX has a region homologous to the putative Ca(2+)/calmodulin-dependent protein kinase, the function of the DCX gene (DCX) has remained unknown. We show here that mouse DCX colocalizes with the microtubules and provide evidence that its conformational structure is important for its subcellular localization by means of mutant doublecortin expression study. The results of our study may suggest that the cytoskeleton involving DCX mediates the neuronal migration during brain development.  相似文献   

15.
Mutations in the AAA adenosine triphosphatase (ATPase) Spastin (SPG4) cause an autosomal dominant form of hereditary spastic paraplegia, which is a retrograde axonopathy primarily characterized pathologically by the degeneration of long spinal neurons in the corticospinal tracts and the dorsal columns. Using recombinant Spastin, we find that six mutant forms of Spastin, including three disease-associated forms, are severely impaired in ATPase activity. In contrast to a mutation designed to prevent adenosine triphosphate (ATP) binding, an ATP hydrolysis-deficient Spastin mutant predicted to remain kinetically trapped on target proteins decorates microtubules in transfected cells. Analysis of disease-associated missense mutations shows that some more closely resemble the canonical hydrolysis mutant, whereas others resemble the ATP-binding mutant. Using real-time imaging, we show that Spastin severs microtubules when added to permeabilized, cytosol-depleted cells stably expressing GFP-tubulin. Using purified components, we also show that Spastin interacts directly with microtubules and is sufficient for severing. These studies suggest that defects in microtubule severing are a cause of axonal degeneration in human disease.  相似文献   

16.
Microtubule-associated protein 1A (MAP1A) is a high-molecular-weight protein that is comprised of a heavy chain and a light chain (LC2) and is widely distributed along the microtubules in both mature neurons and glial cells. To illustrate the interaction among the MAP1A heavy chain, light chain, and microtubule, we prepared DNA constructs with Myc-, EGFP-, or DsRed-tags for full-length MAP1A DNA expressing whole MAP1A protein, two domains of MAP1A heavy chain, and light chain. Distribution patterns of various MAP1A domains as well as their interactions with microtubules were monitored in a non-neuronal COS7 and a neuronal Neuro2A cells. Our data revealed that a complete MAP1A protein, which contains both heavy chain and LC2, could be colocalized with microtubule networks not only in Neuro2A cells but also in transfected COS7 cells. Filamentous structures failed to be visualized along microtubules in COS7 cells transfected with MAP1A heavy chain or LC2 alone. Whereas, after introducing MAP1A heavy chain with LC2 into COS7 cells, both heavy chain and LC2 could be colocalized with microtubules. From our functional analysis, both MAP1A and its LC2 could protect microtubules against the challenge of nacodazol. Data collected from yeast two-hybrid assays of various MAP1A domains confirmed that the interaction of LC2 and NH2-terminal of MAP1A heavy chain is important for microtubule binding. From our analysis of MAP1A functional domains, we suggest that interactions between MAP1A heavy chain and LC2 are critical for the binding of microtubules.  相似文献   

17.
The MARK protein kinases were originally identified by their ability to phosphorylate a serine motif in the microtubule-binding domain of tau that is critical for microtubule binding. Here, we report the cloning and expression of a novel human paralog, MARK4, which shares 75% overall homology with MARK1-3 and is predominantly expressed in brain. Homology is most pronounced in the catalytic domain (90%), and MARK4 readily phosphorylates tau and the related microtubule-associated protein 2 (MAP2) and MAP4. In contrast to the three paralogs that all exhibit uniform cytoplasmic localization, MARK4 colocalizes with the centrosome and with microtubules in cultured cells. Overexpression of MARK4 causes thinning out of the microtubule network, concomitant with a reorganization of microtubules into bundles. In line with these findings, we show that a tandem affinity-purified MARK4 protein complex contains alpha-, beta-, and gamma-tubulin. In differentiated neuroblastoma cells, MARK4 is localized prominently at the tips of neurite-like processes. We suggest that although the four MARK/PAR-1 kinases might play multiple cellular roles in concert with different targets, MARK4 is likely to be directly involved in microtubule organization in neuronal cells and may contribute to the pathological phosphorylation of tau in Alzheimer's disease.  相似文献   

18.
Doublecortin association with actin filaments is regulated by neurabin II   总被引:1,自引:0,他引:1  
Mutations in the human Doublecortin (DCX) gene cause X-linked lissencephaly, a neuronal migration disorder affecting the neocortex and characterized by mental retardation and epilepsy. Because dynamic cellular asymmetries such as those seen in cell migration critically depend on a cooperation between the microtubule and actin cytoskeletal filament systems, we investigated whether Dcx, a microtubule-associated protein, is engaged in cytoskeletal cross-talk. We now demonstrate that Dcx co-sediments with actin filaments (F-actin), and using light and electron microscopy and spin down assays, we show that Dcx induces bundling and cross-linking of microtubules and F-actin in vitro. It has recently been shown that binding of Dcx to microtubules is negatively regulated by phosphorylation of the Dcx at Ser-47 or Ser-297. Although the phosphomimetic green fluorescent protein (GFP)-Dcx(S47E) transfected into COS-7 cells had a reduced affinity for microtubules, we found that pseudophosphorylation was not sufficient to cause Dcx to bind to F-actin. When cells were co-transfected with neurabin II, a protein that binds F-actin as well as Dcx, GFP-Dcx and to an even greater extent GFP-Dcx(S47E) became predominantly associated with filamentous actin. Thus Dcx phosphorylation and neurabin II combinatorially enhance Dcx binding to F-actin. Our findings raise the possibility that Dcx acts as a molecular link between microtubule and actin cytoskeletal filaments that is regulated by phosphorylation and neurabin II.  相似文献   

19.
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.  相似文献   

20.
MAP2 and tau exhibit microtubule-stabilizing activities that are implicated in the development and maintenance of neuronal axons and dendrites. The proteins share a homologous COOH-terminal domain, composed of three or four microtubule binding repeats separated by inter-repeats (IRs). To investigate how MAP2 and tau stabilize microtubules, we calculated 3D maps of microtubules fully decorated with MAP2c or tau using cryo-EM and helical image analysis. Comparing these maps with an undecorated microtubule map revealed additional densities along protofilament ridges on the microtubule exterior, indicating that MAP2c and tau form an ordered structure when they bind microtubules. Localization of undecagold attached to the second IR of MAP2c showed that IRs also lie along the ridges, not between protofilaments. The densities attributable to the microtubule-associated proteins lie in close proximity to helices 11 and 12 and the COOH terminus of tubulin. Our data further suggest that the evolutionarily maintained differences observed in the repeat domain may be important for the specific targeting of different repeats to either alpha or beta tubulin. These results provide strong evidence suggesting that MAP2c and tau stabilize microtubules by binding along individual protofilaments, possibly by bridging the tubulin interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号